
Quicker Q-Learning in Multi-Agent Systems

Adrian K. Agogino
UCSC, NASA Ames Research Center

Mailstop 269-3
Moffett Field, CA 94035

adrian@email.arc.nasa.gov

Kagan Tumer
NASA Ames Research Center

Mailstop 269-3
Moffett Field, CA 94035

kagan@email.arc.nasa.gov

Abstract

Multi-agent learning in Markov Decisions Prob-
lems is challenging because of the presence of two
credit assignment problems: 1) How to credit an
action taken at time stept for rewards received at
t′ > t; and 2) How to credit an action taken by
agenti considering the system reward is a function
of the actions of all the agents. The first credit as-
signment problem is typically addressed with tem-
poral difference methods such as Q-learning or
TD(λ). The second credit assignment problem is
typically addressed either by hand-crafting reward
functions that assign proper credit to an agent, or
by making certain independence assumptions about
an agent’s state-space and reward function. To
address both credit assignment problems simulta-
neously, we propose the “Q Updates with Imme-
diate Counterfactual Rewards-learning” (QUICR-
learning) designed to improve both the convergence
properties and performance of Q-learning in large
multi-agent problems. Instead of assuming that an
agent’s value function can be made independent
of other agents, this method suppresses the im-
pact of other agents using counterfactual rewards.
Results on multi-agent grid-world problems over
multiple topologies show that QUICR-learning can
achieve up to thirty fold improvements in perfor-
mance over both conventional and local Q-learning
in the largest tested systems.

1 Introduction

A critical issue in the multi-agent reinforcement learning pro-
cess is the structural credit assignment problem: how to re-
ward a single agent’s action choices when the reward we in-
tend to maximize is a function of all of the agents’ actions.
As an example consider how to reward construction rovers
building a dome. This reward can be computed by measur-
ing the performance of the rovers’ actions over a series of
episodes. For example in a single rover scenario, suppose the
rover took action sequence,a1, for 100 episodes in simula-
tions and the dome collapsed 50 times. Then the agent took
action sequence,a2, for 100 episodes and the dome collapsed

30 times. Based on this evidence, we can say with high con-
fidence that action sequencea2 is better than action sequence
a1. Now, consider the situation where a large team of rovers
were used to build the dome. How does one evaluate the ac-
tions of a single rover in such a case? Suppose roveri took
action sequenceai,1 for 100 episodes and the dome collapsed
50 times. In addition roveri took action sequence,ai,2, for
100 different episodes and the dome collapsed 30 times. Can
we claim that action sequenceai,2 was better than action se-
quenceai,1? Not with the same confidence with which we
claimed that action sequencea2 was better than action se-
quencea1 for the single rover case. Furthermore, our confi-
dence will drop even further as the number of rovers in the
system grows. This is because in a task withn homogeneous
agents, on average, the choice of action sequence by agent
i (ai,1 or ai,2) will likely have an impact of1n on the sys-
tem performance. As a consequence, teasing out the impact
ai,1 will require far more iterations, as one needs to ascer-
tain thatai,1 was indeed a poorer choice thanai,2, and not
merely taken during episodes where the collective actions of
the other agents were poor.

The difficulty here arises from evaluating an individual
agent’s actions using a function that, a-priori, all the agents
impact equally. In such a case, a standard Q-learner is not
equiped to handle the “structural” credit assignment problem
of how to apportion the system credit to each individual agent.
As an alternative, we present “Q Updates with Immediate
Counterfactual Rewards learning” (QUICR-learning), which
uses agent-specific rewards that suppress the impact of other
agents. Rewards in QUICR-learning are both heavily agent-
sensitive, making the learning task easier and aligned with
the system level goal, ensuring that agents receiving high re-
wards are helping the system as a whole. These agent-specific
reward functions are then used with standard temporal differ-
ence methods to create a learning method that is significantly
faster than standard Q-learning in large multi-agent systems.

