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Abstract—A Bayesian data-analysis framework is described “shapshots” of the dynamical Earth system in the form of &dat
for atmospheric and surface retrievals from remotely-sened cubes.” As such, they provide vital information for assegsi
hyper-spectral data. Some computational techniques are §h- 4 5h5) changes in cloud and aerosol properties, abundance o
lighted for improved accuracy in the forward physics model. - D

atmospheric water vapor, ozone, and carbon dioxide, sea and
land surface temperatures and albedss, Such sensors can
simultaneously satisfy the needs of many communities that

In the Earth-Science (ES) community, work has been dohave heretofore felt compelled to build their own expensive
for decades on the retrieval of atmospheric and surfaggstom instruments for every new mission.
properties from flux and radiance measurements gatheredhe potential for simultaneous measurement and retridval o
by dedicated sensors, ranging from multi-spectral passizdarge set of atmospheric and surface properties by a single
instruments to active devices such as microwave radar afgbe of) instrument also brings with it the need for more
lidar. These instruments have traditionally been desigiwed comprehensive and accurate forward models. For if an entire
operate in certain spectral “windows” where components @hta cube is to be utilized for its information content, ttiee
interest have well-known and isolated signatures; medewhientire array of physical processes that might have influgnce
theorists were able to develop ingenuous approximatiott®to the data must be efficiently accounted for. Currently, tomyna
associated forward radiative-transfer models. This coatin investigators are continuing to use rudimentary techrique
of “smart” observations and “simplified” physics allowedsuch as band ratios in analyzing hyper-spectral data. We
the use of relatively simple and computationally afforéablpelieve that our computational power is now ready for more
retrieval algorithms in remote sensing. Although some tufss accurate implementations of the forward physics as well as
accuracy was inevitably incurred, the computational resggI more rigorous retrieval algorithms. Under the Intellig&ta
of the past decades simply could not handle the problewhderstanding Project of the NASA CICT Program, we have
in a more direct way. This, of course, is no longer trugieen developing a Bayesian data-analysis framework that is
yet, these “legacy” techniques are still deeply ingrained kxpected to greatly enhance our understanding of, as well
the atmospheric radiative-transfer community, and coltito as our ability to model and predict, the Earth system. In
artificially limit our retrieval capabilities. this paper, we describe the salient features of this framewo

The situation is exacerbated by the rapid and largely uncaslong with some details of the forward physics model where
ordinated growth in the number and variety of remote-s@nsiimprovements have been made to the state of the practice.
instruments operated by a multitude of institutions around
the globe. The somewhat independent characterization and Il. RETRIEVAL THEORY

deployment of these instruments, and the subsequentrrath@ye pegin with the basic statement of our problem. De-
disconnected analyses of their data sets have led to serigyg the unknown parameters underlying an experiment as
cross-validation issues that remain largely unresolvéerd-  _ {Zn, n = 1,2,...,N}, and the measurements made
fore, the establishment of a unified framework for instrutnegy i : — —
characterization and data analysis is crucial if we areitzet Ia;gzg;ﬂf ggﬁg)mrﬁg;ffremg”{’mrgdd :éi{m@,’nﬂﬁ,g T;
the data volume of our ever-growing “sensor web” in the mogte form
efficient and accurate manner. Given the potential impact on y=f(x)+e 1)
society, as well as the policy-makers, of our measurements ’
and predictions, our retrievals must truly represent “testb where the vector-valued functioh : RY — RM represents
estimate of the scientific community.” the typically nonlinear “forward” physics model for the exp

The trend in Earth observation has been shifting recentiyent, ance = {¢,,, m = 1,2, ..., M} denotes the ubiquitous
towards passive hyper-spectral imaging instruments. Witk measurement error, comprising the systematic bias as well a
dreds of spatial pixels and hundreds of spectral channdlse stochastic noise of the measuring instrument. The féa/e
these sensors observe the terrestrial atmosphere anaesunfatrieval problem, then, is that of estimating the statdomrex
in space, time,and wavelength, thus producing completdrom a given measurement vectpr[1], [2].

