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Abstract prepare for a belief state updateFirst, actions with no re-
ward can possibly be inserted anywhere in the plan at low cost
plexity that is due to an increase in domain uncertainty, and SO .the greedy app_roach that s_e_eks to maximize the expected
especially in the case of multi-dimensional continuous spaces. u““.ty fails to. position th.e”.‘ efficiently. Second, planm-
Therefore, they produce plans that do not take into account nu- Mains describe a very limited set of faults, thus relying on a
merous situations that can occur at runtime, such as faults or Mostly nominal model of the world and system actions (e.g.
other changes in the planning domain itself. Thus there is a NO stuck wheels, broken navigation system, rocky environ-
gap between the plan generation and the reality experienced ment,...). Moreover, fault models exponentially incretise
at runtime. Here we present two methods that allow the plan complexity of the planning even if the faults have low prob-
conditionals to be revised w.r.t. uncertainty on the system as ability of occurence as they can occur at any time during the
estimated at runtime. plan execution. Finally, the health monitoring system mesu
an ever changing belief state over time that has to be taken in

Introduction account. For these reasons, the response to unlikelyisitgat
. and faults is better decided at execution: the health mongo
The need for autonomy and robustness in the face of uncekystem passes a belief over the system state to the executive
tainty is growing as planetary rovers become more capablg ¢ gecides which portion of the plan to execute, sometimes
and as missions explore more distant planets. Recent B®gr&serting/replacing wanted/unwanted plan blocks.
in areas such as instrument placement (Pedezsah 2003; More recent architectures try to mitigate these problems by
2005) makes it possible to visit multiple rocks in a single€o 1y 4ying towards unified planning and execution frameworks

munication cycle. This requires reasoning over much 10Ngefaamj et al. 1998; Muscettol&t al. 2002; Estlinet al. 2005).
time frames, in more uncertain environments. Simple uncon

. . Several of these architectures are discussed at the eniof th
ditional plans as used by the Mars Exploration Rovers (MERYahar however it is well understood that uncertainty inifett
will probably have a low probability of success in such con-

> -~ "values forces an agent to plan locally. For example, to waigig
text, so that the robot would spend almost all its time waitin 4iq problem, (Muscettolat al. 2002) allows plans to include
for new orders from home.

explicit calls to a deliberative planner. This comes back to

S ; - Sinding place where to insert a branch, and as demonstrated
missions include a planner/scheduler, a health monit@ysg (Dearderet al. 2003), the branch point is usually not sit-

tem, and an executive. The planner/scheduler generates a cq,q1eq at the point that has the highest probability of failur
trol program/plan that describes the sequence of run-ttne angy note that if the process of estimating a good branching
tions necessary to achieve mission goals. Since the r@®r's int goes not forcely require to do the planning, it doesn't
vironment is highly uncertain (Bresiraal. 2002), the control <t much to pre-plan the branch once the point has been iden-
programs (also calleglans are contingency plans (Dearden yigiaq. Therefore, the branch can be pre-planned and itesalu

et al. 2003) in that they involve conditional branches that arg4;q, updated during execution. As it will be explained fate
based on decision functions of the system state that theiexec, this paper, re-evaluation of a plan is in no way equivalent

tive can evaluate in real time. The executive is responsile 1, re_planning, but a re-evaluated plan can be found thaiis o
the execution of the control programs, taking into accob@t t iy w rt. the information on the uncertain system state a
current state of the system as estimated by the health ntonitgy, o original plan.

ing system. This capability includes deciding the best&nan  \ye said that most planners do not handle well the complex-

in a plan when reaching a branch point, given an estimate fy, g e to the presence of faults in a model and therefordyrare
the current system state, inserting and replacing plangusit ey de faults within their planning domain. Moreover, om;j

to react to faults and other unpredictable events. 3,5 are well known and recoveries can be efficiently con-
However, planners have difficulties handling certain situa

tions, such as actions that carry no utility (typically used partially Observable Markov Decision Processes (POMDPs) al-
responding to unlikely situations) and fault occurenced4po low the latter but are often untractable.

