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Abstract—Various instruments are used to create images of and the total number of time samples, respectively. In this
the Earth and other objects in the universe in a diverse set notation, the spatial coordinate represents the coordinates
of wavelength bands with the aim of understanding natural (or index) of a measurement at a particular location in the
phenomenon. These instruments are sometimes built in a phased . ) . . s
approach, with some measurement capabilities being added field of view and is not in any way related to the d|§tr|buted
in later phasesl In other cases, there may not be a p|anned nature of the data. centers. Conceptually, the equat|0n abOVe
increase in measurement capability, but technology may mature describes a set af (A x T') matrices. In the event that the
to the point that it offers new measurement capabilities that spatial coordinate describes adjacent pixels, it is useful to think

were not available before. In still other cases, detailed spectral of Equation 1 as describing a time series of data cubes (spectral
measurements may be too costly to perform on a large sample. . .
images) of sizer x n x A.

Thus, lower resolution instruments with lower associated cost | . . L .
may be used to take the majority of measurements. Higher ~ Consider a situation where one is given a serowhich

resolution instruments, with a higher associated cost may be takes k spectral measurements in wavelength baBds =
used to take only a small fraction of the measurements in a {)\; )\, ... \;} at timet;. Suppose that we have another

given area. Many applied science questions that are relevant 10 gangorS, which has a set of spectral measurements taken
the remote sensing community need to be addressed by analyzing ttimet, By — (A ) A\ A\ A\ that

enormous amounts of data that were generated from instruments &t UMe€t2, B = {1 A2, Ak, Ak, k2 ees ’f+l}_ &
with disparate measurement capability. This paper addresses this Partially overlaps the spectral features containedBin in

problem by demonstrating methods to produce high accuracy terms of power in the spectral bands. Thus, we would have
estimates of spectra with an associated measure of uncertainty B = B; \ By = {\py1, \iyo, ..., ey} representing the

from data that is perhaps nonlinearly correlated with the spectra. common spectral measurements. Note that these measurements
We call this type of an estimator a Virtual Sensor because it v in thei In this situati - fi
predicts, with a measure of uncertainty, unmeasured spectral are common only In t-.:‘Ir.power n : IS situation, we Investi-
phenomenon. gate the problem of building an estimafo(Z(B)) that best
approximates the joint distributioR(Z(B)|Z(B1)). Thus, we

Index Terms— Data Mining, Neural Networks, Support Vector )
would have:

Machine, Kernel Methods, Remote Sensing.
I'(Z(B)) ~ P(Z(B)|Z(By1)) )

. INTRODUCTION The value of building an estimator fd? is clear particularly
HIS paper describes the development of data minirig situations where one sensor has been in operation for a
algorithms that learn to estimate unobserved spectra franuch longer period of time than another. The first sensor may
remote sensing data. For purposes of the discussion presehtgk fewer spectral channels in which measurements are taken
here, we will model the data as matrices of time serie®mpared to the newer sensor. However, it may be of scientific
(following the notation in [1]). The spatiotemporal randonvalue to be able to estimate what the spectral measurements
function Z(u, A\, t) is modelled as a finite number of spa- in wavelengthsB would have been had the first sensor had
tially correlated time series with the following representationhe measurement capability.
The joint distribution given byP(Z(B)|Z(B;)) above
contains all necessary information to recover the underlying
Z(u, A1) = [Za(A1)] @ structure captured by the sensfr. If perfect reconstruction of
= [Zuy 1), Zuy (N 8), ety Zuy (A 1)]T this joint distribution were possible, we would no longer need
In Equation 1,u represents the spatial coordinaterepre- sensorS, because all relevant information could be generated

sents the vector of measured wavelength(s), anepresents 70 the smaller subset of spectral measureméhtand the
time. The superscripf indicates the transpose operator. |P§t!matorf. Of course, such e,St,'mat,'on 1S qften extremely
multiple wavelengths are measured, then eZcfs actually a difficult because there is not sufﬁugnt_mfo.rmanon in t.he bands
matrix, and the functiorZ(u, A, ¢) represents a data cube of31 1 perfectly reconstruct the distribution. Also, in many
size(n x A x T'), where these symbols represent the number opses, the joint distribution cannot be modelled properly using

spatial locations, the total number of measured Wavelengtﬂé,rametric representations of the probability distribution since
that may require a significant amount of domain knowledge
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task. New data mining algorithms are developed based on
:"V:PWW?SM& these results. Because of the large amounts of AVHRR and
ey momens \ MODIS data available, the algorithm will focus development
i on producing high-quality results efficiently and quickly with
! principled estimates of uncertainty. Clearly, the construction
. of a Virtual Sensor has two key components. The first is
I constructing the model that generates the Virtual Sensor data