Currently the best multi-agent learning algorithms address
the structural credit assignment problem by leveraging do-
main knowledge. In the robotic soccer for example, player
specific subtasks are used, followed by tiling to provide good
convergence properties[Stoneet al., 2005]. In a robot coor-
dination problem for the foraging domain, specific rules in-
ducing good division of labor are created[Jones and Mataric,
2003]. In domains where groups of agents can be assumed to

be independent, the task can be decomposed by learning a set
basis functions used to represent the value function, where
each basis only processed a small number of the state vari-
ables[Guestrinet al., 2002]. Also multi-agent Partially Ob-
servable Markov Decision Precesses (POMDPs) can be sim-
plified through piecewise linear rewards[Nair et al., 2003].
There have also been several approaches to optimizing Q-
learning in multi-agent systems that do not use independence
assumptions. For a small number of agents, game theoretic
techniques were shown to lead to a multi-agent Q-learning
algorithm proven to converge[Hu and Wellman, 1998]. In ad-
dition, the equivalence between structural and temporal credit
assignment was shown in[Agogino and Tumer, 2004], and
methods based on Bayesian methods were shown to improve
multi-agent learning by providing better exploration capabil-
ities [Chalkiadakis and Boutilier, 2003]. In large systems
game theory has addressed credit assignment in congestion
problems with Vickrey Tolls[Vickrey, 1961].

In this paper, we present QUICR-learning which provides
fast convergence in multi-agent learning domains, without as-
suming that the full system reward is linearly separable or re-
quiring hand tuning based on domain knowledge. In Section
2 we discuss the temporal and structural credit assignment
problems in multi-agent systems, and describe the QUICR-
learning algorithm. In Section 3 we present results on two
variants of a multi-agent gridworld problem, showing that
QUICR-learning performs up to thirty times better than stan-
dard Q-learning in multi-agent problems.

2 Credit Assignment Problem
The multi-agent temporal credit assignment problem consists
of determining how to assign rewards (e.g., credit) for a se-
quence of actions. Starting from current time stept, the
undiscounted sum of rewards till a final time stepT can be
represented by:

Rt(st(a)) =
T−t∑
k=0

rt+k(st+k(a)) . (1)

wherea is a vector containing the actions of all agents at all
time steps,st(a) is the state function returning the state ofall
agents for for a single time step, andrt(s) is the single-time-
step reward function, which is a function of the states ofall
of the agents.

This reward is a function of all of the previous actions of
all of the agents. Every reward is a function of the states of all
the agents, and every state is a function of all the actions that
preceded it (even though it is Markovian, the previous states
ultimately depend on previous actions). In a system withn
agents, on average12n ∗T actions affect reward. Agents need
to use this reward to evaluate their single action, yet even in
the idealized domains presented Section 3, with one hundred
agents and thirty-two time steps there are an average of 1600
actions affecting the reward!

2.1 Standard Q-Learning
Reinforcement learners such as Q-learning address how to
assign credit of future rewards to an agent’s current ac-

tion. The goal of Q-learning is to create a policy that max-
imizes the sum of future rewards,Rt(st(a)), from the cur-
rent state[Kaelbling et al., 1996; Sutton and Barto, 1998;
Watkins and Dayan, 1992]. It does this by maintaining ta-
bles of Q-values, which estimate the expected sum of future
rewards for a particular action in a particular state. In the
TD(0) version of Q-learning, a Q-value,Q(st, at), is updated
with the following Q-learning rule1:

∆Q(st, at) = α(rt + maxaQ(st+1, a)) . (2)

The assumption with this update is that the actionat

is most responsible for the immediate rewardrt, but is
somewhat less responsible for the sum of future rewards,∑T−t

k=1 rt+k(st+k(a)). This assumption is reasonable since
rewards in the future are affected by uncertain future actions
and noise in state transitions. Instead of using the sum of fu-
ture rewards directly to update its table, Q-learning uses a Q-
value from the next state entered as an estimate for those fu-
ture rewards. Under benign assumptions, Q-values are shown
to converge to the actual value of the future rewards[Watkins
and Dayan, 1992].

