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Abstract—Two fundamentally different approaches can be
employed to estimate remaining life in faulted components.
One is to model from first principles the physics of fault
initiation and propagation. Such a model must include
detailed knowledge of material properties, thermodynamic
and mechanical response to loading, and the mechanisms
for damage creation and growth. Alternatively, an
empirical model of condition-based fault propagation rate
can be developed using data from experiments in which the
conditions are controlled or otherwise known and the
component damage level is carefully measured. These two
approaches have competing advantages and disadvantages.
However, fusing the results of the two approaches produces
a result that is more robust than either approach alone. In
this paper, we introduce an approach to fuse competing
prediction algorithms for prognostics. Results presented are
derived from rig test data wherein multiple bearings were
first seeded with small defects, then exposed to a variety of
speed and load conditions similar to those encountered in
aircraft engines, and run until the ensuing material
liberation accumulated to a predetermined damage
threshold or cage failure, whichever occurred first.
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1. INTRODUCTION

Prognostics plays a pivotal role in integrated systems health
management (ISHM). Estimating remaining component
life with uncertainty bounds that are narrow enough to

allow system operation after a fault has been detected offers
the prospect for increased system safety along with more
cost effective maintenance strategies. The latter include
performing on-demand maintenance, a departure from the
traditional, actuarial-based practice in which components
are managed to life limits based upon fleet wide statistics
and average expected usage.  The traditional approach is
necessarily conservative, requiring the replacement of parts
irrespective of how much of their useful life is actually
expended. In contrast, a condition-based parts replacement
strategy [Orsagh et al., 2003] results in reduced cost of
ownership with the same safety margin. The whole
paradigm of fleet management could be changed because it
would be possible to not only perform maintenance at a
convenient place and time, taking into account variables
such as part and staff availability, shop loading, and other
factors, but also to plan future missions more reliably. To
that end, a DARPA-sponsored program -- of which the
work reported here is a part -- addresses engine prognosis
using advanced physics-based models, state-awareness
sensors, and a prognostic reasoner to compute component
capability, to quantify prediction-related variability, and to
provide system-wide capability assessment [Littles and
Buczek, 2004].

Remaining life prediction is at the core of prognostics.
However, there are considerable imponderables of such a
life prediction. First and foremost, these result from the
uncertainties surrounding the future use of the component
of interest.  A component has generally shorter remaining
life when it is subjected to higher load conditions than
when it experiences lesser load conditions. However, unless
the system is run under constant load conditions or goes
through repetitive load cycles, the detailed nature of future
load conditions will have an impact on the quality of the
remaining life estimate. There are numerous other
conditions that may influence the remaining life, depending
on the component and fault mode.  For bearings, these may
include speed, temperature, humidity, external vibration,
contamination, lubrication, and other factors.
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The physics-based prognostic models deal with
mechanisms governing incipient damage at the material
level, factoring in both full finite-element and reduced-
order formats. The state awareness sensors measure
material and system damage state, identify engine operation
conditions, and update model predictions with advanced
signal-acquisition and signal-conditioning methodologies.
Data from rig tests were used to develop in parallel an
empirical model of spall growth rate (as a function of speed
and load). Finally, the prognostic reasoner fuses sensor and
model-based information to assess residual component
capability, calculate the uncertainty level for system
predictions, and project a safe operational envelope for
near-term engine usage [Littles and Buczek, 2004].