I. INTRODUCTION



A. Bayesian inference we therefore seek the globalinimum of J:

In the B'ayesian philosophy [3], [4],. one’s knowl.eldge of a J(x*) < J(x) Vx#x". (4)
quantity z is represented by an associated probability density
function (PDF)p(z); the sharpemp(z) is around some value Finally, the “width” of the posterior, however it is defined,
z*, the more confident we are that~ z* in actuality (see provides a quantitative measure of uncertainty — an “error
Figure 1). For the experimental scenario described aboeiud” (i.e., a multi-dimensional error bar) at the tip of the
Bayes’ theorem asserts that [3]-[6] estimated state vectat*. This width tends to shrink with

increasing number of measurements, a phenomenon usually
p(x|y) = Z(yi:gf))(x) =7 ;((;]S);((;)) = (2) referred to as “Bayesian learning.” Expanding the log-past

into a Taylor series aroung*, we obtain
Here, p(x) and p(x|y) are, respectively, tha priori and a 1
posteriori PDFs — the prior and the posterior — of the state p(x|y) = Inp(x*ly) — = (x —x*)" §* 7! (x —x*) +....
vector x, and £(y|x) is the likelihood of the measurement 2 (5)
vectory. The form of the likelihood function represents the\ote that the first-order term is absent by virtue of (4). The
solution of the underlying modeling problem. The prior, mea eigenvalues and eigenvectors of the mafixso defined serve

while, encapsulates our initial “best guess” and assatiate naturally as the desired measure of uncertainty aracind
certainty about the unknown parameters. Upon measurement,

this prior is transformed into the posterior via Bayes' tiezn; B. Gaussian case

a sharper posterior (relative to the prior) indicates anrowned It is generally acceptable to model the statistics of the-mea

confidence on our part as to the valuexohfter having seen surement error with a Gaussian PDF; theisy N (8, ), with

the datay. N signifying the normal distribution. Here, the mean vector
A decision strategy is needed next to extract fraf®|y) an  § represents the average offset of the instrument while the

optimal estimate fox. We adopt the maximura posteriori covariance matrixX characterizes its statistical fluctuations;

estimatex* given by the mode of the posteriarg, that value seeg§lll-A. Consequently, one has the likelihood function

of x for which the posterior is maximized). Defining a suitable

“cost” functiont (y|x

J(x) = —In{(y|x) — Inp(x), (3) It is also common, albeit more questionable, to adopt a

Gaussian PDF for the prior:
1Any monotonically non-increasing function of the posterimuld do here; . I
our particular choice has the advantage of turning the plidétive form of p(x) oce”2 (=6 E™ (x=8) (7)
(2) into the more convenient additive form of (3), as well &dispensing with
the termp(y), which does not depend anand therefore has no bearing onywhere the mean vectag and the covariance matrig re-

the optimal estimate. Further simplifications result frdra tise of the natural tivel t s best f d th wbeiat
logarithm if the exponential family of PDFs are adopted foe fikelihood spectively represent one's best guess for an € assuciate

) oc e~ 3 =6 =8T B [y —£() 8], (6)

and the prior; segll-B. uncertainty abouk before the experiment is conducted.
Substituting (6) and (7) into (3), we obtain the cost fungtio
p(a) I =5 [y —t) 8" 37 [y —£() 5] (&)
(© 1

+5 (x—8TET (x-6+C,

whereC is an unimportant constant. Several methods are avail-
able for minimizing such a cost function. The simplest ofthe
(e.g, simulated annealing, steepest descent) are also the most
inefficient, whereas the use of sophisticated methadg, (
conjugate gradients, quasi-Newton) may be a computational
overkill if the optimization problem at hand is only mildly
(b) difficult. We will describe in§lI-C an elegant and effective
@ approach that is the method of choice for cost functions of
T N— the form (8) with moderately nonlinear forward models.
We note in passing that the use of Gaussian PDFs is
typically justified on “holy grounds” such as the centrahiti

Fig. 1. The Bayesian representation of knowledge. The tmifeDF @) theorem [5] or _the ma_X|mum-en_tropy_prlr?mple_ [6];_ the real
indicates complete uncertainty abaytwhile the sharp PDFc reflects a high reason for their use in many investigations is simply the
degree of certainty that the value ofis close to the position of the peak, ensuing mathematical tractability of the analysis, andafen

z*. The broad PDFH) is an intermediate case: the position of the peak may. . : ; : . . .
still be taken as a reasonable guessafphowever, there is now considerablea%ls is done without careful attention being paid to the témi

uncertainty about this estimate, signified by the much raspead of the Of validity of this assumption. It is clear from (8), howeyer
distribution around its peak. that in the case of a nonlinear forward model, the assumption