Spectral measurements.
from Sensor S2 (dotted lines)

Power, Z(B)
>

IS
T

given the known data. This requires training data—data for
which there are true sensor values corresponding to the values
of the Virtual Sensor. In this example, we would use MODIS
images to generate a model that predicts MODIS channel 6 as
s a function of the other MODIS channels that are also available
in AVHRR. Only channels common to MODIS and AVHRR

Fig. 1. This figure helps illustrate the need for a Virtual Sensor. We ha$@" be used because of the second component of virtual sensor
spectral measurements from two sensSrsand Ss, (solid and dotted lines, construction: generating the virtual sensor values. The learned

respectively). We wish to estimate the output of ser$pfor a wavelength model has to be used to generate the AVHRR virtual channel
where there is no actual measurement from the sensor. Note that some sensor

measurements overlap perfectly, as in the case of waveleagtrand in other as a function of the other AVHRR channels.
cases, such as wavelength = 1, there is some overlap in the measurementsSome preliminary studies were made to check the feasibility
.of the Virtual Sensor using some MODIS and AVHRR images

us to model the second moment of the distribution as well: . . X )
acquired over the Greenland ice sheet. In particular, supervised
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u(B) = /F(B)BdB learning methods (e.g., neural networks) are capable of using
X MODIS data to construct a model that can predict MODIS

?(B) = /[F(B) — u(B)]*’BdB channel 6 as a function of other MODIS channels. This model

can then take an AVHRR image as input and can construct the

We use the functionl’ in the above computations as arvirtual channel 6.
estimate of the (unknown) joint distributioR. Several com-
putational problems as well as problems due to the underlying I
physical measurement process arise when we attempt to es-
timateI". We begin by describing some of the problems that Intensification of global warming in recent decades has
may arise due to the physical aspects of the two measurememitised a rise of interest in year-to-year and decadal-scale
devices and then discuss computational considerations. climate variability in the Polar Regions. This is because
Figure 1 gives a schematic view of the problem. The solitiese regions are believed to be one of the most sensitive
and dotted lines correspond to sensSrsandS, respectively. and vulnerable regions to climatic changes. The enhanced
A Virtual Sensor can be built when there are some overlappimglnerability of the Polar Regions is believed to result from
sensor measurements as depicted in the figure. Notice tbaiteral positive feedbacks, including the temperature-albedo-
if there are no overlapping sensor measurements, we arelt feedback and the cloud-radiation feedback. Recent ob-
unable to build an estimator. In real-world problems, songervations of record regional anomalies in ice extent, thinning
measurements may overlap perfectly, while others haveotithe margins of the Greenland ice sheet, and reduction in
partial overlap. Generally speaking the measurements fréhe northern hemispheric snow cover, may reflect the effect of
SensorS; are not available at all wavelength locations. these feedbacks. Remote sensing products now provide spa-
In the event that the spectral measurements are perfeditfly and temporally continuous and consistent information on
overlapping for allk wavelength bands and the measuremengsveral polar geophysical variables over nearly three decades.
for sensorS; are not available at the remainidg bands, This period is sufficiently long enough to permit evaluation of
the estimation process is more straightforward. When parttadw several cryospheric variables change in phase with each
overlap occurs between two sensors for a given wavelengtither and with the atmosphere and can help to improve our
calculations need to be performed to estimate the amowmderstanding of the processes in the coupled land-ice-ocean-
of power that would have been measured in the overlappiagmosphere climate system. Cloud detection particularly over
bands. This can be done using interpolation methods. snow- and ice-covered surfaces is difficult using sensors such
Situations such as this often arise in practice. For exampgle AVHRR. This is because of the lack of spectral contrast
consider the relationship between the AVHRR (Advanced Vebetween clouds and snow in the channels flown on the earlier
High Resolution Radiometer) and the MODIS (Moderate Re8VHRR/2 sensors. Snow and clouds are both highly reflective
olution Imaging Spectroradiometer) instruments. Specifically the visible wavelengths and often show little contrast in the
we show how to create a so-called Virtual Sensor to moddélermal infrared.
MODIS Channel 6 as a function of other MODIS channels The AVHRR Polar Pathfinder Product (APP) consists of
that are also available in AVHRR. This way, the created modeVice daily gridded (at 1.25 and 5km spatial resolution) surface
can be used to construct the virtual AVHRR channel 6 adbedo and temperature from 1981 to 2000. A cloud mask
a function of the other channels available in AVHRR. Dataccompanies this product but has been found to be inadequate,
mining methods are tested and their results examined for tharticularly over the ice sheets (Stroeve [2001]). The 1.6