In an earlier paper [Goebel et al., 2005] we presented an
architecture for the prognostic reasoner demonstrated on a
bearing system (Figure 1). This paper will focus on the
prognostic reasoner and specifically on one way to fuse
competing remaining life estimates. Generally, the reasoner
is represented as a multi-layered architecture comprising
pre-processing, analysis, and post-processing steps. These
steps are partitioned into modules where each module
performs supporting tasks for both information processing
and uncertainty management. The focus of this paper is on
a method within the analysis module.
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Figure 1 - Interactions of Integrated Bearing Reasoner
Modules

2. BACKGROUND

Bearing Damage

During bearings operation, initially localized spalls can
initiate that may grow and ultimately result in loss of
function. Important factors affecting damage initiation and
damage propagation are changes in bearing loads, speeds,
and environment.  Lubrication, presence of material
defects, surface degradation, and external contamination all
factor in to the bearing environment. Subsurface fatigue
cracks are induced at locations of peak shear stress, become
surface-connected, and lead to eventual liberation of
material. It is important to assess the microstructural
evolution, environmental embrittlement, cyclic hardening,
and residual stress to calculate the propagation of bearing
damage. The current state is determined by feeding direct
sensor data and indirect parameters computed from sensor
data into an ensemble of diagnostic algorithms as a basis
for input to the fault-evolution and life models [Littles and
Buczek, 2004]. The algorithms arrive at their conclusion
either by direct measurement, models supported by
measurements, or are simply triggered by measurements.
The information sources that the reasoner relies on may be
updated at different intervals during or between flights and
may have different prediction horizons.

Sensors for Bearing Prognostics

Prognostics is about the estimation of remaining useful life
under particular assumptions of future use. Sensor
measurements provide instantaneous feedback on current
damage levels and form the foundation for prognostic
estimates. Ideally, features derived from sensor
measurements would have monotonically changing
properties that accurately reflect increasing component
damage and be provided irrespective of external conditions.
However, in practice this is nearly never the case: features
reflect the noise inherent in sensed data and react
differently during particular stages of damage evolution
(e.g., some are useful for fault detection, but not for damage
growth tracking).

Oil debris monitor features, such as particle counts, have
excellent tracking properties that are invariant to changes
of environmental parameters [Dempsey et al., 2002].
However, they may be not as suitable to identify fault
initiation because their resolution is too low for small
damage levels. Better sensors for fault initiation and initial
fault growth tracking may be vibration sensors that have
the promise to pick up smaller damage levels. Features
from various transforms such as Fourier, Hilbert, and
Wavelets can be useful in detecting and categorizing
incipient faults. The vibration sensor’s capacity for early
detection comes at the price of sensitivity to environmental
effects [Dempsey et al., 2002] that are sometimes difficult
to quantify or correct. In an aircraft engine, and in



3

particular under conditions of military use, these changes
can be significant.

It is thus expedient to aggregate vibration and oil debris
information to take advantage of the benefits of both. The
fusion of information from oil debris and vibration
information, along with knowledge about system and
machinery history can result in interactions that may
improve the confidence about system condition [Byington
et al., 1999]. Howard and Reintjes [Howard and Reintjes,
1999] describe the benefits of using several information
sources for fault detection, and discuss oil debris and
vibration for helicopter gearboxes in particular. Byington et
al. [Byington et al., 1999] describe a fusion technique that
correlates the failure mode phenomena with appropriate
features. Dempsey et al. [Dempsey et al., 2002] report on
the use of fuzzy logic to integrate oil debris and vibration
information for gearbox faults where the output was quasi-
action recommendations such as “OK, inspect, shutdown”.

Diagnostics

Prognostics is reliant on diagnostics to provide a trigger
point. That is, no prognostic estimates are calculated before
diagnostics has detected a fault condition.  In the absence of
abnormal conditions – or fault conditions – the best
estimates for remaining component life are often fleet wide
statistics expressed by Weibull curves or other suitable
mechanism. Condition-based systems depend on reliable
fault diagnostics to initiate the prognostic algorithms.

Prognostics

The remaining useful life (RUL) estimates are in units of
time until the likelihood of failure reaches a particular
threshold. RUL is often estimated indirectly via the
calculation of a metric that, when exceeding a particular
threshold, indicates imminent component failure. In the
context of bearing race spall, this metric could be spall
length. When spall length surpasses the ball spacing,
damage accumulates rapidly; bearing cage failure occurs
soon after this threshold has been breached.