*

T T



of Gaussianity doesot yield a simple {.e., quadratic) cost the cost function is also appropriately small. Thus, we alecl
function. There is therefore no reason to shy away from usiegnvergence when
non-Gaussian likelihood functions and priors that may more

Tg-1
faithfully represent the experimental reality. (X1 = Xk) " 87 (Rhr —xx) <N (14)
and
C. Optimization approach |J(xk41) — J(xk)| < M. (15)

The assumption of moderate nonlinearity suggests that on@vhile the actual evaluation of the Hessian is generally
can linearize the forward model around an “operating poingivoided by all methods as it is deemed too costly computa-

X as tionally, the use of accurate gradient information is exiesy
£(x) ~ f(x0) + K(x0) (x — x0), (9) crucial for successful optimization. Traditionally, trecdbians
(10) have been evaluated by differentiating the forward ehod
where theM x N Jacobian matrix is defined as approximately as
8fm b'e o fm(zn"‘Axn) _fm(zn)
K(x) = Vf(x) = { azi )} : (10) Kimn = Az, : (16)

This not only requires (at leasty V additional evaluations of
the forward model, which is very prohibitive for the typidal
Froy _ m=1 (e ) T w1 andN values encountered in ES data analysis, but also leads to
VI(x) =87 (x-§) —K(x)" = (11) rather inaccurate Jacobians due to the inevitable ariniéss
- [y — f(x0) — K(xo) (x — %0) — 9], in the choice of the “external” perturbation siz&s,,. It is

here J(x) is the locallv i ved t function. Setting thi being recognized by more and more investigators that thé mos
where (x) IS the locally Tinearized cost tunction. Seting iS,iqjent way to generate Jacobians is by an “internal” pertu
expression td and solving forx yields the local minimum

X . . . bation of the forward model. In this approach, straightfamv
which may then be used as a new operating peintiterating

thi f btain the “undate” i application of the chain rule of differentiation permitseon
IS procedure, we obtain the “update™ equation for a relatively minor computational overhead, to calcalat

) Jacobians within the same scheme used for the forward-model
o Tl calculation. In fact, this consideration is so critical fibre
) [‘= (xx —&) — K 27 (y —fi — 5)J’ retrieval method that the numerical approach for forward-
_ _ model implementation should be chosen on the basis of the
\]’c\m?tref’“.: f(};’“) andK;; = K(x) for k = OE)I’ - At the availability of a thorough internal perturbation analys@ur
eration, the covariance matrix Is given by method of choice for forward model and Jacobian evaluations
is described irgllI-C.

Substituting (9) into (8) and taking the gradient, we find

Xpe1 = x5 — (Kf BT K +B7)7! (12

Sk = (K Z7'K; +E71)7L (13)
_ ) ) D. Retrieval framework for Earth-Science data analysis
Note that the covariance updates are not iterative, but are

simply generated along the way in accordance with (5). Forlt i_s of interest to generalize (2) to a practical situatidnex\e
convenience, the iteration may be started with the initimgy Multiple measurementg, (each of lengthM,) are available

xo = &; at convergence, we have ~ A(x*,S*), assuming for processing, and multiple unknowrs (each of lengthVy)

that S* does not extend beyond the neighborhood of loc8® wished to be retrieved. In ES retrieval problems, thexid
linearity aroundx*. may run over atmospheric temperature, pressure, gasasgsclo

The above optimization scheme constitutes fBauss— and aerosols, surface temperature, albedo, and bi-dinedti

Newton method[2]; it makes partial use of the Hessianreﬂectance distributioretc, with the corresponding state vec-
information. and mz;\y therefore be regarded as of “ofdk‘r‘ tors representing suitable discrete parameterizationtheaxfe
Despite the regularizing effect of the prior, the iteratistep physical variables. Meanwhllg, the index may run over
size — the second term on the right-hand side of (12) measurements obtained by different (remote andiositu)

may still be large enough to pusty,, outside of the local !nstruments, or over multiple measurements mgde by a single
instrument (or both). In any case, the essential requiréemen

neighborhood ofx; within which (9) holds. This violates . . . .
the basic premise of the method, and the iteration becorﬁ%sthat the various measurements be nearly simultaneous in

unstable. We avert this situation by adaptively penalizange Space and time, such that the underlying physical state Of
steps via the_evenberg—Marquardt strategf7]. the atmosphere and the surface may be assumed to remain

