Experiments with
Test Case Generation and Runtime Analysis

Cyrille Artho!, Doron Drusinksy?, Allen Goldberg®, Klaus Havelund?,
Mike Lowry*, Corina Pasareanu®, Grigore Rogu®, and Willem Visser®

! Computer Systems Institute, ETH Zurich, CH-8092 Zurich, Switzerland
2 Naval Postgraduate School, Monterey, California, USA, and
Time Rover, Inc, Cupertino, California, USA
3 Kestrel Technology, NASA Ames Research Center, Moffett Field, California USA
4 NASA Ames Research Center, Moffett Field, California USA
5 Department of Computer Science, University of Illinois at Urbana-Champaign
8 RIACS, NASA Ames Research Center, Moffett Field, California USA

Abstract. Software testing is typically an ad hoc process where human
testers manually write many test inputs and expected test results, per-
haps automating their execution in a regression suite. This process is
cumbersome and costly. This paper reports preliminary results on an
approach to further automate this process. The approach consists of
combining automated test case generation based on systematically ex-
ploring the program’s input domain, with runtime analysis, where exe-
cution traces are monitored and verified against temporal logic specifica-
tions, or analyzed using advanced algorithms for detecting concurrency
errors such as data races and deadlocks. The approach suggests to gen-
erate specifications dynamically per input instance rather than statically
once-and-for-all. The paper describes experiments with variants of this
approach in the context of two examples, a planetary rover controller
and a space craft fault protection system.

1 Introduction

A program is typically tested by manually creating a test suite, which in turn
is a set of test cases. An individual test case is a description of a test input
sequence to the program, and a description of properties that the corresponding
output is expected to have. This procedure seems complicated but ultimately
unavoidable since for real systems, writing test cases is an inherently innovative
process requiring human insight into the logic of the application being tested.
Discussions with robotics and space craft engineers at NASA seems to support
this view. However, an equally widespread opinion is that a non-trivial part of
the testing work can be automated. In [3] is described a case study, where an
8,000 line Java application was tested by different student groups using different
testing techniques. It is conjectured that the vast majority of bugs in this system
that were found by the students could have been found in a fully automatic way.
The paper presents reflections and preliminary work on applying low-budget

automated testing to identify bugs quickly. The paper shall be seen as a position
statement of future work, based on experiments using our testing tools on case
studies.

We suggest a framework for generating test cases in a fully automatic way as
illustrated by Figure 1. For a particular program to be tested, one establishes a
test harness consisting of four modules: a test input generator module, a property
generator module, a program instrumentation module and an observer module.

Property
generation

Program

Test input

i rver
generation Observe

Instrumentation

Fig. 1. Test case generation (test input generation and property generation) and run-
time analysis (instrumentation and observation).

The test input generator automatically generates inputs to the application, one
by one. A generated input is fed to the the property generator, which auto-
matically generates a set of properties that the program should satisfy when
executed on that input. The input is then fed to the program, which executes,
generating an execution trace. The observer module “observes” the executing
program, checking its behavior against the generated set of properties. That is,
the observer takes as input an execution trace and the set of properties generated
by the property generator. The program itself must be instrumented to report
events that are relevant for monitoring that the properties are satisfied on a par-
ticular execution. This instrumentation can in many cases be automated. The
test input generator and the property generator are both written (“hard-wired”)
specifically for the application that is tested. This replaces manual construction
of test cases. However, the instrumentation and observer modules are generic
tools that are re-used on different applications. In the rest of this paper we use
the term test case generation to refer to test input generation and property gen-
eration, and the term runtime analysis to refer to instrumentation as well as
observation.

The above described framework was applied to two case studies, a planetary
rover controller and a space craft fault protection system. In each case the sys-
tem properties were expressed in temporal logic. For the rover controller, test
cases were generated using a model checker and the properties generated were
specific to a single test case. For the fault protection system, test cases were gen-

erated by a small program, and universal correctness properties were manually
constructed.

Property generation is the difficult step in this process. We are investigating
problem characteristics and tradeoffs between the two approaches used in the
studies. The approach of generating properties specific to a single test case is
more novel and will be investigated further.

The paper is organized as follows. Section 2 outlines the abstract framework
for test case generation that we have tried to adhere to. Section 3 describes
the runtime analysis techniques. Sections 4 and 5 describe the two case studies.
Finally Section 6 concludes the paper and outlines how this preliminary work
will be continued.

2 Test Case Generation

This section presents, in abstract, the test case generation framework. As men-
tioned earlier, we consider test generation as consisting of test input generation
and property generation.