V IRTUAL SENSORS FORCRYOSPHEREANALYSIS
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micron channel on the MODIS instrument as well as the Linear Correlation Matrix
AVHRR/3 sensor can significantly improve the ability to detect
clouds over snow and ice. Therefore, by developing a virtual
sensor to model the MODIS 1.6 micron channel as a function
of the AVHRR/2 channels, we can improve the cloud mask
in the APP product, and subsequently improve the retrievals
of surface temperature and albedo in the product. In doing
so we will be able to improve the accuracy in documenting
seasonal and inter-annual variations in snow, ice sheet and sea
ice conditions since 1981.

1 2 3 4 5 6 7
MODIS Channel #

MODIS Channel #

IIl. CREATING A VIRTUAL SENSOR 6

In this section we outline the procedure for creating a
Virtual Sensor. At minimum, we assume that for senSpwe
have measurements; (B1) from one image, and for another
sensorS, we assume that we have another im&géB.,). The
procedure for creating a Virtual Sensor is as follows, assuming
that we need to build a predictor for chanmgl, ;:

Mutual Information Matrix

1) Divide the data setZ»(B,) into a training set and a B =
test set. ; ;
=3 L
2) Find parameters 6 that minimize the oy
squared error  (or an(2)ther suitable  metric) % B @
[E[(Z2(B1),0)] — Z2(br+1)] ™ 5 S
3) Apply T" to the data from sensaf; to generate an %) B =
estimate ofE[['(Z;(bg+1),6)]. This is the step where o
the estimation of the unknown spectral contribution = - ]
occurs.
oo @l
4) Evaluate the results based on science based metrics and 4 5 6 7

other information known about the image.
The procedure described above is standard in the data mining

literature. From the _remOte sensing pe_rspective, itis interestifg 2. The upper panel of this figure shows the linear correlation between the
to see the potentially systematic differences between tiirst seven channels of the MODIS instrument for one point in time. The size

performance of the estimator on data from sensors 1 and Qf the square indicates the degree of linear correlation. Green color indicates
a positive correlation, and red color indicates a negative correlation. Notice

Note that this procedure will only work if sufficient in-ihat channel 6, which is a channel that we will try to emulate using a Virtual
formation exists to predictZ(B) given dataZ(B;). One Sensor, has a relatively weak correlation with the other channels. The lower

simple procedure for determining this is to look at the line nel indicates the mutual information between the same MODIS channels.
tice that for this nonlinear measure of information, channel 6 has more

correlation _between the 5_peCtra- The TEOP panel Of Figurerefationship with the other channels, thus giving hope that a nonlinear model
shows the inter-channel linear correlation for the first sevenuld be built to predict channel 6.

c_hannels of MODIS data. Larggr squares |nd_|cate stronger_l_he next section describes three estimation methods that
linear correlation. Red squares indicate negative correlation

- " . we have used to build a Virtual Sensor: a feed-forward
and green squares indicate positive correlation. The lower :

