
Transitioning From Software
Requirements Models to Design

Models
PI: Jon Whittle

QSS Group Inc.

NASA POC: Michael Lowry

Ames Research Center

Problem
How to cope with the problems of requirements engineering?

– Complexity
– Validation
– Evolution
– Requirements/Design gap

NASA CTAS example:

data uplink/downlink

customers

programmerdesigner/architect

Approach
– Complexity
– Validation
– Evolution
– Requirements/Design gap

customers
programmer

designer/architect

Simulation of use cases (scenarios)

Semi-automatic design
transformation

simulation

Goal:Cost-effective way of
simulating requirements
• automatic transformation to
executable form
• executable form can be reused in
design

Overview of Research

Write
requirements

Write use
cases

Prioritize
use cases

Write nominal
scenarios

Identify
relationships

Refine/
Generalize
scenarios

Transform
to state
machines

SCASP (Scenario Creation and Simulation Process)

UML2.0
Sequence
Diagrams

preempts,
parallel,

crosscuts etc.
systematic
guidelines

Write down
what you

can

For risk,
importance &

metric
calculation

synthesis
algorithm

Itemized
List

Importance/Benefits
• Thorough simulation of use cases before design/implementation

– reduced cost
– fewer misunderstandings
– reuse of executable form of use cases

• SCASP gives systematic guidelines on how to:
– separate concerns in use case descriptions
– elicit non-nominal scenarios (alternatives, exceptions, concurrent

scenarios etc.)
– transform those scenarios automatically into a set of concurrent state

machines
– execute those state machines, i.e., scenario simulation

• NASA relevance (specific projects):
– CTAS air traffic control (Ames)

• weather update module
• trajectory synthesizer
• data link/uplink

– also: Motorola test methodology (ENTITE)

Accomplishments

• SCASP:
– Defined SCASP and evaluated on multiple case studies

• CTAS weather update
• Motorola call setup sequence
• Univ. Paderborn shuttle system
• CTAS trajectory up/downlink

– Techniques for separation of concerns (aspects)
• forthcoming papers in Requirements Engineering ’04 and IEE Software

– Synthesis:
• outlined new algorithm for synthesizing state machines from scenarios

– Metrics
• defined metrics for evaluating completeness/complexity of process

• Tool support (IBM Rational Rose plug-in):
– Simple version of algorithm
– plug-in for reusable patterns (including use case aspects)
– Integrated state machine simulator from Teknowledge Corp. (Alexander Egyed)

• Customer interest:
– NASA CTAS
– Motorola

Next Steps

• SCASP:
– Further evaluation on case studies
– Synthesis:

• develop, implement and test new algorithm
– Metrics:

• evaluation
– Simulation:

• feedback simulation results

• Tool support:
– Full version of algorithm
– Integration

• Customer transfer

Transitioning From Software
Requirements Models to Design

Models

PI: Jon Whittle

QSS Group Inc.

Use case simulation
– Complexity
– Validation
– Evolution
– Requirements/Design gap

customers
programmer

designer/architect

Simulation of use cases (scenarios)

Semi-automatic design
transformation

simulation

Goal:Cost-effective way of
simulating requirements
• automatic transformation to
executable form
• executable form can be reused in
design

Main Idea

Scenarios State Machines Code

Requirements
Validation

Test Cases
etc..

 Many good reasons for working with scenarios
• walkthrough software artifacts
• analysis/validation
• test case generation
• state machine generation

Missing link: how to develop an appropriate set of scenarios?
• synthesis requires completeness
• test case generation requires coverage
• requirements validation requires coverage

Overview of Research

Write
requirements

Write use
cases

Prioritize
use cases

Write nominal
scenarios

Identify
relationships

Refine/
Generalize
scenarios

Transform
to state
machines

SCASP (Scenario Creation and Simulation Process)

UML2.0
Sequence
Diagrams

preempts,
parallel,

crosscuts etc.
systematic
guidelines

Write down
what you

can

For risk,
importance &

metric
calculation

synthesis
algorithm

Itemized
List

Based on UML, but (mostly) language-independent

Metrics measure completeness/complexity

Illustrative Example

• Autonomous agents bid for orders from
clients
– May bid for any number of orders

simultaneously

– Broker assigns orders

– Clients pay controller who in turn pays agents

Controller
Broker

This talk:
agent=rail shuttle
client=passenger

1. Write Requirements

If a shuttle is at a station and has a negative balance, it will not be permitted to leave the station and is retired.R15

No profit can be made if either deadline is not metR14f

If the order has been loaded already, it pays just the amount offeredR14e

If the order has not been loaded at the deadline, it pays a penalty (specified in the order) plus the amount it offeredR14d

The transport will always be paid, but the penalty has to be paid at the deadlineR14c

If a shuttle currently carries the order, it has to complete itR14b

Shuttles pay a penalty for late ordersR14a

Payment for maintenance and repairs is immediate.R13

Repairs can be scheduled before the distance limit is reached and carried out at any station.R12

If a shuttle exceeds a certain distance, maintenance will be carried out at the next station automatically and the shuttle will
not be able to leave the station until maintenance is finished.