2.1 Test Input Generation

In practice today, the generation of test inputs for a program under test is a time-
consuming and mostly manual activity. However, test input generation naturally
lends itself to automation, and therefore has been the focus of much research
attention — recently it has also been adopted in industry [21,25,6,10]. There are
two main approaches to generating test inputs automatically: a static approach
that generates inputs from some kind of model of the system (also called model-
based testing), and a dynamic approach that generates tests by executing the
program repeatedly, while employing criteria to rank the quality of the tests
produced [20,24]. The dynamic approach is based on the observation that test
input generation can be seen as an optimization problem, where the cost function
used for optimization is typically related to the code coverage (e.g. statement or
branch coverage). The model-based test input (test case) generation approach
is used more widely (see Hartman’s survey of the field [12]). The model used for
model-based testing is typically a model of expected system behavior and can
be derived from a number of sources, namely, a model of the requirements, use
cases, design specifications of a system [12] - even the code itself can be used to
create a model (e.g. symbolic execution based approaches [19,21]). As with the
dynamic approach, it is most typical to use some notion of coverage of the model
to derive test inputs, i.e., generate inputs that cover all transitions (or branches,
etc.) in the model.

To construct a model of the expected system behavior can, however, be a
costly process. On the other hand, generating test inputs just based on a spec-
ification of the input structure and input pre-conditions can be very effective,
while typically less costly. We propose to use a model checker to traverse the
space of possible valid inputs, in order to generate test inputs. We describe the

input model as a nondeterministic program that describes all valid inputs, and
then we use the model checker to traverse the state space of this program. We
also assert, as the property the model checker should check for, that no such
test input exists — this causes the model checker to produce a counterexample
whenever a valid test input has been generated and from this counterexample
trace we then produce the test input. It is important that various techniques for
searching the state space should be available since this gives the flexibility to gen-
erate a large array of test inputs to achieve better coverage of the behavior of the
system under test. For test input generation we use the Java PathFinder model
checker (JPF) that analyzes Java programs [26] and supports various heuristic
search strategies (for example, based on branch coverage [11] or random search).
In Section 4.2 we show how this model checker is used to generate test inputs
for the Mars K9 rover.

The most closely related work to ours is the Korat tool [2] that generates test
inputs from Java predicates, but instead of model checking they use a dedicated,
efficient, search strategy. The use of the counterexample capability of a model
checker to generate test inputs have also been studied by many others (see [18]
for a good survey), but most of these are based on a full system model, not just
the input structure and pre-conditions as suggested here.

2.2 Property Generation

As mentioned earlier, the ideal goal is from a particular test input to generate
properties that can be checked on executions of the program on that input. More
precisely, assume a particular program that we want to test and the domain
Input of inputs. Then we have to construct the following objects. First of all, we
need to define what is the domain of observable behaviors. We shall regard the
executing program as generating an execution trace in the domain Trace, where
a trace is a sequence of observable events in the domain Fvent. We must define
a function:
execute : Input — Trace

that for a given input returns the execution trace generated by the program when
applied to that input. Defining the domain Event and the function execute in
practice amounts to instrumenting the program to log events of importance. The
resulting execution trace will then consist of these logged events. Obviously we
also need to define the domain Property of properties that are relevant for the
application and a relation: = C Trace x Property that determines what traces
satisfy what properties. We say that (o,) € |=, also written as o |= ¢, when
the trace o satisfies the property . Essentially what is now needed is a function
translate:
translate : Input — Property-set

that for a given input returns the set of properties that it is regarded as relevant
to test on the execution of the program on that input. A well-behaved program
satisfies the following formula:

Vi € Input - Vo € translate(i) - execute(i) = ¢

Our experience is that temporal logic is an appropriate notation for writing prop-
erties about the applications we have investigated, and which will be studied in
subsequent sections. For a particular application one needs to provide the in-
strumentation (ezecute) and the property generator (translate), which generates
a set of temporal logic properties for a particular input. We shall discuss each of
these aspects in connection with the case studies.

3 Runtime Analysis

Runtime analysis consists of instrumenting the program and observing the exe-
cution of the instrumented program. The runtime analysis modules consist of a
code instrumentation module, that augments the program under test with code
that generates an event log, and an observer module that evaluates the event
log for conformance to desired properties. The event log can be transmitted via
inter-process communication or stored as a file. This allows for running an in-
strumented executable remotely and with little impact on the performance of
the system under test.