Finally, a convergence criterion is needed so that (12) lilsn(:han(‘:]m during the span of these measurerfents.

not iteratedad infinitum The logical choice is t0 MONItOr 21 the case of hyper-spectral image processing, there geifisant
the step size at each iteration; of course, the step sizeshénefits to be accrued from a spatially-varying represiemteor the state
different directions must be scaled appropriately to me\m vectors; however, limited space does not permit furthebagiation here.
. . Allowing for full spatio-temporal evolution of the stateaters over the course
sensible measure of Change between consecutive Update%f hk experiment takes us into the vast realm of global dssaralation and

addition, it is wise to make sure that the associated chamgecirculation models [8], into which we also will not venture.



For compactness, we collect the various measurement and Since parametric uncertainties can be assessed along

state vectors into set¥ = {y,} (data) andX = {x;} with the best estimates, data acquisition may be steered
(unknowns). Based on the above description, it is realistic automatically, and ceased when sufficient confidence in
expect that the different measurement vectors will be nmiytua the inferred model parameters is attained, thus preventing
statistically independent, and likewise for the differetate the data volume from growing unnecessarily.

vectors. Thus, the appropriate generalization of (2) is « The Bayesian approach thus utilizes the solution of the
YIX) p( conceptually easier forward modeling problem to solve

p(X]Y) = He va|X) Hp Xp), the more difficult, and arguably more interesting, inverse
p(Y) inference problem; domain knowledge and expertise enter

(17) naturally into the solution through the priors and the

and with Gaussian likelihoods and priors, the correspandin  |ikelihood functions.
cost function becomes
I1l. FORWARD MODELS

JX) = I In (Y|X) Inp (X) (18) Consider an atmosphere composed of a mixture of gases
=3 Z éa]T 3.t Ve — fu(X) — 84] inde_xed byi and bounded from _below py a (partially)_ re-
flecting surface. We shall take this medium to be static and
1 Z T =—1 (xo — £,) + C’ plane-parallel i(e., a horizontally homogeneous slab) within
2 > b b Sb ' the spatio-temporal span of our measurements. The physical

state of the medium is then fully characterized by the vattic
We can now proceed with the Gauss—Newton approach towgjidfiles of temperaturel’(z), pressureP(z), and molecu-
minimizing this full cost function to obtain optimal estites |ar volume number densitiedV;(z), along with a spectral
and error bars for the unknown quantities. This, then, ¢onsfeflectance functiorp();s;s') for the surface. We wish to
tutes theBayESian calculus of inference- a framework for retrieve these physica| properties from remote measuresmen
probabilistic reasoning within which data from any numbegf the spectral intensity (or radiancé(r, s).
heterogeneous sources are systematically combined with anjt must be acknowledged, however, that during the act of
type of prior information to solve the retrieval problemv@n  measuring a physical signal, a sensor inevitably impasts it
the ongoing explosion in ES data volume, this appears tode #iyn “signature” by altering the signal properties in some
only approach that can efficiently assimilate and meanihygfu ynique fashion; in this sense, the measurement deviceiconst
analyze the diverse information gathered by the distrﬂbut%tes an integra' part of any physica' data-collection Bgscln
agents of a sensor web. Several points may be madeojifjer to achieve the most accurate retrieval of the atmaiphe
connection with this formulation: and surface properties of interest, it is therefore necgdsa

« In the Bayesian setting, the underlying physical mod#icorporate a detailed physical model of the sensor in serie
of the observed phenomenon, amok the data collected with one for the atmosphere—surface system. We thus require
from it, is regarded as the item of central importancéywo forward models in our data-analysis effort.
working in this “model space” enables seamless inte-
gration of data from any number af situ and remote A. The sensor
(ground as well as orbital) sensors. We specialize to an hyper-spectral instrument that samples