Current planning algorithms have difficulty handling the com-



structed before execution. At runtime, a fault detectios-sy And at a branch point wherebranches are available, the best
tem, or more generally, a state estimator will return a statéranch is decided according to:

estimate that triggers one or more plan fragments for system b* = arg max Vi, (1(s)) 3)
recovery or opportunistic science. These plan fragmerts ar i€lln]

often referred to as floating contingencies whose executiofy;s s similar to the Bellman equations for POMDPs (Boyan
can be conditionned upon resources (including time) and/of | jman 2000). Each value functiot (b) maps the resource
system behavioral modgs. Thgrefore in this paper we will reépace to the utility of the brandh The max operator of re-

fer to two types of contingencies: pre-planned branches oo 3y defines an upper bound on the branch point overall

resources that_are part of the main plan, and floating ContirUtility value, and branch conditions are found at the fuorsi
gencies, that trigger in response to certain events andmeso intersections. At execution, deviations from the planrtiog

values. The paper focuses on_techmques to re-evaluaterthe f main and information of the state estimate move these decisi
mer, and studies the complexity added to them by the latter. lin

;I'he problhem can bf seen as one of rr(la-evlaluating the plan rhere are several conditions and situations under which the
values, such as its utility, and updating the plan cond#i®n 2 value must be re-evaluated. First, when the execution

I.e. the branch conditions. Typically, at runtime, the @ob gncoynters a branch point, any change in the Bellman equa-
bility mass of the state estimate shifts among regions of the, functions, such as the beligbver the state, the reward
hybrid space (continuous resources plus discrete stat®). Vihoqe|17, the action cost model, requires that all branch func-
adapt the pre-computed branch conditions to these changggys at this branch point are re-evaluated. Second, if hat a
by projecting the changes forward and backing up the resulis e point, but if a floating branch has to be inserted, then

ing states. Our first approach is an adaptation of the claspe pian equation is changed and the remaining portion of the
sical Monte Carlo (MC) technique (Sutton & Barto 1998; ¢\ rrently executed branch as well all future branch coodi

'Lhrun 2000)h Our second approac;]h is balsed On decisiof st pe re-evaluated. For example, when inserting a branch
theoretic techniques and converts the problem into a smalgf, equation (1) becomes:

Partially Observed Markov Decision Problem (POMDP)(see

(Kaelbling, Littman, & Cassandra 1998) for an introduction — v / T, bV (2 1 dr
and more references) whose solving at runtime returns proba +(5) by () + Z Rp((m 1) |8, bp) V(@' )

bilistic decision lines that are optimal given the initidhp. vex )
o whereB is the remaining portion of the current plan to be ex-
Preliminaries ecuted afteb;. The local value ob; is the expected reward

Here a plan can be seen as a tree whose nodes are knownfr&é“ the gctions within th_e floating branch itself. The remai
the branch points. The value function for a node is a continulnd term is a representation of the end state of the local, plan
ous function over the multi-dimensional resource stage,a.  including the probability of the resources remaining aéee-
mapping from the resource space to the utility space, artd th§uting the local plan. _
depends on downstream node value functions. Planning de- The remaining of the paper studies approaches to the fast
termines a set ofpolicies that maximize the expectedyitlit ~re-evaluation of these decision lines.
the plan. At branch points, this leads to conditions over the
resource space that discriminate among branches. The Monte-Carlo Approach to the

Typically, planning proceeds to a mapping from the system Re-Evaluation of Contingency Plans

state space to the utility space, i.e. the utility obtainga- Approximating branch aver age utility

ecuting the plan, that it seeks to maximize. Noting the syste Applying Monte Carlo techniques to the approximation of

states = (z,r) with x € X the discrete state (or system . : . ) . X
modes) al('ld" )e R the multi-dimensional contin(uousystate equation (2) is straightforward: the integral over the iault
! dimensional continuous space is turned into a sum by sam-

g{:itlrLliJr?Ing]tstgﬁ)béhﬁotggl_ty earned by executing a brarich pling N times fromb(s) andp(s’ | s,a), and the utility is
9 ' averaged over the successive runs. We note:

Vo) = 3 [ pl@r!) [ s.0)Ulan, () Viule) = 3 D Wlan i) + Vil ()
z'eX R zeX x'eX
+ VB.(ZL'/,T'/)]dT'/ (1) Wheres’j ~ p(S/ | sj,a“) and S5 ~ b(S) The |argel’ the
' N, the better the fit to the underlying probability distrilmits,

with a;; the first action of branch;, B; the remaining portion and the better the approximation.
of the branch,U(a;1, (2',7")) the utility earned, and’ the ) )
system state after executing following the probability dis- Plan simulation
tribution p(s’ | s, a;1). Over a belief state(s), as estimated For simulating branches with MC, we use a prioretized pile of

by the health monitoring system, we have: events including plan actions, and a set of constraints gmon
them. The pile is filled up with actions whose execution is

Vi, (m(s)) = Z / Vi, (z, 7w (2, r)dr 2) sim_ulated by testing their te_mporal constraints and samgpli

’ cex /R their consumption before being rewarded and popped out.