In our case studies we used two different runtime analyzers: the commercial
tool DBRover, based on an extension of the Temporal Rover tool [6] and the
research tool JPaX [14,1]. These systems will be described in the following.

The architecture of the JPaX runtime analysis framework is designed to al-
low several different event interpreters to be easily plugged into the observer
component. In the test studies two event interpreters were used: one algorithm
analyzes temporal logic properties, as already discussed, and the other concur-
rency properties. These algorithms are discussed below.

3.1 Instrumentation Framework

Instrumentation takes a program and the properties it is expected to satisfy and
produces an instrumented version of the program that when executed generates
an event log with the information required for the observer to determine the
correctness of the properties. For JPaX we have implemented a very general and
powerful instrumentation package for instrumenting Java bytecode.

The requirements of the instrumentation package include power, flexibility,
ease of use, portability, and efficiency. We rejected alternative approaches such
as instrumenting Java source code, using the debugging interface, and modi-
fying the Java Virtual Machine because they violated one or another of these
requirements.

It is essential to minimize the impact of the instrumentation on program ex-
ecution. This is especially the case for real time applications, applications that
may particularly benefit from this approach. Low-impact instrumentation may
require careful trades between what is computed locally by the instrumentation
and the amount of data that need be transmitted to the observer. The instru-
mentation package allows such trades to be made by allowing seamless insertion
of Java code at any program point.

Code is instrumented based on an instrument specification that consists of
a collection of predicate-action rules. The predicate is a predicate on the byte-
code instructions that are the translation of a Java statement. These predicates
are conjunctions of atomic predicates that include predicates that distinguish
statement types, presence of method invocations, pattern-matched references to
fields and local variables and so on. The actions are specifications describing the
inserted instrumentation code. The actions include reporting the program point
(method, and source statement number), a time stamp, the executing thread,
the statement type, the value of variables or an expression, and invocation of
auxiliary methods. Values of primitive types are recorded in the event log, but
if the value is an object a unique integer descriptor of the object is recorded.

This has been implemented using Jtrek [5], a Java API that provides lower-
level instrumentation functionality. In general, use of bytecode instrumentation,
and use of Jtrek in particular, has worked out well, but there are some remaining
challenges with respect to instrumenting the concurrency aspects of program
execution.

3.2 Observer Framework

As described above, run time analysis is divided into two parts: instrumenting
and running the instrumented program, which produces a series of events, and
observing these events. The second part, event observation (see Figure 2), can
be split into two stages: event analysis, which reads the events and reconstructs
the run-time context, and event interpretation. Note that there may be many
event interpreters.

To minimize impact on the program under test, log entries contain minimal
contextual information and the log entries from different threads are interleaved.
Event analysis disentangles the interleaved entries and reconstructs the context
from them. The contextual information, transmitted in internal events, include
thread names, code locations, and reentrant acquisitions of locks (lock counts).
The event analysis package maintains a database with the full context of the
event log. This allows for writing simpler event interpreters, which can subscribe
to particular event types made accessible through an observer interface [9] and
which are completely decoupled from each other.

Each event interpreter builds its own model of the event trace, which may
consist of dependency graphs or other data structures. It is up to the event
interpreter to record all relevant information for keeping a history of the events,
since the context maintained by the event analysis changes dynamically with the
event evaluation. Any information that needs to be kept for the final output, in
addition to the context information, needs to be stored by the event interpreter.
If an analysis detects violations of its rules in the model, it can then show the
results using the stored data and context information such as code locations,
thread names, etc.

Observer

Events i
Instrumented Bvent || ierpretation
program analysis

|

Event analysis

Internal events

S
Events

b

Filtering

Observable events ® Interpretation

Result

=

Fig. 2. The observer architecture.

3.3 Temporal Logic Monitoring

Temporal logic in general, and Linear-time Temporal Logic (LTL) in particular,
has been investigated for the last twenty years as a specification language for
reactive systems [22]. LTL is a propositional logic with the standard connectives
A, V, = and —. It furthermore includes four temporal operators: Op (always p),
Op (eventually p), pU g (p until ¢ — and ¢ has to eventually occur), op (in next
step p), and four dual past-time operators (always p in the past, p some time in
the past, p since ¢, and in previous step p). As an example, consider the future
time formula O(p — Qq). It states that it is always the case (O), that when
p holds, then eventually (¢) ¢ holds. LTL has the property of being intuitively
similar to natural language and capable of describing many interesting properties
of reactive systems.