« Measurements and priors with lesser uncertainty, as quéle radiation spectrum uniformly over some wavelength eang
tified by the matriceE, andZ,, will play a proportion-  (Amin, Amax) With @ resolution (or channel spacing)A and a
ately greater role in determining the position of the globdptal number of channels (or band®) = (Amax — Amin) /AA.3
minimum of J (i.e., the optimal estimate). With the sensor at positianand pointing in direction-n, the

« Naturally, different measuremengs, will have varying output of them™ channel may be written in the form
sensitivities to different states; this will be reflected
(to first order) by theM, x ", N, Jacobian matrices ﬂm/df - )\)/2 x(n-s) Ix(r,s; X) dQdA
K,(X) = V£, (X). "

. On((a ()joes nog n)eed a separate forward model for each + om o+ - (19)
data stream, but only for eadfipe of measurement; for  The instrument “slit function () has been assumed iden-
instance, if all the measurements are made by radiatitcal for all channels, and the “antenna pattex{f2) has been
sensors, then a single radiative-transfer calculation mtaken independent of wavelength, though these can obyiousl
suffice as the forward model for the entire data set. be kept more general; typically, these functions are known

« Individual measurements contribute to the cost functidnom calibration experiments. On the other hang,, G,
additively in (18), which allows for the processing of,,, andn,, respectively denote the channel center wavelength
“streaming” data (as opposed to batch processing of the
entire data set after it has been acquired); with each neWThe term “hyper-spectral” implies thatl is of the order of a few hundred

r more; however, the ensuing discussion applies equalljtevmulti-spectral
measurement, the optimal estimate and its covariance

Q@snruments with a few to a few tens of (not necessarily gotuis) channels,
be updated through (12) and (13). as well as to (essentially single-channel) active instmtsie



B. The atmosphere—surface system

In a plane-parallel atmosphere, the equatiosaér radia-
tive transfer for the spectral intensity is [10]-[12]

cos 6 oL, = —k(v;2) I,(2,0,0) + o(v; 2) (20)

available data 0z
2w T
[ p0.66.6) 108 sine e ag,
0 0

7 ; whered and ¢ are the usual polar and azimuth angles (see
upwelling " Figure 3), k(v;2) = o(v;2) + a(v;z), with &, o, and «

—— [ "8 respectively denoting the extinction, scattering, ancgiigon

direct wave clouds

coefficients of the medium, and we switched to the frequency
molecular scattering multiple scattering variablev = ¢/\ more commonly used in spectroscopy. For a
molecular atmosphere, the scattering phase function engiv
by p(®) = 1o (1 + cos®©), where® denotes the (solid)
angle of scattering between directiof®, ¢') and (¢, ¢). The

Fig. 2. The composite forward problem. The solar beam wittcspl flux — Scattering and extinction coefficients, meanwhile, aremgin

density Ff is incident on the terrestrial atmosphere composed of gas§grms of the molecular concentrations as
clouds, and aerosols; in this paper, we consider an atmospbenposed only

of molecules. Through absorption, scattering, and reflacthe atmospheric o(v; 2) Csea(V)
and surface constituents impart their spectral signatonés the up-welling K,(l/ z) = ZNi(z) C (1/) .
spectral intensity;f. This is, in turn, detected by an hyper-spectral instrument ’ i ext

on a satellite platform, which produces the data stram }. The red and . . .

blue double arrows respectively designate the atmospheraee and the FOr @ molecule irradiated by an unpolarized plane wave, the

surface

(21)

instrument forward models. (The spectra are stylized fastfation.) scattering and extinction cross sections are given by |[][5]|-
k4
Csca(v) = Gme2 |7Ti(V)|2a (22)
(determined by the optics), gain (set by the electronidiget k 0
and noise. Specificallyy,, are the mean of the optical and Cext(v) = — S mi(v), (23)

electrical noise sources in the sensor, such as the phddio €o

dark noise and the (optical) background and inter-pixes&ro where k. = 27v/c, ¢ and ¢, are the speed of light and
talk noise. Meanwhiley,, model the fluctuations associatedhe dielectric permittivityin vacug and m;(v) denotes the
with these noise sources, as well as the thermal noise of thelecular polarizability of the™ gas.

electronics; they are taken to be zero-mean Gaussian randorfihe problem description is made complete by the specifica-
variables with covarianc&,,,,,x = £(nm nm’). Together,d,, tion of boundary conditions that the intensity must obeyhat t
andn,, comprise the measurement eregy of §ll. We assume

that all these sensor parameters have also been adequatelv

characterized via suitable calibration experiments ptor z

instrument deployment; if this is not the case, they can |
arranged into an instrument state veckgys and included in
the setX of unknowns to be retrieved from data.