. o ; neural network (also called a multilayer perceptron, (MLP)), a
panel in this figure shows the results of computing the mig

tual information between the pairs of channels. The mutuBFpp.ort Vector Machine (SVM), and an SVM with a Mixture
. . . L i ensity Mercer Kernel.
information between two random variables is given by:

MODIS Channel #

N M (z1,;) IV. STANDARD DATA MINING METHODS
I(@,y) = Zzp(xi’yj)bg P(z)P(y;) ©) " There are many machine learning methods that have been
==t used in many different types of problems. We give a brief
This method gives a nonlinear measure of the relationshigview of the methods that we use in this paper.
between the channels. Again, the larger the square, the greatatfe first describe multilayer perceptrons, a type of neural
the degree of relationship. In the case described in this papetwork [Bishop, 1995]. The central idea of neural networks
we will be building models in order to predict Channel 6is to construct linear combinations of the inputs as derived
Notice that Channel 6 has small linear correlations with tHeatures, and then model the target as a nonlinear function of
other channels but moderate mutual information. these derived features. Neural networks are often depicted as
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(] ( {
{ { (]
1 ® 1 Fig. 4. Support Vector Machine for regression. The solid line is the line
fitted to the points (represented as circles). The dashed lines are a distance
inputs hidden outputs from the fitted line. The points within the dashed line are considered to have
units zero error by are-insensitive loss function.
Fig. 3. An example of a MultiLayer Perceptron (MLP). The return value of an output nodg is

a directed graph consisting of nodes and arcs. An example .
is shown in Figure 3. Each column of nodes is a layer. The vi=g Zw@')z'
leftmost layer is the input layer. The inputs of an example to / A
be classified are entered into the input layer. The second layer . . .
is the hidden layer and the third layer is the output layer where Z is the number of hidden units. The outputs are

Information flows from the input layer to the hidden IayeFIeSrly nlonl|rt1earkfunctlo?s .Of tdh? mfﬁu;s.t b that
and then to the output layer via a set of arcs (depicted .in eural networks are trained 1o it data by a process tha

figure 3 as arrows). Note that the nodes within a layer are Hgt_essentlally nonlinear regression. Given each entry in the

directly connected. In our example, every node in one lay Flmg%dataset,bthte netwt%rk? cur:(ent ?redlctllon is cdalfhulated.
is connected to every node in the next layer, but this is n | fi r:iertincerr e;v_\ll_(;end ri/ ;ilj/e lﬂﬁilonr:/arl\ﬁitm N tptre-
required in general. Also, a neural network can have more on 1S the error. -The derivative of this erro espect to

less than one hidden layer and can have any number of n08§§h tvvgzlght mdt_helnettwors IS c;:culated and the weights are
in each hidden layer, adjusted accordingly to reduce the error.

Each non-input node, its incoming arcs, and its single

outgoing arc constitute a neuron, which is the basic corfi- Support Vector Machines

putational element of a neural network. Each incoming arc Support Vector Machines for classification and regression
multiplies the value coming from its origin node by the weighire described in detail in?], but here we briefly describe
assigned to that arc and sends the result to the destinat®upport Vector Regression (SVR), which we use in this paper.
node. The destination node adds the values presented to ifiyreal-world problems, traditional linear regression cannot
all the incoming arcs, transforms it with a nonlinear activatiobe expected to fit a set of points perfectly (i.e., with zero
function (to be described later), and then sends the result alargor). For this reason, nonlinear regression is often used with
the outgoing arc. For example, the return value of a hiddee hope that a more powerful nonlinear model will achieve

i=1

nodez; in our example neural network is a better fit than a linear model. However, this power often
comes with two drawbacks. One is that the space of parameters

|A| of a nonlinear model (such as the multilayer perceptrons

zj=g walj)xz , discussed above) often have many local optima that are not

im1 globally optimal. Nonlinear regression algorithms such as

backpropagation for MLPs often find these local optima, which
where|A] is the number of input Unit&ﬂg? is the weight can result in a model that does not predict well on unseen data.
on the arc in theith layer of arcs that goes from unin the  The second drawback is that nonlinear model fitting is often
kth layer of nodes to unij in the next layer (Sﬂug}j) is the overly sensitive to the locations of the training points, so that
weight on the arc that goes from input unito hidden unit they overfit the training points and do not perform well on