R11

Shuttles pay their toll when a station is reachedR10

If the order specified credit card payment, money is transferred to the shuttle immediately. If the payment was invoicing
then the transfer will be delayed for a certain amount of time

R9c

Payment to a shuttle occurs after an order is delivered and an invoice is sent to the banking agentR9b

In the beginning, every shuttle will receive a fixed capitalR9a

A shuttle traveling on a section of tracks can neither change direction nor choose another destination. A travel decision is
only possible at a station before the journey has begun.

R8

Loading/unloading at intermediate stations (for the same order) is not permittedR7c

R7a has to be completed within a deadline or a penalty will be levied.R7b

To complete an order, a shuttle has to travel to the start station, load the order and proceed to the destination station to
unload

R7a

The number of orders assigned (not necessarily loaded) to a shuttle at any given time is not limitedR6c

A shuttle can transport more than one order at a time as long as the orders do not exceed the maximum capacityR6b

Every shuttle has a maximum capacity determined at the start of the simulationR6a

Orders will be paid for by passengers either by credit card or invoiceR5

In the event of two equal offers, the assignment goes to the shuttle that made the first offerR4d

The shuttle making the lowest offer will receive the assignmentR4c

Any shuttle can make an offer within a certain period of timeR4b

Orders are made known to all shuttles by a broker.R4a

All shuttles will be informed of a disruption and its duration.R3

Shuttles not traveling on a section of tracks that become disrupted will not be able to use it.R2

Shuttles traveling on sections of tracks that are disrupted are not affected.R1

2. Write Use Cases
Affected Shuttle

Unaffected Shuttle

Make a Bid

Maintenance

Connection Disruption

<<extend>>

<<extend>>

Initialization

Retirement

MakePayment

PayPenaltyPay Toll

Shuttle

Passengers

Unsuccessful Completion

<<extend>>

Carry Out Order

<<extend>>

<<extend>>

Successful Completion

<<extend>>

ReceivePayment

<<extend>>

3. Prioritize Use Cases

8Unsuccessful Completion

1Unaffected shuttle

8Successful completion

5Retirement

4Receive payment

4Pay penalty

3Pay toll

1Make payment

10Make a bid

5Maintenance

5Initialization

5Connection disruption

9Carry out order

5Affected Shuttle

PriorityUse case

4. Write nominal scenarios

• Nominal scenario: typical or important
functionality

• Non-nominal scenario: unusual or
unexpected behavior

Non-nominal
scenario

Non-nominal
scenario

Non-nominal
scenarioNominal

scenario

Non-nominal
scenario

“write down what you can!”

Nominal Scenario: bidding

 : Broker
 : Shuttle : Shuttle

 : Controller

4: makeBid

1: newOrder

2: newOrder

3: newOrder

5: makeBid

8: OfferTimeEnds

7: makeBid

9: chooseLowestBid

10: grantOffer

11: acceptOffer
12: endOrder

6: makeBid

5. Identify Relationships

5.1 Within use cases:
S is a continuation of T
S is an alternative to T

S may execute in parallel with T
S may preempt T
S may suspend T

S may never happen during R
S is an exception handler for T

Multiple instances of S may execute at once
S crosscuts R.

Successful
completion

Move to
intermediate
station

*

<<neg>>

5. Identify Relationships

5.2 Between use cases:

Initialization

Maintenance Retirement Connection
Disruption

Make A
Bid

Carry Out
Order

Make
Payment

*

*

*

{....}

{....}

6. Generalize/Refine
Nominal Scenarios

• Series of issues based on common
generalization/refinement strategies.
– May be language dependent or independent

Alternative
actions

What action to
take?

What to look
for?

Component,
message or
scenario

A generalization

/refinement
strategy to look
for

AlternativesActionQuestionContextIssue

Analog of 1.3 for messages received by at least one of a set of components of a certain type.1.5

Analog of 1.2 for messages sent to at least one of a set of components of a certain type.1.4

If all: replace component with a multiobject
representing all components of type type and
make the message a universal message
received by all components.

Should a message received by component be
received by all components of type type
or just one?