Sampling decisions with s = (z,7) ands; = (2',7;), is the average utility ob;
We sample the decision by deciding the path with highest utilon binA, from then,, samples/ it contains,
ity for each sample. We write:

1 N
o plbi | &) = == 3 o(bi = arg max Vi, (n(s)) (9)
VEm(s) = 5 2 max Vi ((s)) (6) e
jo et wheres is the Dirac function, is the probability fé to be the

In algorithm 1, each path is explored by each sample for thiearanch with the highest utility over the samples of the bin,

p(A,) = == (10)

is the probability of the bin itself. An optimal bin siZ&” is

1: for all j < N do

2:  Proceed with MC on the first branch.

3: for all branche$; at branch pointdo

4 Apply this algorithm recursively té;, with j = 1. - - - ]
5. Return the highest utility at this branch point4x). 1. Proceed with algorithm 1 and collect samples at branch

: - point.
6: Return the averaged utllity of the plan. 2: for all branch points in the contingency pldo

Algorithm 1: Recursive procedure for sampling decisions | 3:  Compute the optimal bin size and slice the space|into
bins.

evaluation of thenax operator. The averaged returned utility 4: Compute statistics with equations (8), (9) and (10).
is near optimal, but the sampled decision for the best branchs:  Evaluate equation (7) for each branch.

(thearg operator) depends on the sampled resource space tha&:  In each bin, identify the branch with the highest value.
must be partitioned into subregions of identical decision. 7:  ldentify new branch conditions where successive bins
have different highest utility branches.

[®)

Floating contingencies Algorithm 2: Branch conditions approximation thru piece-
Floating contingencies are a challenge to the simulator bewise constant value function approximation
cause they can trigger at anytime. The simulator uses ran-

dom events to trigger these branches and specific dynamiptained, in the sense that it provides the most efficieni-unb
constraints to handle their insertion. The complexity @ase  ased estimation of the probability distribution functionrhed
d_ue to ro_atlng_ branches is a product of the number of plan a4y the samples. We usélf = 3.495N~1/3 whereo is the
tions, actions in the branch, and the number of these branche;iangard deviation of the distribution, here estimatethftbe
The next section covers the retrieval of the decision limes I'samples (D. 1976; A.J. 1991). The overall strategy is pre-
the multi-dimensional resource space. sented on algorithrln 2.

. . Branch conditions are obtained by comparing the branch
Bounding the resour ce space for deciding future with the highest utility for each bin: if two successive bies
branches turn different results, a branch condition exists at thelge
Decision at branch points can be made based on the simuldhus, the precision of the approximation is directly depen-
tion results by executing the branch with the highest earnedent on the optimal bin size, that depends on the number of
utility average. Simulation provides sufficient infornmatifor ~ samples. Stutter at decision point can be overcome by fitting
computing branch conditions at future branch points. This o the successive piecewise constant approximations witte mor
eration is performed at virtually no cost and can spare éutursmoothly curve.

simulations by constraining future decisions. Belief update on re-evaluated branch conditions The re-

Approximating branch decision lines thru piecewise con-  evaluated decision functions are inequalities of the fofra
stant valuefunction approximation Our solutionistoslice (>)g(r). Given a state estimatgs) at branch point, decision
the resource domain into rectangular bins and to fit the irancovern branches follows:

value functions in each bin with a piecewise constant fuomcti

based on the MC samples. Function intersections are found 8t = arg max / Vb, (x, r)m(x, r)dr
bin edges. Noting\,. a bin in the resource space, we can write €ltin] 2ex Jr<o(n)
b;’s value: -
~ arg max D p(bi | A )p(A) V(A 2)m (r(1d)
Vi, () =D > p(bs | Ap)p(A)Ve, (Ar, ) (7) TEX A
A, z€X