Metric Temporal Logic (MTL) extends LTL so that every temporal operator
can be augmented with a relative-time or real-time constraint. Hence, for exam-
ple, p U.<5 ¢ means p must be true until a future time, at most 5 ¢ real-time
units in the future, where ¢ must hold. Here ¢ is some clock. Similarly p U<5 ¢
requires ¢ to be true at most 5 cycles in the future, using the underlying state, or
cycle based semantics to define the notion of a cycle. As mentioned, we have ex-
perimented with two systems that perform temporal logic monitoring: DBRover
[6] and JPaX [14,1].

The DBRover Temporal Observer The DBRover is a MTL monitoring
tool, based on the TemporalRover code generator [6]. DBRover extends MTL

with two forms of parametrization: multi-instancing, which allows for a rule to
be independently validated per instance of an object class, process, or thread,
and parametrization based on time series data values [7], which enables the
verification of properties such as temporal stability and monotonicity. It consists
of a GUI for editing temporal assertions, a graphical LTL/MTL simulator, and an
execution engine. The DBRover builds and executes temporal rules for a target
program or application; at run time, the DBRover listens for event messages
from the target application and evaluates corresponding temporal assertions.

The JPaX Temporal Observer With respect to temporal logics, we have
implemented several specialized algorithms in JPaX: traversing the execution
trace either forwards or backwards, based on either rewriting or automata gen-
eration, implemented in either Java or Maude [4]. We next briefly sketch one
of these algorithms and refer the interested readers to more elaborated descrip-
tions. Efficiency of runtime analysis algorithms is always an important aspect of
our research, even if the observer operates off-line. A crucial observation is that
one can design more efficient algorithms if one focusses on segments of temporal
logics rather than on the entire logic. Thus, we were able to develop optimal
algorithms for future time and for past time temporal logics separately. We do
not regard this segmentation as a problem in practice, because in our experience
so far one rarely or never uses both future and past time operators in the same
requirements formula. The algorithm we are going to describe monitors future
time temporal logic formulas and is entirely based on rewriting technology. The
idea is to maintain a set of monitoring requirements as future time LTL formulas
and modify them accordingly when a new event is emitted by the instrumented
program. If one of these formulas ever becomes false then it means that that
formula has been violated, so an error message is generated and an appropriate
action is taken. Four rewriting rules, inspired from known recurrences of tem-
poral operators, transform the formulas whenever a new nonterminal event e is
received (and four others not mention here are called on terminal events):

(cF){e} - F,

(OF){e} - F{e} AOF,

(OF){e} — F{e}VOF,

(FU F'){e} —» F'{e} vV (F{e} ANF U F)

The formula F{e}, for some formula F, is the (transformed) formula which
should hold next, after receiving the event e. For example, for OF' to hold now,
where the first event in the remaining trace is e, either F' must hold now (F{e}),
or OF must again hold in the future, thus postponing the obligation. Using
memoization (or hashing) techniques provided by advanced rewriting engines
such as Maude, the simple rewriting algorithm above performs well in practice.
We were for example able to monitor 100 million events in less than 3 minutes
on a formula O(g — (—r) U y) stating a safety policy of a traffic light controller
(yellow should come after green). The interested reader is referred to [15,16] for
proofs of correctness, complexity analysis and evaluation of this algorithm.

A second approach to building LTL observers based on automata construc-
tion is found in [16]. A rewriting-based algorithm for monitoring past time LTL
requirements formulas has been presented in [13], which is quite different from
the one for future time LTL. A dynamic algorithm approach to monitoring past
time LTL formulas is presented in [17].

3.4 The JPaX Concurrency Analyzer

Multi-threaded programs are particularly difficult to test due to the fact that
they are non-deterministic. A multi-threaded program consists of several threads
that execute in parallel. A main issue for a programmer of a multi-threaded
application is to ensure mutual exclusion to shared objects. That is: to avoid data
races where one thread writes to an object while other threads simultaneously
either write to or read the same object. Multi-threading programming languages
therefore provide constructs for ensuring mutual exclusion. To ensure mutual
exclusion on a shared object, a thread can acquire a lock before accessing the
object, releasing it after. If other threads acquire the same lock when accessing
the object, mutual exclusion is guaranteed. If threads do not acquire the same
lock (or don’t acquire locks at all) when accessing an object then there is a
risk of a data race. The Eraser algorithm [23] can detect such disagreements by
analyzing single execution traces. The Eraser algorithm has been implemented
in the JPaX tool.