Finally, the spectral intensity,(r,s; X) incident on the
sensor is a nontrivial function of the atmospheric and sarfa
states comprising; this part of the forward model will be

developed in§lll-B. The first term in (19) thus constitutes S
the “composite” (e, atmosphere—surface plus instrument
forward modelf,,(X) of §ll (see Figure 2).

The somewhat phenomenological equation (19) is the ty 4

of channel model commonly employed in the literature; hov
ever, a rigorous signal/noise analysis of a generic elemtic
sensor reveals that this is merely an approximation to the f
probabilistic model of such an instrument [9]. As is echoed
many recent technical meetings, currently one of the bigges
sources of uncertainty in remote sensing is the poor sen§ir 3. The geometry of the radiative transfer problea). An arbitrary
calibration standards and practices. It is therefore iaghay 12 2 hestionr propagatng n dhecton, () Fhe nccent an refctee
that one verifies the validity of thierm of (19) before using p(v;0,0;0',¢'). (c) The incident solar ray. For propagation into the lower
it as the basis of any calibration and/or retrieval algongh  hemisphere, the polar angles are measured from-theis.




top of the atmosphere: (= H) and at the surfacez(= 0): C. Computational details

I7(H,p,¢) = FO 6(u — pu®) 6(¢ — ¢°), (24) The standard technique for solving (20) is tHescrete-
2n ordinate methodof Chandrasekhar[10], [12]; the widely
I (0, u, ¢ / / TR TG (25) wused DISORT code is a very clean and efficient numerical

implementation of this approach [17]. Here, the atmosplsere
L, (0,1, @) W' dp’ A, divided into L homogeneous layers; tii#& layer has its lower
where T/~ indicate up-/down-welling intensitie0®, ¢©) and upper boundaries at altitudgs ; and z;, and its optical
specify the direction of the incident solar beam= cosd, depth is defined as

pu = cosf’, and u® = cos§® (see Figure 3). In our work, 2
we have so far used théurucz modelfor the solar spectral n(v) = / (v; ) d¢. (32)
flux F9; satellite measurements & have recently become Bt

available and should be used to remove from data the influeridee choice for the layer boundaries— as well ag. itself — is
of solar variability. Meanwhile, (25) clearly demonstsatiae dictated by the available priors and measurements, théreeju
need for an accurate surface model even if one is interestedgtrievals, and computational considerations associatitu
retrieving only the atmospheric properties. When the sarfa the forward model. We choose to define the atmospheric state
not known or only poorly characterized, a suitable paraimetvariables at the layer boundaries, comprising e+ 1)-
model should be adopted fprand a corresponding state vectoglimensional state vectors
Xs,r added to the seX of unknowns. _ _ _
In the spectroscopy literature, the extinction coefficient xo={b=b(z)}, b=T,P N (33)
typicaIIy written in the form We use thel976 US Standard Atmospherfl2] profiles
Z Ni( Z Sii(2) FIvs vig(2), 363 (2)s 3 (2)], fS(::u'E;Ergr;g:E r:.eansfb, and an hyper-parametric Markovian
(26) Instead of (27), we prefer to work with an alternate (Fourier

where j is the resonance (or line) index, arfddenotes the transformed) version of the Voigt profile given by
gas extinction line shape. For a line centered at frequegcy L
with a collision-broadened widtfy and a motion-broadened v, %, %) :/

width 4, the Voigt profile is given by the convolution integral__ . - - .
[11], [12] This enables the use of efficient FFT routines, as well as

. - (w7 simplifying the evaluation of forward-model Jacobians.eUs
FWive,4,7) = L — / e dw of (34) and (26) in (32) leads to

oo

ei27r(ufuo)t*27"'7|t|7(”ﬁt)2 dt. (34)

_71-\/7_7’7 —o0 (1/—1/0—&))2—‘1-:)/2 (27) o) z
— . 2wt

consisting in the folding of Lorentzian and Gaussian line m(v) = [m l/Zl_l (t:€) dC] ¢ dt, (35)
shapes, respectively dictated by the impact theory and the
Doppler effect. where

The line center, line strength, and collision- and motion-g ¢, ») ZN ZS’J (36)
broadened line widths in (26) are respectively given by [16]

vij = 1/,-]- + 51~*j (28) - exp {—127”/,-]-( )t — 2m4,;(2)|t] — [7r’y,-]-(z)t]2} .

