~Animating Observation Geometries

with Amphion

- Steven oac

Science opportunity visualizers (SOVs) are
essential tools for analyzing mission designs,
planning detailed science observations, and
aiding the analysis of science data returned from
a spacecraft’s instruments. In the past, creating
an SOV was a labor intensive software develop-
ment process. This article describes an extension
to the Amphion automatic programming system
that facilitates the rapid generation of SOV's for
understanding observation geometries. Although
this extension is not yet mature, it has already
been employed in developing a SOV that is
actively being used by the planetary rings
community, as well as dozens of prototype
animation programs.

This article first reviews SPICE and
Amphion, and then discusses the extensions that
are used in generating SOVs.

SPICE and Amphion
Jet Propulsion Laboratory’ s (JPL) Navigation
and Ancillary Information Facility (NAIF)

Outer-Ring-Radius-Km Inner-Ring-Radius-Km
opn repn

Quter-Ring-Radius

h, University of Wyoming/Ames summe

r graduate student, Michael Lowry and
- Thomas Pressburger, Amphion: Project, IC: Division,. VLR

Ames Research Center: ;. - -

Group constructed the SPICE ancillary informa-
tion system to assist in planning observations and
interpreting data from space borne instruments. It
includes data sets for solar system bodies (e.g.,
planets, satellites, and spacecraft) and software in
the form of a FORTRAN-77 subroutine library.
The subroutines can be used to write programs
that, by accessing SPICE data sets, calculate
observation geometry parameters. A recent
overview of SPICE was presented in the Decem-
ber 1994 issue of this newsletter on pp. 29-30.
Amphion is an automatic program synthesis
system; that is, a system that writes source code
programs given high-level problem specifications.
Amphion was introduced in the February 1994
issue, pp. 22-25. It consists of a graphical user
interface and a program synthesis subsystem.
Amphion allows you to program at the level of
abstract problem specifications instead of at the
tedious level of programming language syntax. It
is a general program synthesis system that is
tailored to a particular domain by a domain

Inner-Ring-Radius

et-time |gypn
normal J
b

Saturn-Orbital-Planc-Normal

ody-id
Id

direction

Camera-Frame
Ephemeris-Time TS I'y
ray

e

tima-sys
v ¥
3.
Time-Coordinate-1 Camera-Z-Ray |\
A

repn

at-time
A

A

spececrail-id
Titan . N
— - body-idy, at-time
Cassini-Orbiter Body-Titan |

mw.ms*

Body-Saturs

at-time

Time-Saturn

Body-Sun

T

towards

rom'
Photon-Sun-Saturn

normal-lo

relative-to

~ ! Ray-Saturn-Sun !

contains

T \ Saturn-Orbital-Planc
bady-id
ey N

at-time 22—

o etro

contains

velocily

Saturn-Velocity

=t

Navigation Ancillary

Information Facility

The goal of the Navigation
and Ancillary Information
Facility is to provide the
planetary science community
with data sets and transport-
able software tools, appropri-
ate for computing, archiving,
accessing and distributing
the ancillary viewing
geometry needed to interpret
observations of solar system
bodies.

Figure 1. Graphical specification
of Cassini observation geometry

Infarmatinn Quetama Newslettar o March 1995 e 35

Figure 2. Figure [augmented to
specify a visualization

Drawing-Tnncr-Ring

{Oulurking»kldiu:-){mj lnner-Ring-Rldxul-K:L‘
T

repn rapn

Outer-Ring-Radius Inner-Ring-Radius

radius
amory

[D'uph)'-0bjc:l-0ul:r~king ""’;" camera
P

draw

Drawing-Outcr-Ring

Display-Object-Tnner-Rin

direction

Lo cameora
Ephemeris-Time-TS
' g 22 . "normal-io

time-sys
14

Time-Coordinate-1 Camera-Z-Ray e

al-time
o

Cassini

ta.c.cl.ll -id draw

m

Photon-Saturn-Cassini

C:ulm Orbiter

{
Camera amars——— [Display-Object-Illum

Drawing-llum Tnm: Sun
M
draw

at- m-u

bady vid

ooy
normat
Saturn-Orbital-Planc-Normal

Pho(un-Sun-Suuyn
at pwn!

ww-rds

ralztive-io

Body.Saturn "
:Dnlllll!
shqw

s tuen-Orbitai-Pl
D!!rlar Object-Saturn body-id | i ane
draw \

at-time

Dispiay-Objeci-Titan m 7 \ A 4
S

velocity

contains

Saturn-Velocity

theory. The first theory written for Amphion was
for the SPICE domain. Using this theory,
Amphion generates FORTRAN programs
containing calls to SPICE subroutines.