Eventhough Q-learning addresses the temporal credit as-
signment problem (i.e., properly apportions the effects of all
actions taken at other time steps to the current reward), the
immediate reward in a multi-agent system still suffers from
the structural credit assignemtn problem (i.e., the reward is
still a function of all the agents’ actions). Standard Q-learning
does not address this structural credit assignment problem
and an agent will get full credit for actions taken by all of the
other agents. As a result when they are many agents, standard
Q-learning is generally slow since it will take many episodes
for an agent to figure out its impact on a reward it barely in-
fluences.

2.2 Local Q-Learning
One way to address the structural credit assignment problem
and allow for fast learning is to assume that agents’ actions
are independent. Without this assumption, the immediate re-
ward function for a multi-agent reward system may be a func-
tion of all the states:

rt(st,1(a1), st,2(a1), . . . , st,n(an)) ,

wherest,i(ai) is the state for agenti and is a function of only
agenti’s previous actions. The number of states determining
the reward grows linearly with the number of agents, while
the number of actions that determine each state grows linearly
with the number of time steps. To reduce the huge number of
actions that affect this reward, often the reward is assumed to
be linearly separable:

rt(st) =
∑

i

wirt,i(st,i(ai)) .

Then each agent receives a rewardrt,i which is only a func-
tion of its action. Q-learning is then used to resolve the re-
maining temporal credit assignment problem. If the agents

1This paper uses undiscounted learning to simplify notation, but
all the algorithms also apply to discounted learning as well.

are actually independent, this method leads to a significant
speedup in learning as an agent receives direct credit for its
actions. If the agents are coupled, then the independence as-
sumption still allows fast learning, but the agents will tend to
converge to the wrong policy. With loose coupling the bene-
fits of the assumption may still outweigh the costs when there
are many agents. However, when agents are tightly coupled,
the independence assumption may lead to unacceptable solu-
tions and may even converge to a solution that is worse than
random[Wolpert and Tumer, 2001].

2.3 QUICR-Learning
In this section we present QUICR-learning, a learning algo-
rithm for multi-agent systems that does not assume that the
system reward function is linearly separable. Instead it uses
a mechanism for creating rewards that are a function of all
of the agents, but still provide many of the benefits of hand-
crafted rewards. Many hand-crafted multi-agent learning al-
gorithms exploit detailed knowledge about a domain to pro-
vide agent rewards that allow the system to maximize a global
reward. These rewards are designed to have two beneficial
properties: they are “aligned” with the overall learning task
and they have high “sensitivity” to the actions of the agent.

The first property of alignment means that when an agent
maximizes its own reward it tends to maximize the overall
system reward. Without this property, a large multi-agent
system can lead to agents performing useless work, or worse,
working at cross-purposes. Reward sensitivity means that an
agent’s reward is more sensitive to its own actions than to
other agents actions. This property is important for agents to
learn quickly.

QUICR-learning is based on providing agents with rewards
that are both aligned with the system goals and sensitive to the
agent’s states. It aims to provide the benefits of hand-crafted
algorithms without requiring detailed domain knowledge. In
a task where the reward can be expressed as in Equation 1, let
us introduce the difference reward (adapted from[Wolpert
and Tumer, 2001]) given by:

Di
t(st(a)) = Rt(st(a))−Rt(st(a− at,i))

wherea − at,i denotes a counterfactual state where agenti
has not taken the action it took in time stept (e.g., the ac-
tion of agenti has been removed from the vector containing
the actions of all the agents before the system state has been
computed). Decomposing further, we obtain:

Di
t(st(a)) =

T−t∑
k=0

rt+k(st+k(a))− rt+k(st+k(a− at,i))

=
T−t∑
k=0

dt+k(st+k(a), st+k(a− at,i)) . (3)

wheredt(s1, s2) = rt(s1)− rt(s2). (We introduce the single
time step “difference” rewarddt to keep the parallel between
Equations 1 and 3). This reward is much more sensitive to an
agent’s action thanrt since much of the effects of the other
agents are subtracted out with the counterfactual[Wolpert and
Tumer, 2001]. Unfortunately in generaldt(s1, s2) is non-
Markovian since the second parameter may depend of pre-

vious states, making its use troublesome in a learning task
involving both a temporal and structural credit assignment.