S. — g ™ mi hch 1 1 (29) For the vertical integration in (35), we do away with the
IR ANE P ks T T widely-used hydrostatic law and the van de Hulst—Curtis—
Godson scaling approximation [11], [12]. Instead, we expan

T\ ™
Fij = <?) [4 4P+ (35 —475) Niks T (30) ®(t;z) overzi_; <z <z as
0
s Vi [2NaksT a1 B(t;2) = B(t; 21-1) [T(z) = Ti-a]  (37)
Yij 7 (31) aT |,
C i -1
where thez dependence has been suppressed for convenience, + 3_‘1’ [P(2) — Pi_i]
and* indicates quantities whose values are obtained from the oP|, .
HITRAN database The remaining symbols are-: Planck’s o
constantkg: Boltzmann's constantN,: Avogadro’s number, + Z AN [Ni(2) — Ni(l—l)]'
tlzi—a

and M;: molecular mass of thé" gas.
The equations in this subsection indicate the complicat@the partial derivatives appearing above may be evaluatad an
manner in which the atmospheric and surface properties Igtically from (36) with (28)-(31). The vertical profiles@athen
fluence the spectral intensity measured by the sensor; thiitsby cubic splines [7] — arO(L) operation — for which the
they collectively comprise the forward physics model foe thvertical integrals are also evaluated off-line. A highlgaiate,
atmosphere—surface system. and aesthetically pleasing, representation of the atnes&ph



states is thus achieved for a minor computational overheaastruments at this site will supply us with accurate “grdun
An FFT operation completes the evaluationpf truth” for validating our retrievals, as well as providing a

DISORT is then fed with the optical depths of the layersgeal setting for demonstrating the power of our framewank f
the solar spectral flux, and the surface spectral reflectanpeocessing heterogeneous data. We thus hope to achieve, for
and returns the spectral intensify(z, 6, ¢) at user-specified the first time, the simultaneous and highly-accurate nedtie
altitudes and angles. This output is finally used in (19) tof atmospheriand surface properties from a single data set.
complete the forward-model evaluation.

Recently, Spurr has carried out an internal perturbation
analysis of the discrete ordinate method [18], which has The author would like to thank Dr K. R. Wheeler for his
led to the LIDORT code that is now available. Althoughnvitation to participate in this project and for his guidanin
still somewhat rough around the edges, LIDORT outperforni$idging the gap between theory and data, and Dr J. C. Cough-
DISORT by nearly a factor o0 in intensity calculations, lan for his financial support of this work through the Intgdint
and can also be used to generate forward-model Jacobid?@ta Understanding Project of the NASA CICT Program. The
Here, one uses straightforward chain-rule differentiatan Programming support from Dr N. Lvov and L. R. McFarland
the expressions iflll-B to feed LIDORT with the derivatives of QSS, Inc., is gratefully acknowledged.
of the layer optical depths; with respect to the state vectors
xp. (It is possible to perturb the model with respect to the _ , o
surface parameters as well.) We are presently explorirg thil] S. Twomey, Introduction to the Mathematics of Inversion in Remote

. . ) . 7 Sensing and Indirect Measurememsnsterdam: Elsevier, 1977.
tool, along with automatic code differentiators, in lieuopfide [2] C. D. Rodgers,Inverse Methods for Atmospheric Sounding — Theory

ACKNOWLEDGMENTS

REFERENCES

external perturbationa la (16). and Practice Singapore: World Scientific, 2000.
[3] J. M. Bernardo and A. F. M. SmitlBayesian TheoryNew York: Wiley,
V. SUMMARY AND OUTLOOK 1994.

] . . o [4] D. S. Sivia,Data Analysis — A Bayesian TutorjaDxford, UK: Oxford
All the ingredients are thus in place for bringing the ~ university Press, 1996.