With Amphion, you do not need to be familiar
with the hundreds of SPICE subroutines or the
data structures they require. The graphical user
interface guides you in the creation of a sprevckiﬁ‘—,
cation diagram (see Figures 1 and 2). The
program synthesis subsystem then generates a
FORTRAN program. In preliminary testing,
SPICE programmers were able to generate
graphical specifications with less than an hour of
training. SPICE programmers can typically
generate correct programs much faster using
Amphion than on their own.

Observation geometry visualization

Amphion is designed to be easily extensible,
so that as NAIF adds new functionality to the
SPICE system, Amphion can be augmented to
generate programs calling new SPICE compo-
nents. For the work described in this article, the
NAIF domain theory was augmented to support
the specification of visualizations and the
generation of programs containing calls to
graphics subroutines. To specify a visualization,
an Amphion user specifies an observation
geometry, adds me specification for a camera,

and then specifies the bodies and illumination
sources for the visualization. The camera defines
the location from which the scene is observed.
For example, in Figure 2, the camera is located at
the Cassini spacecraft and the boresight points
toward Saturn. '

The basis of the animation system is a
graphics package called Euclid, developed by
Bill Taber of the NAIF group. This package
draws visualizations containing points, rings, and
wire frame ellipsoidal bodies. Euclid is suitable
for visualizing observation geometries, but is not
meant for producing photo-realistic images.
Euclid uses ray tracing techniques to determine
how the rings and bodies are illuminated by one
or more specified light sources. Euclid is device
independent and uses a simple device driver
interface called ESCHER that has been ported to
a variety of graphics devices. As part of this
project, ESCHER was ported to the Unix X-
windows system, the same system used by
Amphion’s graphical user interface.

Example: Cassini visualization

In 2004, the Cassini spacecraft will begin
orbiting Saturn. Cassini will fly by Titan several
times during the mission. Figures 1 and 2 show
an Amphion specification for a program to
visualize Cassini’s view during its mission.
Figure 1 shows the specification of the
observation geometry, and Figure 2 shows the
same specification augmented for visualization.

————The specification in Figure 1 includes Saturn, —— [

Titan, the Sun, and the Cassini spacecraft. In this
specification, a “body” is the location of some
object at a particular time. So the *Body-Saturn”
icon is the location of the planet Saturn at Time-
Saturn. The inputs to the program are the time of
the observation at Cassini (Time-Cassini) and the
inner and outer diameter of one of Saturn’s rings
to be displayed. To allow for the time light takes
to travel, the time of Body-Saturn is the time a.
photon would have left Saturn to arrive at Cassini
at Time-Cassini. The time of Body-Sun is
specified in a similar fashion. Since they are
relatively close, we assume that the time of
Body-Titan is the same as that of Body-Saturn.

To create a visualization, a camera must also
be specified. A camera has a coordinate system
called a frame. The z-axis of the frame points
along the camera boresight toward the objects
being viewed, the x-axis points to the right, and
the y-axis points up. In Figure 2, the z-axis is
defined as a ray from Cassini toward Body-
Saturn. The y-axis is orthogonal to the x-axis and
is aligned with the vector normal to the orbital
plane. The orbital plane is defined as the plane
that contains two vectors: the instantaneous
velocity vector of Saturn, and a vector from
Saturn to the Sun.

In Figure 2 the specifications have been added
for the objects to appear in the visualization and
for the location of the source of light. This is
done by creating display-objects. Each display-
object consists of two components: an object in
the specification and the camera from which it is

viewed. In Figure 2 there are display-objects for
Body-Saturn, Body-Titan, and the inner and
outer edges of the ring. Rings are visualized as
pairs of simple ellipses depicting the inner and
outer edges. The illumination source is Sun-
Body.