In order to overcome this shortcoming of Equation 3, let us
make the following two assumptions:

1. The counterfactuala − at,i action moves agenti to an
absorbing state,sb that is independent of of its current
state.

2. The future state of agents other than agenti are not af-
fected by the actions of agenti.

The first assumption forces us to compute a counterfactual
state that is not necessarily a minor modification to agenti’s
current state. Therefore, differential function estimation tech-
niques that rely on a small change in agenti’s (e.g., Taylor se-
ries expansion) state cannot be used. However, each agent’s
countefactual state is for itself (e.g, not computed for other
agents) and a single time step (e.g., the countefactual states do
not propagate through time). The second assumption holds in
many multi-agent systems, since to reduce the state-space to
manageable levels, agents often do not directly observe each
other (though are still coupled through the reward).

Given these conditions, the counterfactual state for timet+
k is computed from the actual state at timet+k, by replacing
the state of agenti at time t with sb. Now the difference
reward can be made into a Markovian function:

di
t(st) = rt(st)− rt(st − st,i + sb) , (4)

where the expressionst − st,i + sb denotes replacing agent
i’s state with statesb.

Now the Q-learning rule can be applied to the difference
reward, resulting in the QUICR-learning rule:

∆Q(st, at) = α(rt(st)− rt(st − st,i + sb)
+maxaQ(st+1, a))

= α(di
t(st) + maxaQ(st+1, a)) (5)

Note that since this learning ruleis Q-learning, albeit ap-
plied to a different reward structure, it shares all the conver-
gens properties of Q-learning. In order to show that Equa-
tion 5 leads to good system level behavior, we need to show
that agenti maximizing di

t(st) (e.g., following Equation5)
will maximize the system rewardrt. Note that by definition
(st − st,i + sb) is independent of the actions of agenti, since
it is formed by moving agenti to the absorbing statesb from
which it cannot emerge. This effectively means the partial
differential ofdi

t(st) with respect to agenti is2:

∂

∂i
di

t(st) =
∂

∂i
(rt(st)− rt(st − st,i + sb))

=
∂

∂i
rt(st)−

∂

∂i
rt(st − st,i + sb)

=
∂

∂i
rt(st)− 0

=
∂

∂i
rt(st). (6)

2Though in this work we show this result for differentiable states,
the principle applies to more general states, including discrete states.

Therefore any agenti using a learning algorithm to op-
timize di

t(st) will also optimizert(st). Furthermore, note
that QUICR-learning converges not only to a globally de-
sirable solution (e.g., it statisfies the first property of being
aligned with the system level goal), but it also converges
faster since the rewards are more sensitive to the actions of
agenti because it removes much of the effects of the other
agents through the counterfactual subtraction.

3 Multi-agent Grid World Experiments
We performed a series of simulations to test the performance
of Q-Learning, Local Q-Learning and QUICR-Learning for
multi-agent systems. We selected the the multi-agent Grid
World Problem, a variant of the standard Grid World Prob-
lem [Sutton and Barto, 1998]. In this problem, at each time
step, the agent can move up, down, right or left one grid
square, and receives a reward (possibly zero) after each move.
The observable state space for the agent is its grid coordinate
and the reward it receives depends on the grid square to which
it moves. In the episodic version, which is the focus of this
paper, the agent moves for a fixed number of time steps, and
then is returned to its starting location.