1.3

If all: replace component with a multiobject
representing all components of type type and
make the message a universal message sent
to all components.

Should a message sent to component be sent
to all components of type type or just
one?

1.2

If no: consider a refactoring of the type model to
introduce sub-components for those to which
the scenario applies.

Does the scenario apply to all components
of type type?

1.1

ActionQuestionIssue
number

Context:
component:

type

Issues (so far)

1.1
Does the scenario apply to all
components of type type?

If no: consider a refactoring of the
type model to introduce sub-
components for those to which the
scenario applies.

1.2

Should a message sent to
component be sent to all
components of type type or just
one?

If all: replace component with a
multiobject representing all
components of type type and make
the message a universal message
sent to all components.

1.3

Should a message received by
component be received by all
components of type type or just
one?

If all: replace component with a
multiobject representing all
components of type type and make
the message a universal message
received by all components.

1.4
Analog of 1.2 for messages sent to at least one of a set of components of
a certain type.

1.5
Analog of 1.3 for messages received by at least one of a set of
components of a certain type.

If yes: introduce an explicit “handshake” message between the two
lifelines that forces the sequence diagram semantics to constrain the
ordering of the messages.

Are there undesired implied scenarios? – e.g., caused by
messages on different lifelines that appear to be ordered
based on their graphical depiction but are not ordered
according to the sequence diagram semantics.

3.1

Context: scenario

If no: extract the dependent messages into a separate scenario.Does message really depend on all its predecessors?2.11

If yes: introduce combined fragments with the par operator.Are there opportunities for introducing concurrency?2.10

If yes: introduce combined fragments with a neg interaction
operator.

Are there alternatives for the message that are invalid?2.9

If yes: redraw the message. If necessary, add timing mark
constraints.

Could message overlap its neighbors?2.8

If yes: capture the failure handler as a separate interaction diagram
referred to (using ref) in the main diagram and use an alt operator to
capture the alternative when the message fails.

Can message fail?2.7

If yes: introduce alternatives when the guard is not satisfied (using
alt).

Does message have a guard?2.6

If yes: encapsulate the optional elements in a combined fragment
with operator opt.

Is message optional (or part of an optional sequence)?2.5

If yes: introduce coregions to relax the scenario ordering constraints.Can the ordering of message be changed? In particular, could
the ordering of message and its immediate neighbors be
altered? Could the ordering of message and its distant
neighbors be altered?

2.4

If yes: encapsulate the existing and new behaviors in operands of a
combined fragment with an alt operator, and introduce guards for
the operands if necessary.

Is message a choice point? – i.e., could an alternative
message have appeared at this point that would change the
following behavior?

2.3

If yes: replace message with a combined fragment with interaction
operator alt and message with its alternative sending or receiving
components as operands.

Could message be sent from or be received by a different
component without changing the behavior of the scenario?

2.2

If yes: replace message with a combined fragment with interaction
operator alt and the two alternative messages as operands.

Could message be replaced with another message without
changing the behavior of the scenario?

2.1

Context:
message

2.4

Can the ordering of message be
changed? In particular, could the
ordering of message and its
immediate neighbors be altered?
Could the ordering of message
and its distant neighbors be
altered?

If yes: introduce coregions to relax
the scenario ordering constraints.

3.1

Are there undesired implied
scenarios? – e.g., caused by
messages on different lifelines
that appear to be ordered based
on their graphical depiction but
are not ordered according to the
sequence diagram semantics.

If yes: introduce an explicit
“handshake” message between the
two lifelines that forces the sequence
diagram semantics to constrain the
ordering of the messages.

Ground

detectConflict

Example
If no: extract the dependent messages
into a separate scenario.

Does message really depend on all its
predecessors?

2.11

Crew Ground

detectConflict

detectConflict

notify

Scenario shows just one example, therefore factor out
any “incidental” dependencies

Crew Ground

detectConflict

notify

Split into two scenarios to allow other orderings

Bidding Example: Before

 : Shuttle : Shuttle
 : Controller : Broker

4: makeBid

1: newOrder

2: newOrder

3: newOrder

5: makeBid

8: OfferTimeEnds

7: makeBid

9: chooseLowestBid

10: grantOffer

11: acceptOffer
12: endOrder

6: makeBid

Message 4 does not depend on 3 (this one is ok because of the
partial order semantics). Message 6 does not depend on
message 2. Messages 6,7 do not depend on message 5.
Message 8 does not depend on messages 4-7. Message 11
does not depend on messages 4 and 5.