Two fundamentally different approaches can be employed
to estimate future damage. One is to model from first
principles the physics of the system as well as the fault
propagation for given load and speed conditions. Such a
model must include detailed knowledge of material
properties, thermodynamic behavior, etc. Alternatively, an
empirical experience-based model can be employed
wherein data from experiments at known conditions and
component damage level are used to build a model for fault
propagation rate. Such a model relies heavily on a
reasonably large set of experiments that sufficiently
explores the load and speed space.

Prognostic Information Fusion

The two approaches for estimating future damage have
various advantages and disadvantages. The physics-based
model relies on the assumption that the fault mode modeled
using the specific geometry, material properties,
temperature, load, and speed conditions will be similar to
the actual fault mode. Deviation in any of those parameters
will likely result in an error that is amplified over time. In
contrast, the experience-based model assumes that the data
available sufficiently maps the space and that interpolations
(and extrapolations) from that map can capture the fault
rate properly. It can be beneficial to fuse the output of both
methods to produce a more robust and more accurate result.
Finding synergy in using different information sources to
assess system states has a long tradition within the fields of
multivariate statistics and pattern recognition.

In addition to fusing a damage estimate, the associated
uncertainty needs to be aggregated as well. This is a critical
task because the resulting estimate needs to be within
uncertainty bounds that allow for decision making at a
desired risk level. If the uncertainty bounds are very wide,
the resulting time-of-failure estimate at the acceptable risk
level may be too early to provide any benefit to the
decisioning process. That is, there would be no advantage
of prognostics compared to a reactionary diagnostics system
alone. Uncertainty bounds ideally are tight but need to
reflect true output variability.

Prognostic Fusion Techniques

The aggregation of future damage estimates is not just a
question of averaging the various values. Rather, the fusion
method should be able to incorporate a number of different
measures that inform about the reliability of the estimate,
their expected accuracy, and various other uncertainty
measures. These measures in turn may be a function of
different variables such as time, where in the load/speed
space the estimate is performed, known shortcomings or
strength in some areas of that space, etc. In the example
described by Orsagh et al. [Orsagh et al., 2003],
performance improvement is accomplished when weights
for the information sources are dynamically allocated
depending on whether the component is considered early or
late in its remaining useful life cycle. Garga et al. [Garga et
al., 2001] describe a hybrid reasoning approach that
integrates domain knowledge with test and operational data
from an industrial gearbox. There, domain knowledge is
expressed as a rule-base, and then used to train a
feedforward neural network.

3. INTEGRATED REASONER OPERATING MODES

As mentioned above, the prognostic reasoner considered
here is really a set of reasoners that will operate at various
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times during and after the flight. Depending on the time
during or after a mission, its tasks will vary from
aggregation of damage information to supporting the
calculation of a remaining life estimate.

In-Flight and Post-Flight Diagnostic Modes

During the flight, there are a number of features derived
from sensors that inform about the presence of bearing
damage. Specifically, this information encompasses
features derived from accelerometers that measure and
assess vibration.  Furthermore, information from debris
monitoring devices is also used as a sensor-based input to
the reasoner.  In addition, a spall propagation model will
provide information about the size and rate of increase of
spalls. This model will use triggers from the reasoner to
initiate its operation. That is, it will be dormant in the
absence of evidence of bearing damage, and fleet-wide
statistics on bearing fatigue are used for low-level damage
accumulation. Therefore, the overall reasoner will initially
have to reliably provide diagnostic information about
bearing damage to the spall propagation model.  Once
bearing damage has been established and the spall
propagation model has been triggered, it will also need to
integrate the information from the spall propagation model
with the vibration and debris information. The output of the
in-flight diagnostic reasoner is a damage estimate. The
post-flight diagnostic reasoner performs similar functions
with the difference that it is not encumbered by
computational constraints. That is, it will run full-order
models that provide a more refined damage estimate.

