
Automating the Documentation and
Certification of NASA Software

PROBLEM
Traditional certification techniques are laborious and
time-consuming. Formal certification uses theorem
provers to automatically generate certificates of
correctness in the form of formal mathematical proofs,
but
• Can we trust the theorem-prover?
• How do we make these proofs human-readable?
• How do we relate these proofs to the program?

SOLUTION
Generate textual explanations of code safety
from auto-generated proof obligations and trace
these back to the program. These proof
obligations refer to an explicit safety policy that
can be varied. For example:

• Array-bounds safety,

• Variable initialization-before-use,

• Variable write limits for volatile memory, …

• We have developed a generic safety document
Generator that automatically generates
explanations of program safety from verification
conditions (VCs), formulas produced by a
Verification Condition Generator (VCG).
• It is generic in the sense that new safety
policies can easily be added to the system.
• A significant step in the direction of merging
formal certification with traditional certification.

Specification

Automated
Theorem

Prover
OK

Safety Document
Generator

Program
….

a[10]
for i = 1 to 10

a[i] = i
….

Program
….

(1) a[10]
(2) for i = 1 to 10
(3) a[i] = i

….

Synthesis System

Safety Policy
(All array accesses

must be safe) TECHNOLOGYLabeler

VCG

VCs

SAFETY REPORT
...................

The access a[i] at line 3 is safe
because for each value of the index I
from 1 to 10, the access is within the
bounds of the array declared at line 1.

………………

Explanation of Accomplishment

• POC: Ewen Denney (ASE Group, Code IC, edenney@email.arc.nasa.gov)
• Collaborator: Ram Prasad Venkatesan (Univ. Illinois at Urbana-Champaign)
• Funding: ITSR, QSS Summer Intern Program
• Background: The ASE group is developing automated program synthesis systems for the application

domains of data analysis (AutoBayes) and state estimation (AutoFilter). We have previously extended these
systems with an automated certification capability, based on mathematical logic, for various safety policies.
However, it is very difficult for humans to interpret the resulting proofs and then relate them to the original
program. We have addressed this by incorporating a safety documentation feature.

• Accomplishment: We have developed a tool that can automatically generate textual explanations of safety
with respect to a given safety policy for auto-generated code. Our tool currently generates safety documents
for two safety policies: array-bounds safety and variable initialization-before-use. Our framework, however,
is generic in that new safety policies can easily be incorporated. Another increment over previous work is
that we now provide a mechanism to trace proofs of program safety back to the program itself. A paper
describing the work was presented 07/13/2004 at Algebraic Methodology and Software Technology 2004
(AMAST’04) in Stirling, Scotland.

• Shown: The code generated by the synthesis engine is labeled with statement numbers and this is fed to the
verification condition generator (VCG) along with a safety policy. The VCG generates verification
conditions (VCs), which are passed to the document generator. The safety document generator then generates
textual explanations of safety from these VCs. Finally, these VCs are checked automatically by a theorem
prover.

• Benefits: This technology has the potential to increase confidence in the use of code generators within and
outside NASA. Auto-generated code, in addition to a certificate of correctness (w.r.t. user-defined notions of
safety) will come with a document containing human-readable explanation as to why it is correct. This
approach is a significant step in the direction of merging formal certification with traditional certification.

mailto:edenney@email.arc.nasa.gov

	Explanation of Accomplishment