Bayesian inference framework described§lirD to bear on [5] A. Papoulis,Probability, Random Variables, and Stochastic Processes

, . 39 ed., New York: McGraw-Hill, 1991.
the atmospheric and surface remote sensing problem. Natte thy, £ 175 nes probability Theory — The Logic of Scienc€ambridge,

the popular approach of building pre-computed look-updsbl UK: Cambridge University Press, UK, 2003.
has been abandoned in favor of retrieving all the key physic&ﬂ W. H. Press, S. Teukolsky, W. T. Vetterling, and B. Flanyn&lumerical

. . . Recipes in C — The Art of Scientific Computir®j¢ ed., Cambridge,
parameters directly from the data. This also liberates o fr UK: Cambridge University Press, 1992.

the limitations and inaccuracies of standard computationgs] R. Daley, Atmospheric Data AnalysisCambridge, UK: Cambridge
techniques such as the correlatedrethod [11], [12]. University Press, UK, 1991.

. . ] D. A. Timugin, “A Bayesian approach to sensor chardesgion,” in
At present, the only inexact aspect of our physical modéf’ Proc. IGARSSToulouse, France, July 2003,

is the scalar treatment of the radiation field. It has beer-welo] S. ChandrasekhaRadiative TransferNew York: Dover, 1960.
established in the radiative-transfer literature thatgpation [11] R. M. Goody and Y. L. YungAtmospheric Radiation — Theoretical

. S Basis 2" ed., New York: Oxford University Press, 1989.
effects may accumulate to make a sizable contribution G. E. Thomas and K. StamneRadiative Transfer in the Atmosphere

the scalar intensityl even in a pure Rayleigh-scattering = and OceanCambridge, UK: Cambridge University Press, 1999.
atmosphere; with the addition of clouds, aerosols, andlddta [13] g- C. Vfggfe HulstLight Scattering by Small ParticlesNew York:
surface effects into the forward physics, it becomes intpera pa oven ~ve

. =0 ) C. F. Bohren and D. R. HuffmarAbsorption and Scattering of Light
that we employ a full vectorial model of the radiation fiel by Small ParticlesNew York: Wiley, 1983.

in terms of the Stokes vectdr [10]. A vectorial version of [15] J. D. JacksonClassical Electrodynamics3® ed., New York: Wiley,
DISORT has been developed recently [19], and efforts afg 1999.

. . . ] L. S. Rothmaret al, “The HITRAN molecular spectroscopic database:
under way to construct a corresponding vectorial version of * edition of 2000 including updates through 2001,"Quant. Spectrosc.
LIDORT; these improvements will be incorporated into ou[rl7] Ea?;?t- TfanSfSe”g'-fZ P%V5;l‘\1/‘_‘: NOVSmbEféDEC%mbef 233%@

: . Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweévajrieri-
framew_ork n _the near fu_ture' o cally stable algorithm for discrete-ordinate-method a#ide transfer in
Our immediate focus is on the application of our compu-  muitiple scattering and emitting layered mediappl. Opt, vol. 27, pp.

tational framework to the processing of hyper-spectralgesa 2502-2509, June 1988.

. . . . [18] R.J.D. Spurr, T. P. Kurosu, and K. V. Chance, “A lineadzliscrete or-
from the Hyperion instrument flying on Earth Observing dinate radiative transfer model for atmospheric remotesisg retrieval,”

One [20]. For this task, we will be using a spatial random-  J. Quant. Spectrosc. Radiat. Transfeol. 68, pp. 689-735, March 2001.
field model for the atmospheric states, enabling the use of!8 F. M. Schulz, K. Stamnes, and F. Weng, “VDISORT: An imyed and

. . . generalized discrete ordinate method for polarized (vgatadiative
Kalman filter for processing the pixels as separate (cdedja transfer” J. Quant. Spectrosc. Radiat. Transfeol. 61, pp. 105-122,

measurements. We are particularly interested in Hyperion January 1999.

images gathered over the Southern Great Plains site of the &% ﬂ;: ESE ?ea”mém al, "F':ypertiog a S_;;Ci-lbasedlilnggglirigsspfctrogﬁoec}gh"
) . s g rans. Geoscl. Remote sens . , PP- - , June .

Department of Energy’s Atmospheric Radiation Measur?me[%] T. P. Ackerman and G. M. Stokes, “The atmospheric raaliatneasure-

Program [21]. The presence of a large number and variety of ment program,Physics Todaypp. 38-44, January 2003.