Prognostic Mode

The prognostic models can be run either on-board or on-
ground, depending on whether there is a need for short
term outlook (in which case the prognostic reasoner would
be executed on-board) or whether there is a need for a
longer-term outlook (in which case it makes more sense to
run the prognostic reasoner on-ground). If a fault has been
detected, the prognostic functions are executed on a set of
future missions. Specifically, missions characterized in part
by sequences of load, speed, and ambient conditions are
used as input to the physics-based spall propagation model.
In conjunction with the current damage state, the output of
the spall propagation model will provide a damage profile
into the future. In parallel, the future mission profile is also
used to execute the experience-based model, which gives its
independent future damage estimate.

In addition to the damage estimate, each model is assigned
a quality assessment that can be interpreted as confidence.
These confidences are computed based on a priori
performance of the models. That is, the models may be
known to have a different performance within different
regions of the load-speed mission space. Additionally, the
models may be known to produce biases at different

damage levels or at different damage rate levels.
Furthermore, the further out into the future the prediction is
being made, the less likely it is correct. While confidence
intervals may capture the possible variability, the quality
assessment captures other sources of uncertainty. For
example, the top set of axes of Figure 2 shows some data fit
with a linear model. The dashed lines show the 95%
confidence interval of the model. However, we can plainly
see (second set of axes) in this simple case that a linear fit
is a poor approximation of the data (it is less obvious in
space of higher dimensionality). If this model was for
example driven by first principles to this particular form,
the confidence interval of the model alone does not do us
much good. However, if we are able to take into account the
quality of the model (e.g., derived by examining
performance of the model) for particular regions of the
search space (or other factors, e.g., time), we can arrive at a
much better fusion of the data.

Figure 2 –  Data with linear fit, residual, and derived
quality assessment

The modeled damage over time and the quality assessment
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over time from each model are then forwarded to the
aggregation module. Figure 3 illustrates the operation of
the prognostic reasoner. Fundamentally, the prognostic
reasoner supervises the execution of the different prognostic
models, makes corrections where desired, and assigns a
quality assessment. It then aggregates the different
estimates. There are different ways in which the reasoner
can operate based on user demand. In one instantiation, it
will report both the profile of remaining life and
information on whether the envisioned missions can be
completed without exceeding the acceptable damage limit.
In another instantiation, it will provide information back to
the mission generation process to prompt for additional
mission runs when damage limits have not been reached.
The goal of executing the damage propagation model with
additional runs is to determine the damage propagation
profile and to find the remaining life limit.

As mentioned before, if no fault has been detected, the
prognostic module is bypassed and is replaced by fleet
statistics that are compiled on bearing fatigue data.
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Figure 3 - Prognostic Reasoner

4. MODELS

Two models are fused in the prognostic reasoner, a physics-
based (PB) model and an experience-based (EB) model.

The PB model for the initiation and propagation of bearing
fatigue spalls uses historic and estimated future operating
conditions to determine future bearing condition and

returns a probability density function of the bearing
remaining useful life. This model is based on first
principles approaches such as damage mechanics to track
material microstructure changes and eventual loss during
the spall propagation phase. It takes into account material
properties, bearing geometry, surface interaction,
lubrication, and variable operating conditions.

The EB model is an empirical fit of data from seven
experiments at five points in the speed and load space.
Spall length is calculated:

0
0: :

log10( ) ( )*

10
=

=

+ ∑
=

spallt
t dt current

l rate t dt

spalll
where

( ) ( )( , )10= f speed t load trate .

Spall growth rate is exponential, with rate an empirical
function of speed and load (Figure 4).

Figure 4 - Response surface of experience-based model.

5. PROGNOSTIC REASONER MODULE

The primary goal of the prognostic reasoner is to negotiate
the different damage estimates and to decide whether
another set of mission parameters needs to be executed for
another damage estimate further in the future. The
aggregation of different estimates is the focus of this paper.