with 7/ such that'r’ € A, " < g(r).
i.e. as the sum of the average utilitieshpin each bin when it . .
is the branch with the highest expected utility. More prelgis ~ Discussion
1 The major drawback of the Monte-Carlo approach is that it
Vi, (A, z) = Z Z Vi, (55) (8) provides a probabilistic guarantee of its results, thateigen
Mrar en, arex absolute. This is a problem that we partially address in éx¢ n




section with the use of a decision theoretic formulation.- An where in the absence of floating contingencies (bec#uss
other work, (Jain & Varaiya 2004) finds bounds on the numbeponly lead tob):
of samples for the convergence of the expected reward for a

class of policies. P(f' b, f)=P(f' | b) =D P(f'|b,s)p(s)  (15)
s'eS
Decision theoretic aproaCh toplan and R(f,b,s) = W4(b(s)), from equation (2). Finally the
re-evaluation value of executing branchfrom some belief state and ob-

Another problem with the MC approach is that the decision iSS€"vings is:
made based on a mapping from the continuous resource space

to the utility space that forces the approximation of thei-dec Vi(m) = Z m(f,s)V(f.s) (16)
sion lines. An alternative is to use a mapping from the be- fer

lief space over the decisions to the utility space. The dt&tis and the optimal value function is given by:

space is finite, made of the branch conditions of the original

plan. The belief space over the decision is continuous and of V(r) = mapr(s)Vs(']rb) 17)

dimension the number of decisions minus one. This formula- beB =3
tion leads to an enlarged space but allows the use of decision _
theoretic techniques to directly incorporate the beligicgpin ~ Simulation

the computation of optimal decision lines. More precisaly 0 The successor statesand and the(s’) of equation (15) are
problem can now be casted into a small POMDP whose aginknown and must be obtained through simulation. As a simu-
tions are the plan branches, the states the branch corgjitionator we use the MC algorithm of the previous section and gen-
the observations the system states. erate both thé&, (s) and thes’ in a depth first forward search

. in the plan tree.

Plan reduction to a POMDP P

A standard POMDP is made of a set of actions, a set of state§olving

a set of transitions among states per action, and a set of-obsehe solving of this POMDP returns a piecewise linear convex

vations. In our model, we abstract away the actions and use\g|ue function that is a mapping from the belief space over th

branch an action for the POMDP. Our POMDP is then deﬁne(djecision outcomes to the highest expected p|an u|||ty [mm

asatuplgF, S, B.L,T, R) where: branch conditions are found at the intersections of maxthiz

e Fis afinite set of branch decision outcomes (as states), Vvalue functions and are now conjunctions of inequalities of
N ) the form P(r < h(r)) < ¢ wherer < h(r) is the branch

» Sisafinite set of system states (as observations), condition from the original plan anda constan irf0, 1]. For

e Bis finite set of branches (as actions), any belief over an outcome, the solution returns the optimal

e P(s |, f’)is the probability of state given that branclh policy, w.r.t. the original plan.

has been executed and has landeg'jn Floating contingencies
e P(f"| b, f)is the probability of entering outcomg after  Flpating contingencies pose a serious problem to the decisi
taking branctb in outcomef, theoretic approach because the possible interruption pf an

e R(f,b) is the reward for taking brandhwhile in outcome ~ action within a branch leads to a potentially infinite number
) of actions (breaking up a branch an infinite number of times

over resource and time values with non null probability) - Ap

The POMDP belief update can be expressed as: proaches like (Younes & Simmons 2004) can be used here

P(s | b, f' P(f b to handle the asynchronous events, but do not allow to in-
m(f',s) = (51679 2 per PUTI b N7 (S) (12)  clude the events (here floating contingencies) within thiepo
p(s|b,7) (therefore the computation of their conditions is not plole3i
wherer is a probability distribution (belief) oveF, givens  While we are not yet sure about the range of solutions to this
andb. and: problem, it seems realistic to research approximation®afl
' ' ing conditions over a single branch.
P(f"| b, s)p(b, )
N __ 9 9
The value of executing bran¢hunder decisiory and states A contingency plan for the Mars exploration domain
is: Our application is on a planetary rover plan. Consider the pl
for a Mars rover on figure 1. It tells the rover to first navigate
V(f,s) = R(f,b,s) to a waypointwy, and there to decide whether to take a high