From the specification in Figure 2 Amphion
generates a FORTRAN program containing the
appropriate calls to the SPICE and Euclid
subroutines. These in turn call ESCHER and X-
windows subroutines that open a window on a
terminal and display a visualization. The
program can automatically generate visualiza-
tions for a sequence of times, thus producing an
animation. In contrast to many other animation
programs, the program is efficient enough to
generate the sequence of views in real time. Thus
the entire Cassini four year tour is animated at
any desired time compression without storing a
buffer of images. Figure 3 is a frame from this
animation at the time of the first Titan fly-by.

Animation and ring crossing visualizer

A fragment of the Cassini animation was
extracted to create an MPEG file at the Univer-
sity of Wyoming. This MPEG file is a time-
compressed animation of the first Cassini fly-by
of Titan; it is about a minute long. This fragment
can be viewed on Amphion’s World Wide Web
(WWW) Home Page at:

http://ic-www.arc.nasa.gov/ic/projects/amphion

or downloaded through anonymous ftp from:

al.uwyo.edu:/pub/nasa/

Figure 3. Freeze frame of first
Titan fly-by in Cassini tour
animation. Animation program
was generated by Amphion.

Information Systems News/ét[er e March 1995 o 37

Figure 4. Diagram of Saturn
system generated by PDS Rings
Node’s Saturn Viewer program

JTelesto

The animation can be seen through any
MPEG viewer, although some MPEG viewers
might not display the colors correctly.

In December 1994 Mark Showalter, manager
of the Rings Node for PDS, inquired about using
Amphion to generate visualizations of the Saturn
system as it will appear from Earth during the
1995-96 ring plane crossings. His-objective was
to provide a Web-based SOV to help astrono-
mers plan their observations. Mark was able to
adapt the specification in Figure 2 very quickly
to produce a specification for his SOV. The
program generated by Amphion was then further
modified by Mark and is now accessible through
the WWW at:

http://ringside.arc.nasa.gov/www/rpx/rpx.html

Figure 4 was generated using this Saturn
Viewer program. It depicts Saturn, its rings, the

" inner moons, and an occulted background star

just a few minutes after the Sun finishes crossing
Saturn’s ring plane at 12:05 UTC on November
21, 1995. The rings are shown in light gray
because we will be seeing their unilluminated
side at this time. The locations and names of the
inner moons are shown (although the names are
printed in a font too small to read in this repro-
duction). By coincidence, a 12th magnitude
background star, shown as a plus, will be
occulted by the rings at this time.

Current status of Amphion visualization
capabilities

Currently, Amphion generates a visualization
subroutine containing calls to SPICE and Euclid
subprograms. The user must build the main

38 e March 1995 e Information Systems Newsletter

i GJBANUS

program that calls this subroutine. Templates of
main programs are available, and in practice it
has been easy for programmers familiar with
FORTRAN to build main programs from the
templates. The main program templates have
facilities for changing camera parameters at
execution time (zoom in and out, pan side to
side), and for starting and stopping the anima-
tions and stepping forward or backward through
fime.

Future plans

The Amphion group is working to augment
the animation domain theory and driver code to
support multiple illumination sources, text, and
multiple cameras. We plan to enhance the
animation component to make it more compliant
with the full features of the X-windows system
and to make the cxecution environment more
intuitive.

Amphion is also being extended to generate
iterative code that searches for solutions to
queries such as “When does a geometric
configuration occur in a time interval” and
“When does a geometric function take on a
minimum value in a time interval.” The NAIF
group developed a set of iterative FORTRAN
drivers call PERCY that form the components
for this capability. Amphion is being extended to
target PERCY, just as it was extended to target
the elements of Euclid. Amphion’s PERCY
capability has already been prototyped. In
combination with the animation capabilities, this
will provide a basis for rapidly generating
science opportunity analyzers.

For further information contact Michael
Lowry via phone: 415- 604-3369 or e-mail:

lowry@ptolemy.arc.nasa.gov