2.11

The order/bid for each shuttle can be split into parallel fragments2.10

The broker should not accept the highest bid2.9

There may be communication failures2.7

Messages 4,5 can be marked as optional as only one shuttle may
decide to bid

Message 9 is optional (there may be only one bid)
Message 11 is optional as the winning shuttle may not respond to

the offer

2.5

Messages 2,3 can be in any order. As can 4,6 and 5,72.4

Alternative to message 11 is rejectOffer. Alternatives to 9 are
noBids and BidsAreEqual.

2.3

Merge messages 4 and 6 into an existential message1.5

Scenario shows only 2 shuttle instances. Generalize using a
multiobject and merge messages 2 and 3 into a universal
message. Note: there needs to be a single identified
instance of Shuttle to receive message 10.

1.2

DescriptionIssue

1.2
Scenario shows only 2 shuttle instances. Generalize using a multiobject
and merge messages 2 and 3 into a universal message. Note: there
needs to be a single identified instance of Shuttle to receive message 10.

1.5 Merge messages 4 and 6 into an existential message

2.11

Message 4 does not depend on 3 (this one is ok because of the partial
order semantics). Message 6 does not depend on message 2. Messages
6,7 do not depend on message 5. Message 8 does not depend on
messages 4-7. Message 11 does not depend on messages 4 and 5.

Bidding Example: Before

 : Shuttle : Shuttle
 : Controller : Broker

4: makeBid

1: newOrder

2: newOrder

3: newOrder

5: makeBid

8: OfferTimeEnds

7: makeBid

9: chooseLowestBid

10: grantOffer

11: acceptOffer
12: endOrder

6: makeBid

Message 4 does not depend on 3 (this one is ok because of the
partial order semantics). Message 6 does not depend on
message 2. Messages 6,7 do not depend on message 5.
Message 8 does not depend on messages 4-7. Message 11
does not depend on messages 4 and 5.

2.11

The order/bid for each shuttle can be split into parallel fragments2.10

The broker should not accept the highest bid2.9

There may be communication failures2.7

Messages 4,5 can be marked as optional as only one shuttle may
decide to bid

Message 9 is optional (there may be only one bid)
Message 11 is optional as the winning shuttle may not respond to

the offer

2.5

Messages 2,3 can be in any order. As can 4,6 and 5,72.4

Alternative to message 11 is rejectOffer. Alternatives to 9 are
noBids and BidsAreEqual.

2.3

Merge messages 4 and 6 into an existential message1.5

Scenario shows only 2 shuttle instances. Generalize using a
multiobject and merge messages 2 and 3 into a universal
message. Note: there needs to be a single identified
instance of Shuttle to receive message 10.

1.2

DescriptionIssue

<<multiobject>>

S2

alt

S1

 : Shuttle
 : Controller

3: makeBid

 : Broker

1: newOrder

2: newOrder

4: makeBid

all

exist

 : Shuttle
 : Controller : Broker

1: offerTimeEnds

2: chooseLowestBid

3: grantOffer

4: acceptOffer
5: endOrder

X

5: refuseOffer
6: rechoose

X

S2 preempts S1

Bidding Example: After

7. Transform to State
 machines

?moveToStation(start)

?pickUpPassengers

?requestRoute

sendRoute

timeout

?moveToStation(end)

?dropOffPassengers

?requestPayment

makePayment makePayment

pleaseWait

timeout

?moveToStation(start)

?pickUpPassengers

?requestRoute

sendRoute

?moveToStation(end)

?dropOffPassengers
?requestPayment

ERROR

“State of Play”

Write
requirements

Write use
cases

Prioritize
use cases

Write nominal
scenarios

Identify
relationships

Refine/
Generalize
scenarios

Transform
to state
machines

SCASP (Scenario Creation and Simulation Process)

Metrics

TRL 5

Metrics

∑
′

×=

u u

u

u

u

ECP
NT
ECP

NT

wUCCP #

uuu ECPECP ×=

expected complexitypriority

actual complexity

nonzero priority &
nonzero complexity

nonzero priority

Accomplishments

• SCASP:
– Defined SCASP and evaluated on multiple case studies

• CTAS weather update
• Motorola call setup sequence
• Univ. Paderborn shuttle system
• CTAS trajectory up/downlink)

– Techniques for separation of concerns (aspects)
• forthcoming papers in Requirements Engineering ’04 and IEE Software

– Synthesis:
• outlined new algorithm for synthesizing state machines from scenarios

– Metrics
• defined metrics for evaluating completeness/complexity of process

• Tool support (IBM Rational Rose plug-in):
– Simple version of algorithm
– plug-in for reusable patterns (including use case aspects)
– Integrated state machine simulator from Teknowledge Corp. (Alexander Egyed)

• Customer interest:
– NASA CTAS
– Motorola