, P P resolution image of the point (HI res) or to move forward to a
+7 ) PUTI0S) D P S0V, f) (14 second waypoinks: depending on the level of resources (here

freF sies energy and time). After reaching, and digging in the soil, it
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Figure 1: Branch value functions at branch point for a dethibver problem

must decide whether to move forward to waypoiatsor wo
or to simply get an image at; and wait for further instruc-
tions. NIR is a spectral image of a site or rock. Action time

and energy consumptions'are represgnted as Gaussian bumps N Value Time V dec orr
of empirical mean and variance. In this example branch con-
. X . 100 14.21 0.03 10.9 23.3
ditions at branch pointgpt1 andbpt2 have the following pa-
terso — 0.1 —91ands. — 2.9 500 13.618 | 0.16 9.732 | 28.53
rametersoy = 0.1, ap = 2.1andf, = 2.2. 2500 | 13.8244| 0.78 | 11.2992| 18.26
12500 | 13.8008| 4.08 | 11.9542| 13.27
Decision samp“ng 62500 | 13.7835| 20.79 12.156 11.8
312500| 13.7717| 120.3 | 12.1214| 12
Branch conditions re-evaluation at branch points: bousids/ 500000| 13.777 | 223.89| 12.1814| 11.58

are generated with the sampling decision algorithm, and ver

fied by running a classical Monte-Carlo simulation, thatsloe Taple 1: Monte-Carlo decision sampling and branch comlitio
not maximize the utility, but follows the new branch condi- re_evaluation based on MC samples. Results are as follows:
tions and averages the earned utility. Simulation alsamstu v s the number of sample®, is the mean expected highest
the failure probability of the plan. The error is the diffece o yajue obtained for the plaidec is the value obtained when
the optimal plan value in percentage. The piecewise constagsing the re-evaluated branch conditions; the error per-
approximation of the branch value functions returns gode ut centage to the simulated best value.

ity (Table 1). Figure 2 pictures results for the second hinanc

point of our rover problem (the energy is pictured and thestim

line is omitted) and shows the shifting branch conditions on

the horizontal axis that is the energy line.
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. . . . Figure 4: Comparition between the Monte-Carlo and the deci-
Figure 3: Optimal value function over the original plan lman  on theoretic re-evaluation methods.

conditions:z andy axis represent the probability of decision

outcomesP(r < as) andP(ag > r < (3). P(r > (2)is

deduced from them. that decision to go to brandh then tob; based on MC are
respectively slightly early and slightly late, and this isur

.. . alized as two sudden drops in expected value; the decision

Decision theoretic approach based on dtp switches later tg, and earlier tob; right at

We converted our example to a POMDP and simulated th#éhe highest value point. Overall the dtp-based decisiovelea

observations and rewards, respectively the system states aless room for branchy,, which can be surprising when look-

branch value functions. Starting from a fixed level of re-ing at the large surface correspondingfoon figure 3 but is

sources, figure 3 shows the convex value function solution foexplained by the fact that a high probability for on decision

the second branch pointiys). 2.1 < r < 2.2 denotes a more accurate belief (given the fixed
variance) than for other branches. Finally it is difficulfadly
Comparison and Discussion assess the dominance of one method over the other. At this

?int of our research we lean in favor of the MC approach

To compare the two approaches, we moved a gaussian bel r plans with a small number of actions and a high number

of fixed variancé).1 along the resource (energy) line and stud—mc decision outcomes, and for the dtp approach when a high

fr? ftihir(lezls\';) %?;ﬁgggée;?ergeggﬁgi Rf;#éttseat[]eep\gﬁjeen number of actions in a plan makes the price of successive MC
g : b y sd'mulations costly.

obtained and the decision based on the Monte-Carlo metho
with b5 = 1, by = 2 andbs = 3; V dtpanddec dtpare based .
on the decision theoretic planning F()dtp) approgch. First, t Related Work and Conclusion

difference in value between the two methods is due to the higkive have presented a simple strategy for the robust execution
level of branch failure (i.e. resource gets to zero) in time-si  of contingency plans under uncertainty. It re-evaluatesdin
ulation for the decision theoretic approach (since it iseblas value functions at branch point and re-estimates branch con
on the original branch conditions). This is of medium impor-ditions whenever necessary. The framework allows runtime
tance only when we study the decision making: we observensertion/replacement of plan portion thru the use of flraati
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