Jj) andg is a nonlinear activation function. A commonly usecew data.

activation function is the sigmoid function: SVR addresses these problems in three ways. The first way
is to use are-insensitive loss function. If is the true response
1 and f(x) is the predicted response for the inpytthen the

9(a) 1+ exp(—a) loss function is
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nonlinear model in the original data space. Clearly, one needs
a practical way to deal with data that is mapped to such a
ly = f(x)le = max{0, [y — f(x)| — e} higph-dimensior¥a| space, which intuitively cooms impossible.
That is, if the error between the true response and th®wever, one is able to do this using the kernel trick. By
predicted response is less than some smahen the error on introducing Lagrange multipliers and obtaining the dual of
that point is considered to be zero. For example, in figure 4, tifee previous optimization problem (see [?] for the details),
solid line, which is the fitted line, is withia of all the points one obtains the following:
between the two dashed lines; therefore, the error is considered
to be zero for those points. K is set to the level of the m m
typical noise that one can expect in the response variablg, .thefﬂaximizey,a*en —c Z(a; + o) + Z(af — o)y
support vector regression is less likely to expend effort fitting =
the noise in the training data at the expense of generalization
performance, i.e., it is less likely to overfit. In particular, to -
estimate the linear regression i=1
subject to0 < «;, af

(af —ai)(af — aj)x; - x;

NE

<
Il

j=1
Cforallie{l,2,...,m}

IN

fx)=w-x+b and > (a; —a}) =0.
one solves the optimization problem of minimizing i=1
The resulting regression estimate is of the form

1 m
S+ 0y = )l
=1

(Ot: — Oél')Xi .Y + b.

&H
®
i
M

whereC' is a user-determined constant that determines the
tradeoff between the closeness of the fit (second term) and the
level of regularization (first term). Note that the inputs only appear as dot products in the above
The second way support vector regression addresses gbkition. Therefore, one can map the inputs into a very high or
above problems is to allow some error beyondor each even infinite dimensional spadé using a functiond : R¢ —
training point but minimize the total such error over all thé¢7 and the dot produc®(x;) - ®(x;) will still be a scalar.
points. In figure 4¢ is the additional error for one particularOf course,® would be too difficult to work with because
point. Form training points, defing; for i € {1,2,...,m} to of the high dimensionality of7. However, there existernel
be the slack variables that represent the additional allowalilectionsK (z;,z,) = ®(x;) - ®(x;) such thatk is practical
error if f(x;) —y; > € (i.e.,& = 0 otherwise) and to be the to work with even though th& induced by that¥ is not. For
additional error ify; — f(x;) > €. In that case, the optimization example, the Gaussian kernel
problem is the following:

—llxg ;|

1 m K(x;,x;) =€ 257
minimize §||w\|2 + CY (&+E)
i=1 gives rise to ad that is infinite-dimensional. However, we
subject to do not need to deal witl® or even know what it is because
fxi) -y < e+ & the ®’'s only appear as dot products, which can be replaced
o _ * by K. Therefore, the new regression estimate after mapping
Yi f(xz) < e+ 51 . .
& > 0 the inputs from the data space to the feature space is
forallie1,2,...,m. f(x) = Z(O‘: — ) K (x5,%;) + b.

i=1

Note that the above optimization problem will involve In summary, the Support Vector Machine allows us to fit a
minimizing the sum of the slack variables. Also, any pointsonlinear model to data without the local optima problem that
for which the error is already less thanwill end up with other procedures suffer from.
zero for their corresponding slack variables. Because this isThe kernel function can be viewed as a measure of similarity
a convex optimization problem, there is a unique globallgetween two data points. For example, with the Gaussian
optimal solution. kernel, the value increases as the distance between the pair of

The third way that SVR addresses the above problems ispoints decreases. There is significant current research attempt-
map the data from the original data space into a much highieg to determine which kernel functions are most appropriate
(possible infinite) dimensiondéature spacend calculate the for different types of problems. One such novel kernel function
support vector machine in that space. The idea is that the lingarthe Mixture Density Mercel Kernel (MDMK) which is
model in the feature space may correspond to a complicattidcussed in the next section.
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TABLE |