In this paper we compare learning algorithms in a multi-
agent version of the grid world problem. In this instance of
the problem there are multiple agents navigating the grid si-
multaneously influencing each others’ rewards. In this prob-
lem agents are rewarded for observing tokens located in the
grid. Each token has a value between zero and one, and each
grid square can have at most one token. When an agent moves
into a grid square it observes a token and receives a reward for
the value of the token. Rewards are only received on the first
observation of the token. Future observations from the agent
or other agents do not receive rewards in the same episode. If
two agents move into the same square at the same time. More
precisely,rt is computed by summing the agents at the same
location as unobserved tokens, weighted by the value of the
tokens:

rt(st) =
∑

i

∑
j

VjI
t
st,i=Lj

. (7)

whereIt is the indicator function which returns one when an
agent in statest,i is in the location an unobserved tokenLj .
The global objective of the multi-agent Grid World Problem
is to observe the highest aggregated value of tokens in a fixed
number of time steps T.

3.1 Learning Algorithms
In each algorithm below, we use the TD(0) update rule. The
standard Q-learning is based on the full rewardrt:

∆Q(st, at) = α(rt(st) + maxaQ(st+1, a)) . (8)

Local Q-learning is only a function of the specific agent’s own
state:

∆Qloc(st, at) = α(
∑

j

VjI
t,i
st,i=Lj

+ maxaQloc(st+1, a)).

QUICR-learning instead updates with a reward that is a func-
tion of all of the states, but uses counterfactuals to suppress

 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Figure 1: Distribution of Token Values in “Corner” World

the effect of other agents’ actions:

∆QUECR(st, at) = α(rt(st)− rt(st−st,i+sb) +
maxaQUECR(st+1, a)),

wherest−st,i +sb is the state resulting from removing agent
i′s state and replacing it with the absorbing statesb.

3.2 Results
To evaluate the effectiveness of QUICR-learning in the multi-
agent Grid World, we conducted experiments on two different
types of token distributions. The first set of tokens is designed
to force congestion and tests the ability of QUICR-learning
in domains where the reward function is far from being lin-
early separable. The second set is randomly generated from
Gaussian kernels, to illustrate that the QUICR-learning capa-
bilities in a non-hand crafted domain with spread out tokens
(a domain favoring less dependend, local learners).

In all the experiments the learning rate was set to0.5, the
actions were chosen using anε-greedy (ε = 0.15) exploration
scheme and tables were initially set to zero with ties broken
randomly.

3.3 Corner World Token Value Distribution
The first experimental domain we investigated consisted of
a world where the “highly valued” tokens are concentrated in
one corner, with a second concentration near the center where
the rovers are initially located. Figure 1 conceptualizes this
distribution for a 20x20 world.

Figure 2a shows the performance for 40 agents on a 400
unit-square world for the token value distribution shown in
Figure 1, and where an episode consists of 20 time steps (er-
ror bars of± oneσ are included, though in most cases they
are smaller than the symbols). The performance measure in
these figures is sum of full rewards (rt(st)) received in an
episode, normalized so that the maximum reward achievable
is 1.0. Note all learning methods are evaluated on the same
reward function, independent of the reward function that they
are internally using to assign credit to the agents.

The results show that local Q-learning generally produced
poor results. This problem is caused by all agents aiming
to acquire the most valuable tokens, and congregating to-
wards the corner of the world where such tokens are located.
In essence, in this case agents using local Q-learning com-
peted, rather than cooperated. The agents using standard Q-
learning did not fare better, as the agents were plagued by

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800 900 1000

S
um

 o
f G

lo
ba

l R
ew

ar
ds

 A
ch

ie
ve

d

Number of Training Episodes

QUICR-Learning
Q-Learning

Local Q-Learning
(Random)

Figure 2: Learning Rates in Corner World with 40 Agents

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

S
um

 o
f G

lo
ba

l R
ew

ar
ds

 A
ch

ie
ve

d

Number of Agents

QUICR-Learning
Q-Learning

Local Q-Learning
(Random)