Deadlocks can occur when two or more threads acquire locks in a cyclic
manner. As an example of such a situation consider two threads 77 and T3
both acquiring locks A and B. Thread T} acquires first A and then B before
releasing A. Thread T, acquires B and then A before releasing B. This situation
poses a deadlock situation since thread T can acquire A whereafter thread T5
acquires B, where after both threads cannot progress further. In JPaX we have
implemented an algorithm for detecting such deadlock situations. It builds a
lock graph, where nodes are locks and edges represent the lock hierarchy. That
is, for the above example, there will be an edge from A to B and another edge
from B to A. Hence for this example the graph contains a cycle, and a cycle
represents a potential deadlock situation. This algorithm yields false positives
(false warnings) and false negatives (missed deadlocks). In [1] an extension to
this algorithm is described that reduces the number of false positives. JPaX’s
concurrency analysis has been integrated with the DBRover, where deadlock
results are graphically displayed as UML message sequence charts.

4 Case Study 1: A Planetary Rover Controller

Our first case study is the planetary rover controller K9, and in particular its
executive subsystem, developed at NASA Ames Research Center — a full account
of this case study is described in [3]. The executive receives plans of actions that
the rover is requested to carry out, and executes these plans. First we present
a description of the system, including a description of what plans (the input

10

Plan — Node
Node — Block | Task (block
:id plan
Block — (block :continue-on-failure
NodeAttr :node-list (
:node-list (NodeList)) (task
:id drivel
NodeList — Node NodeList | € :start-condition (time +1 +5)
:end-condition (time +1 +30)
Task — (task :action BaseMovel
NodeAttr :duration 20
:action Symbol)
[:fail] (task
[:duration DurationTime]) :id drive2
rend-condition (time +10 +16)
NodeAttr — :id Symbol :action BaseMove2
[:start-condition Condition] :fail
[:end-condition Condition])
[:continue-on-failure])
)
Condition — (time StartTime EndTime)

Fig. 3. Plan grammar (left) and an example of a plan (right).

domain) look like. Then we outline how plans (test inputs) can be automatically
generated using model checking, and finally we describe how for each plan a set
of temporal logic properties can be automatically generated, that the executive
must satisfy when executing the plan.

4.1 System Description

The executive is a multi-threaded system (8,000 lines of Java code) that receives
flexible plans from a planner, which it executes according to a plan language
semantics. A plan is a hierarchical structure of actions that the rover must
perform. Traditionally, plans are deterministic sequences of actions. However,
increased rover autonomy requires added flexibility. The plan language therefore
allows for branching based on conditions that need to be checked, and also for
flexibility with respect to the starting time and ending time of an action. We give
here a short presentation of the (simplified) language used in the description of
the plans that the rover executive must execute.

Plan Syntax A plan is a node; a node is either a task, corresponding to an
action to be executed, or a block, corresponding to a logical group of nodes.
Figure 3 (left) shows the grammar for the language; we should note that all the

11

node attributes, with the exception of the node’s id, are optional. Each node
may specify a set of conditions, e.g., the start condition (that must be true at
the beginning of the node execution) and the end condition (that must be true
at the end of the node execution). Each condition includes information about
a relative or absolute time window, indicating a lower and an upper bound on
the time. The continue-on-failure flag indicates what the behavior will be when
node failure is encountered.

The attributes fail and duration were added to the original plan syntax to
facilitate testing of the executive. That is, during testing using test case gen-
eration, the real actions are never executed since this would require operating
the rover mechanics. The :fail and :duration attributes replace the actions
during testing. The fail flag for a task specifies the action status after execution;
the duration specifies the duration of the action. Figure 3 (right) shows a plan
that has one block with two tasks (drivel and drive2). The time windows here
are relative (indicated by the '+’ signs in the conditions).

Plan Semantics For every node, execution proceeds through the following
steps: (1) Wait until the start condition is satisfied; if the current time passes
the end of the start condition, the node times out and this is a node failure.
(2) The execution of a task proceeds by invoking the corresponding action. The
action takes exactly the time specified in the :duration attribute. Note that
this attribute during testing replaces the actual execution of the action on the
rover. The action’s status must be fail, if : fail is true or the time conditions are
not met; otherwise, the status must be success. If the action’s status indicates
failure, we have a task failure. The execution of a block simply proceeds by
executing each of the nodes in the node-list in order. (3) If the time exceeds the
end condition, the node fails.

On a node failure, when execution returns to the sequence, the value of the
failed node’s continue-on-failure flag is checked. If true, execution proceeds to
the next node in the sequence. Otherwise the node failure is propagated to any
enclosing nodes. If the node failure passes out to the top level of the plan, the
remainder of the plan is aborted.