V. MIXTURE DENSITY MERCERKERNELS
AN EXAMPLE OF A TABLE

The idea of using probabilistic kernels was discussed by
Haussler in 1999 [2] where he observes thaKifx;,x;) > 0
N (Xi,Xj) ceX x X, andzxi ij K(Xi,Xj) =1thenK is
a probability distribution and is called a P-Kernel. He further
observed that the Gibbs kernél(x;,x;) = P(x;)P(x;) is
also an admissible kernel function. ,

Our idea is to use an ensemble of probabilistic mixtur 1 Mo P, (x;
models as a similarity measure. Two data points will have %(Xi’xj) Z(xi, %) Z Z
larger similarity if multiple models agree that they should be m=tem=1
placed in the same cluster or mode of the distribution. Those P (%1€ ) P (€1m)
points where there is disagreement will be given intermediate P (%)
similarity measures. The shapes of the underlying mixture dis- 1 M Cm P (i, X]em) P2 ()
tributions can significantly affect the similarity measurement m Z Z P (%, %;)
of the two points. Experimental results uphold this intuition m=1lecmn=1
and show that in regions where there is “no question” abolihe second step above is valid under the assumption that the
the membership of two points, the Mixture Density Kerndwo data points are independent and identically distributed.
behaves identically to a standard mixture model. Howevdrhis equation shows that the Mixture Density Kernel measures
in regions of the input space where there is disagreeméhé ratio of the probability that two points arise from the same
about the membership of two points, the behavior may Ineode, compared with the unconditional joint distribution. If
quite different than the standard model. Since each mixtuse simplify this equation further by assuming that the class
density model in the ensemble can be encoded with domadiistributions are uniform, the kernel tells us on average (across
knowledge by constructing informative priors, the Mixturensembles) the amount of information gained by knowing that
Density Mercer Kernel (MDMK) will also encode domaintwo points are drawn from the same mode in a mixture density.
knowledge. The MDMK is defined as follows:

One Two
Three || Four

equation of the Mixture Density Kernel. Thus, we have:

)Pm(cm)

lem .
Pm(xi)

VI. CONCLUSION

— T (x, , .
Kxixg) = @ (xi)®(xy) . The conclusion goes here.
M
1 m
T Z(xix) Z_l 2—1 P (€m i) P (€m ;) APPENDIX |
e em = PROOF OF THEFIRST ZONKLAR EQUATION
The feature space is thus defined explicitly as follows: Appendix one text goes here.
®(x;) o< [Pi(c=1[x;),Pi(c=2[x;),..., APPENDIX I

Pi(c=Clx;), Py(c = 1|x;),..., Pu(c=Clx;)]  Appendix two text goes here.

The first sum in the defining equation above sweeps through ACKNOWLEDGMENT
the M models in the ensemble, where each mixture model is
a Maximum A Posteriori estimator of the underlying density
trained by sampling (with replacement) the original data. We
will discuss how to design these estimators in the next section.
C,,, defines the number of mixtures in theth ensemble, and [1] P. C. Kyriakidis and A. G. Journel, “Geostatistical space-time models: A
e S the cluster (or mode) label assigned by the model. The {1l NarTeics Besiano, 35, 1o o.on, oot 10,
quantity Z(x;, x;) is a normalization such that (x;, x;) = 1 California Santa Cruz, Tech. Rep., 1999.
for all 4. The fact that the Mixture Density Kernel is a valid
kernel function arises directly from the definition.

The Mixture Density Kernel function can be interpreted as
follows. Suppose that we have a hard classification strategy,
where each data point is assigned to the most likely posterior
class distribution. In this case the kernel function counts the
number of times thé/ mixtures agree that two points shoul
be placed in the same cluster mode. In soft classification,
two data points are given an intermediate level of similarity =~ PLACE
(between 0 and 1) which will be less than or equal to the case 1970
where all models agree on their membership, in which case
the entry would be unity. Further interpretation of the kernel
function is possible by applying Bayes rule to the defining
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