Figure 3: Scaling Properties of Different Payoff Functions.

the credit assignment problem associated with each agent re-
ceiving the full world reward for each individual action they
took. Notice though that though local Q learning agents hit
a performance plateau early, the standard Q-learning agents
continue to learn, albeit slowly. This is because standard Q-
learning agents are aligned with the system reward, but have
low agent sensitivity. Agents using QUICR-learning on the
other hand learned rapidly, outperforming both local and stan-
dart Q-learning by a factor of six (over random rovers).

Figure 3 explores the scaling properties for each algorithm.
As the number of agents was increased, the difficulty of the
problem was kept constant by increasing the size of the grid-
world, and allocating more time for an episode. Specifically
the ratio of the number of agents to total number of grid
squares and the ratio of the number of agents to total value
of tokens was held constant. In addition the ratio of the fur-
thest grid square from the agents’ starting point to the total
amount of time in an episode was also held constant (e.g.,
40 agents, 20x20 grid, 20 steps, 100 agents, 32x32 grid, 32
time steps). The scaling results show that agents using both
local and standard Q-learning deteriorate rapidly as the num-
ber of agents increases. Agents using QUICR-learning on the

 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

Figure 4: Distribution of Token Values in “Random” World

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900 1000

S
um

 o
f G

lo
ba

l R
ew

ar
ds

 A
ch

ie
ve

d

Number of Training Episodes

QUICR-Learning
Q-Learning

Local Q-Learning
(Random)

Figure 5: Learning Rates in Random World with 40 Agents

other hand were not strongly affected by the increase in the
size of the problem, and outperformed local and standard Q-
lerners by a factor of thirty for the largest system. This is
because QUICR-learning agents received rewards that were
both aligned with the sytem goal had high agent sensitivity
(i.e.,less affected by the size of the system). This result un-
derscores the need for using rewards that suppress the affect
of other agents actions in large systems.

3.4 Random World Token Value Distribution

In the second set of experiments, we investigate the behav-
ior of agents in a gridworld where the token values are ran-
domly distributed. In this world, forn agents, there aren/3
Gaussian ‘attractors’ whose centers are randomly distributed.
Figure 4 shows an instance of the gridworld using this distri-
bution for the 20x20 world, used in the experiments with 40
agents.

The results in Figures 5 and 6 show that agents using
QUICR-learning are insensitive to changes in the token value
distribution. Agents using local Q-learning perform signifi-
cantly better in this case, showing a much larger sensitivity
to the token distribution. The improvements are due to the
spreading of tokens over a larger area, which allows agents
aiming (and failing) to collect high valued tokens to still col-
lect mid to low-valued tokens, surrounding the high valued
tokens. In this domain, agents using standard Q-learning per-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100

S
um

 o
f G

lo
ba

l R
ew

ar
ds

 A
ch

ie
ve

d

Number of Agents

QUICR-Learning
Q-Learning

Local Q-Learning
(Random)

Figure 6: Scaling Properties of Different Payoff Functions.

formed particularly poorly. Indeed they were outperformed
by agents performing random walks for systems of 40 agents.
Due to the distributed tokens and the large number of agents,
agents using standard Q-learning were never able to form an
effective policy. These agents essentially moved from their
initial random walk to a slightly more coordinated random
walk, causing them to spread out less than agents performing
independent random walks, and thus perform slightly worse
than random agents.

The scaling results show again that QUICR-learning per-
forms well as the number of agents increases. The interesting
result here is that QUICR-learning does better with 40 to 55
agents than with 10 agents (this is not a statistical quirk, but
a repeated phenomenon in many different random token con-
figurations) . One potential cause is that the larger number of
agents more efficiently explore the space without being be-
set by the problems encountered by the other learning algo-
rithms. The scaling results confirm that standard Q-learners
perform slightly coordinated random walks in this setting,
performing ever so slightly worse than random in all cases
with more than 25 agents. With this token distribution the
rewards used in standard Q-learning appear to be no better
than random rewards, even with ten agents. While local Q-
learning performs better on this token distribution than the
previous one, it still scales less gracefully that does QUICR-
learning.