There are numerous approaches such as bagging and
boosting [Freund and Schapire, 1999], Dempster-Shafer
[Smets, 1994], model-based approaches [Nelson and
Mason, 1999], fuzzy fusion [Loskiewicz and Uhrig, 1994]
or statistics-based approaches [Rao, 2000] that attempt to
address the core aggregation functions. However, it has to
be realized that the aggregation itself is only one function
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of the overall reasoner. In addition to combining
information, it has to be ensured that the information that is
being used provides the maximum information content.
There are a number of issues that need to be dealt with
prior to the actual aggregation. Specifically, the
information needs to be checked for consistency, and it
needs to be cleaned of outliers, noise, faulty or otherwise
bad sensor information, it needs to be conditioned and
formatted to allow a proper comparison. In addition to that,
special cases need to be taken into account that, depending
on the situation, should be done either before or after the
actual aggregation step. To assist in these tasks, we suggest
employing a sequential and parallel multi-layered
configurations strategy. Elements from this configuration
strategy have been proven successful in diagnostic fusion
environments within project IMATE [Ashby and Scheuren,
2000]. There, a hierarchical, multi-layer architecture
[Goebel, 2001] was demonstrated that implemented some
of these concepts. Information from various diagnostic
models and evidential information sources was combined
and manipulated through a series of steps that increased
and decreased the weight given to the information sources
according to the strategies implemented in the respective
layers of the fusion process.

In the following section we describe algorithmic concepts
of the in-flight prognostic reasoner. In contrast to a
diagnostic reasoner that has the task to determine the
presence of a fault and therefore has as its output the fault
category and perhaps an associated confidence, the in-flight
prognostic reasoner needs to assess the presence of an
initial fault condition and to report on the overall damage
level plus an associated uncertainty. The most fundamental
difference is in the second task, namely producing a
damage assessment output that is in continuous format.
This means that different aggregation techniques will need
to be employed.

Fusion is performed in the analysis module. We have tested
a number of different fusion techniques including weighted
averaging and adaptive neuro-fuzzy inference systems. The
latter has the advantage of automated learning capability,
while the former relies on the user to provide the
appropriate weights.  The two approaches mentioned both
arrived at satisfactory results. Ultimately, however, the final
fusion strategy needs to also include a provision to
aggregate different measures of uncertainty. For this
purpose, a Dempster-Shafer-based regression method
[Petit-Renaud and Denoeux, 2004] was used. The basic
concept of regression is to determine a functional
relationship between two or more correlated variables that
is often empirically derived from data and is used especially
to predict values of one variable when given values of the
others; specifically, a function that yields the mean value of
a random variable under the condition that one or more
independent variables have specified values.

In non-parametric regression (NPR), no assumptions about
the underlying functional form are made. NPR is
characterized by low bias (i.e, it can easily represent
underlying function) but at the expense of high variance
(i.e., the model will change from realization to realization
of the data). That in turn may change the response
dramatically depending on data. The simplest idea is the k-
nearest neighbor regression that results in good fit, but
huge variance and discontinuous behavior. Kernel
regression overcomes some of these shortcomings by locally
weighting members closer to the value in question. The
operative equation of Nadaraya-Watson [Watson, 1964;
Nadaraya, 1964] kernel regression is
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Classical regression techniques (kernel, MLP, RBF,
splines, linear, etc.) assume perfect knowledge of y (both
precise and certain). However, these techniques do not
work optimally if knowledge of sensor measurement y is
imprecise due to limited precision and accuracy of sensors,
and if sensor measurement y is uncertain (e.g., due to
sensor failure). The issue is exacerbated when there are
multiple sensors with different sensitivities and reliabilities.
In situations where the probe point is very different from
that employed in the training set it might be desirable to
have mechanisms to cast doubt on the validity of the output.