4.2 Test Input Generation

Figure 4 shows the Java code, referred to as the universal planner, that we used
to generate plans (i.e., test inputs for the executive). We exploit nondeterminism
(i-e., choose methods) to systematically generate all the possible plans (up to
a given number of nodes specified by nNodes) that have the structure specified
by the grammar in Figure 3; we also use nondeterminism to generate the data
values for the time conditions (up to a given value specified by tRange). The
assertion in the program specifies that it is not possible to create a “valid” plan
(i-e., executions that reach this assertion generate valid plans). We used the JPF
model checker to explore the (finite) state space of the generated input plans (i.e.,
JPF model checks the universal planner). We used different search strategies to

12

class ULhiversal P anner { ...
static int n\bdes = O;

static int tRange = 0; static Node Lhi versal B ock(){
Lhi versal Attributes();
static void Pan(int nn, int tr) { nNodes- -;
nN\odes = nn; tRange = tr; Li st Nodes | = new Li st Nodes() ;
Node plan = Uhi ver sal Node() ; for (Node n = Lhiversal Node();
print(plan); n!=null; n = lhiversal Node())
assert (fal se); |. pushEnd(n) ;
} Bock b = newBock(id, |, start, end,
conti nuenFail ure);
static Node Lhi versal Node() { return b;
if (nNodes = 0) return null; }
if (chooseBool ()) return null;
i f (chooseBool ()) static Synbol id;
return Uni versal Task(); static TineGondition start, end,
return Uhi versal B ock(); static bool ean conti nueChFai | ure;
}
static Lhiversal Attributes() {
static Node Lhiversal Task() { id = new Synbol ();
Lhi versal Attributes(); int tinel = choose(tRange);
Synbol action = new Synol (); int tine2 = tinel + choose(t Range);
bool ean fail = chooseBool (); start = new Ti neCondi tion(tinel,ti ne2);
int duration = choose(tRange); tinel = choose(t Range);
Task t = tine2 = tinel + choose(tRange);
new Task(id, action, start, end = new Ti neCondi tion(tinel,ti ne2);
end, continuethFai | ure, conti nuehFai | ure = chooseBool ();
fail, duration); }
nNodes- -; }
return t;
}

Fig. 4. Universal planner that generates input plans for system under test.

find multiple counterexamples (to the assertion); for each counterexample we
ran JPF in simulation mode to print the generated plans to a file, which then
served as input to the rover.

4.3 System Analysis

The semantics of a particular plan can very naturally be formulated in tempo-
ral logic. In writing such properties, we used the following predicates: start(id)
(true immediately after the start of the execution of the node with the corre-
sponding id), success(id) (true when the execution of the node ends success-
fully), fail(id) (true when the execution of the node ends with a failure); end(id)
denotes success(id) V fail(id). We instrumented the code to monitor these pred-
icates. For each plan we further wrote a collection of temporal properties over
these predicates and verified their validity on execution traces. As an example,
the properties for the plan shown in Figure 3 (right) are shown in Figure 5.
This set of properties does not fully represent the semantics of the plan, but the
approach appeared to be sufficient to catch a large amount of bugs.

13

Qstart(plan), i.e., the initial node plan should eventually start.

— O(start(plan) — {1, sstart(drivel)), i.e., if the plan starts, then task drivel should
begin execution within 1 and 5 time units.

— O(start(drivel) — (O1,308uccess(drivel) V Ofail(drive?))), i.e., if task drivel
starts, then it should end successfully within 1 and 30 time units or it should
eventually terminate with a failure.

— O(success(drivel) — Qstart(drive2)), i.e., if task drivel ends successfully, then
task drive2 should eventually begin execution.

— O(end(drive2) — ¢success(plan)), i.e., termination of task drive2 implies success-
ful termination of the whole plan (due to continue-on-failure flag).

— Qsuccess(drivel), i.e., task drivel should end successfully (since :duration is
within time window).

— Ofail(drive2), i.e., task drive2 should fail (due to :fail).

Fig. 5. Temporal logic properties representing partial semantics of plan in Figure 3 .

The purpose of the case study was to find a number of seeded errors in the rover
by using a number of different technologies, including runtime analysis, model
checking, static analysis and traditional testing. Here we just focus on the results
on the runtime analysis which was done according to the framework described
in this paper. We used the DBRover to monitor the temporal properties that
each plan had to satisfy. We generated the formulas for each plan by hand, in a
similar fashion as