4 Discussion
Using Q-learning to learn a control policy for a single agent
in a problem with many agents is difficult, because an agent
will often have little influence over the reward it is trying to
maximize. In our example problems, an agent’s reward re-
ceived after an action could be influenced by as many as 3200
other actions from other time-steps and other agents. Even
temporal difference methods that perform very well in single
agent systems will be overwhelmed by the number of actions
influencing a reward in the multi-agent setting. To address
this problem, this paper introduced QUICR-learning, which
aims at reducing the impact of other agent’s actions without
assuming linearly separable reward functions. Within the Q-

learning framework QUICR-learning uses the difference re-
ward computed with immediate counterfactuals. While elim-
inating much of the influence of other agents, this reward was
shown mathematically to be aligned with the global reward:
agents maximizing the difference reward will also be maxi-
mizing the global reward. Experimental results in two Grid
World problems, confirm the analysis showing that QUICR-
learning learns in less time than standard Q-learning, and
achieves better results than Q-learning variants that use local
rewards and assume linear separability. While this method
was used with TD(0) Q-learning updates, it also naturally ex-
tends to TD(λ), Sarsa-learning and Monte Carlo estimation.
In domains with difficult temporal credit assignment issues,
the use of these other variants could be beneficial.

References
[Agogino and Tumer, 2004] A. Agogino and K. Tumer. Uni-

fying temporal and structural credit assignment problems.
In Proc. of AAMAS-04, New York, NY, July 2004.

[Chalkiadakis and Boutilier, 2003] G. Chalkiadakis and
C. Boutilier. Coordination in multiagent reinforcement
learning: A bayesian approach. InProc. of AAMAS-03,
Melbourne, Australia, July 2003.

[Guestrinet al., 2002] C. Guestrin, M. Lagoudakis, and
R. Parr. Coordinated reinforcement learning. InProc. of
19th ICML, 2002.

[Hu and Wellman, 1998] J. Hu and M. P. Wellman. Multi-
agent reinforcement learning: Theoretical framework and
an algorithm. InProc. of the Fifteenth International Con-
ference on Machine Learning, pages 242–250, June 1998.

[Jones and Mataric, 2003] C. Jones and M. J. Mataric. Adap-
tive division of labor in large-scale multi-robot systems. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS-03), Las Vegas, NV, July 2003.

[Kaelblinget al., 1996] L. P. Kaelbling, M. L. Littman, and
A. W. Moore. Reinforcement learning: A survey.Journal
of Artificial Intelligence Research, 4:237–285, 1996.

[Nair et al., 2003] R. Nair, M. Tambe, M. Yokoo, D. Pyna-
dath, and S. Marsella. Taming decentralized POMDPs:
Towards efficient policy computation for multiagent set-
tings. InProc. of the Eighteenth International Joint Con-
ference on Artificial Intelligence, Acapulco, Mexico, 2003.

[Stoneet al., 2005] P. Stone, R. S. Sutton, and G. Kuhlmann.
Reinforcement learning for RoboCup-soccer keepaway.
Adaptive Behavior, 2005.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto.Re-
inforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

[Vickrey, 1961] W. Vickrey. Counterspeculation, auctions
and competitive sealed tenders.Journal of Finance, 1961.

[Watkins and Dayan, 1992] C. Watkins and P. Dayan. Q-
learning.Machine Learning, 8(3/4):279–292, 1992.

[Wolpert and Tumer, 2001] D. H. Wolpert and K. Tumer.
Optimal payoff functions for members of collectives.Ad-
vances in Complex Systems, 4(2/3):265–279, 2001.