Dempster Shafer regression [Petit-Renaud and Denoeux,
2004] (DSR) provides a prediction of the output in form of
a fuzzy belief assignment. This assignment is defined as a
collection of fuzzy sets of values with associated masses of
belief. The output is computed using a nonparametric,
instance-based approach: evidence samples ei =  (xi,mi) in
the neighborhood of the input vector x are sources of partial
information on the response variable. The evidence samples
can be represented by a fuzzy belief assignment my[x, ei].
Relevance of the evidence with respect to y is assumed to be
dependent on the dissimilarity to y. If x is “close” to xi
according to a given metric ||.||, y is expected to be close to
yi, which makes example ei quite relevant to predict the
value of y. On the contrary, if x and xi are very dissimilar,
example ei provides only marginal information regarding
the value of y. Therefore, neighborhood evidence input
elements are discounted as a function of their distance to x.
They are then pooled using Dempster’s rule of
combination. While the method can cope with
heterogeneous training data, the more important
characteristics in this context is the formalism for modeling
both unreliable and imprecise information provided by
multi-sensor systems.
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DSR determines the value of sensor measurement y at  a
given time by discounting the belief mass of each
observation by:

( )
( )2

2
ix x

ix x eφ γ
−

−
Θ− =

where:
γ is a tuning parameter (usually >= 0.9)
Θ is a scale parameter, commonly set using cross
validation on training data

Next, the discounted belief masses are combined using
appropriate version of DS combination. When there are
many data points, the computational overhead can become
considerable. A remedy is using only the k-nearest
neighbors to reduce the complexity of the calculation with
little loss of accuracy.

The future estimated variability of the estimators was
folded into the Dempster-Shafer model by adding the
anticipated variability to the output.

5. RESULTS AND DISCUSSION

The prognostic reasoner has been tested on a sequential set
of experiments that model a simulated, cyclic mission
profile.  Figure 5 shows the assembled load and speed
history, which was reflective of about 40 cycles in the load-
speed space, with dwells at certain setpoints. An indent was
added to the outer race of a production bearing, which was
then run under those conditions. The bearing was examined
several times during the course of the test, and actual spall
length was recorded. The test ran to cage failure.
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Figure 5 – Test Profile (load and speed)

Figure 6 shows the subjective confidences that were
assigned to the estimators in the forward mode. The
forward mode can be executed at any time. For illustrative
purposes, we chose t=70 hours as the starting point. The
fundamental characteristic of the forward confidences is
that they drop as a function of time. In addition, there is an
a priori bias assigned to the different confidences, which in
turn reflects the accuracy of the models as observed during
testing. Figure 8 shows the output of the prognostic
reasoner run forward to t = 93 hours. The green line
reflects the output of the experience-based model in forward
mode. The blue line is the output of the physics-based
model in forward mode. The stars are the measurements
taken during the experiment. Although they would not be
available during an actual forward mode, they are shown
here to illustrate agreement with real damage. Both the
experience-based model and the physics-based model show
an increase of damage over time. At smaller time scales
(not shown here), one can see how the different operating
conditions have varied impact on the forward model. The
physics-based model has a larger bias that leads to
underestimation of the actual damage.

Also shown is the reasoner output. Specifically, the solid
black line is the 50th percentile of the reasoner. The dashed
black lines are the 5th and 95th percentiles of the reasoner.
The 95th percentile line crosses the critical damage level of
7% at about 75 hours. Depending on the risk tolerance, this
can be used by operators to either schedule maintenance or
to alter the planned mission sequence -- through correction
of the load/speed profile -- to achieve a longer time to
failure.
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6. SUMMARY & CONCLUSIONS

This paper describes how two fundamentally different
methods can be employed to estimate remaining life and
how their independent estimates can be fused. One method
uses first principles to model fault propagation through
consideration of the physics of the system. The other
method is an empirical model using data from experiments
at known conditions and component damage level to
estimate  condition-based fault propagation rate. These two
approaches are fused to produce a result that is more
accurate and more robust than either method alone. The
fusion method employs a Dempster-Shafer regression that –
in addition to the damage estimates – takes advantage of
subjective quality assessments that quantify the uncertainty
of the estimates at any time. We present results from rig
tests where a bearing was run under mission typical flight
profiles. Spall was initiated and bearing spall growth was
carefully monitored. Results from these tests were
compared to the prognostic estimates of the reasoner.
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