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Abstract—The performance of distributed systems generally functions are aligned with the “world utility function”;
depend on the actions and interactions of a large number of and

independent components (e.g., agents, neurons). Such *collec- 5y qoes not require access to global information available
tives” are often Subject to communication restrictions, maklng it

difficult for the components to coordinate their actions to provide through a broe_ld communlcatlon netwqu, 1€, a_gent_s can
good system level performance. In this article we address that determine which actions are beneficial to their private

coordination problem and derive four agent utility functions that utilities with the limited information at their disposal).

make different tradeoffs between alignedness between agent and_l_h . dds with h oth din f .
system utilities and the signal-to-noise each agent encounters. | N€S€ ISSUes are at odds with each other and In fact in many

The results show that these utility functions outperform both cases it will be impossible for the agents to achieve high values
traditional methods and previous collective-based methods by of a private utilities which is “aligned” with the world utility.

up to 75% in systems with communication restrictions. In addition even if the world utility, computed with global
information, can be broadcast to all the agents, agents may
|. INTRODUCTION not be able to effectively use this information to select actions

Control and coordination in a large distributed system thitat Will be useful to them and to the overall system. In fact
needs to achieve a predetermined task is a challenging af@{ly obvious methods of combining local information with
of research. Many methods exist for coordinating the actioH%e WO”‘?' UI,'l'ty_Can actually cause redqced performance as
of the components (e.g., agents, neurons) of such a Sysf*eqmmumcatmn increases (Figure 1). This example shows the

when those components can fully communicate with oghavior of a system (described in detail in Section IV) where

another [6], [15], [21]. In this work we focus on solution tothe world utility is plotted with respect to the percentage of

this coordination problem based on “collectives” [17], [Zl]jclgents with which an agent can communicate.. Npte that in
some states of the system (e.g., low communication levels),

A collective is a large distributed system of interacting agen; i . : .
where there is a well-defined “world utility” function rating'Ncréasing the amount of information to which agents have ac-

the performance of the full system, and where each ag&FS has deleterious effects on the performance of the system.
is only concerned with maximizing its own “private utility” We will discuss the reasons for this paradox and show how

function [21]. However, in many problems, the presence §pme problems stemming from communication restrictions can

communication restrictions significantly complicates the CootP-e overcome by providing agents with carefully crafted private

dination problem [4], [8], [13]. Examples of such probleméItIIIty functions.

include controlling collections of rovers or constellations of The first step in creating a distributed system that can
satellites, and coordinating data routing across a netwdiffectively maximize world utility is to ensure that the agents
(because of such examples, we will refer to the components'§&k together. If the agents are not designed to work well
“agents” in this article). In each of those cases, an agent m4{fh each other, they may not learn their task properly,
only be able to directly communicate with a small number dRay interfere with each other’s ability to contribute to the
other agents. In addition, even if there are indirect methods #§erid utility, or simply perform useless repetitive work. Hand
sharing information (e.g., team formation), they may be costigiloring the agents’ private utility functions may offer a
and an agent may be unwilling to share, if doing so would husPlution, but generally, such systems: (i) have to be laboriously
its private utility (the use of teams to overcome communicatidhodeled; (i) provide “prittle” global performance;, (iii) are not
restrictions in multi-agent systems is discussed in [1]). In afdaptive” to changing environments; and (iv) generally do not

of these problems, the system designer faces the difficult tag@le well.
of providing the agents with a private utility that:
1By “aligned” we mean that actions that improve the private utility of an

1) allows Ff‘gents to work tO\_NardS the commor_1 goal g%ent will also improve the world utility. We will formalize this concept in
not against one another, i.e., the agents’ private utiligection I1.



1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Based on the work on collectives, we derive four different
agent utility functions that offer different levels of alignedness
and learnability for the agents’ private utility functions. Fur-
thermore, those utilities differ in whether they allow for global
broadcasts of the world utility (in some domains, though the
agents will not be able to engage in realtime agent to agent
communication, some global information can be broadcast at
various intervals). In Section Il, we summarize the theory of
collectives that is needed for this article. In Section Ill, we
describe the problem domain and derive the collective-based
‘ ‘ i ‘ ‘ ‘ ‘ ‘ ‘ solution to this problem. In Section IV, we present and discuss
0 01 02 03 04 05 06 07 08 09 1 the simulation results.
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Fig. 1. Sample performance vs. communication level in a system (details Il. BACKGROUND: COLLECTIVES

in Section V). Increasing the amount of information at low levels of . . . .
communication can hurt performance rather than improve it. Only when the In this section, we summarize the theory collectives neces-
communication level reaches a certain threshold does the system performa@eey to derive the agent utility functions used in this article.
go up with increasing amount of communication between system componeftgt 7 he an arbitrary vector space whose elemengive the
joint move of all agents in the system (i.e.specifies the full
state of the system). Thevorld utility G(z), is a function
To sidestep these problems, yet address the design requiffethe full statez, and the problem we face is to find the
ments listed above (i.e., utility “alignedness” and “learnabithat maximizesG(z). In addition toG, each agent) has a
ity”) one can use the framework of collectivés [18], [21]. private utility function g,. The agents’ goals are to optimize
Given this framework, the crucial design problem becomegieir individual private functions, even though, we, as system
Assuming the individual agents are able to maximize thedfesigners are only concerned with the value of the world utility
own utility functions (e.g., through reinforcement learning of;. We will denote the state of agentby z,, and the state of
ev0|Ving neural netWOI’kS), what set of private utilities for thg” other thann, by Z_y. In this work we takez, Zns and Z_y
individual agents will, when pursued by those agents, resultif have the same dimensionality (e.g., fqrall elements of:

high world utility? The collectives framework has been sughat are not dependent gfare replaced with zeros), resulting
cessfully applied to multiple domains including packet routing, the notation:z = 2y + 2.

over a data network [18], congestion games [21], multiple-

resource job scheduling over a heterogeneous computatiofialFactoredness and Learnability

grid [16], and the coordination of multi-rovers in learning For high values ofG to be achieved, the private utility

sequences of actions [15]. functions need to have two properties, which we will call
In this article, we extend the question of how to design tHactorednessandlearnability . First we want the private utility

agents’ private utilities given that centralized communicatidiunctions of each agent to be aligned with respectGip

is not possible. Though this question has not been directijtuitively meaning that an action taken by an agent that

addressed, there is a large body of work on systems with I@wproves its private utility also improves the world utility.

levels of communication. Issues such as agent communicatfpecifically, for any two states and 2’ which differ only

languages and physical implementation of communicatiom agent;’s state, an action by agentthat increaseg, will

have received particular attention [7], [14]. At a higher levellso increas€& . Formally a utility g, is factored withG' when:

Pynadath and Tambe have formalized many aspects of agent , ,

communications [13], including observability and explicit gn(2) > gn(2) = G(2) > G(2)

communication. For multi-agent Markov decision processes, V2,2 st 2oy = Z/—n

Xule et al. dealt with the problem of partially hidden states qf, game theory language, the Nash equilibria of a factored

other agents [22]. Furthermore, many researchers have demQnsem are local maxima a. In addition to this desirable

strated that often I|ttIe_commun|cat|on is needed to CPOr‘_j'”aéﬁuilibrium behavior, factored systems also automatically pro-

agents [3], and that in many cases local communicationj&je appropriate off-equilibrium incentives to the agents (an

sufficient [8]. However these observations are only true i@gye rarely considered in the game theory / mechanism design

certain specific domains. In this work, we further explore thhsterature).

tradeoff of global coordination and local information. Second, we want the agents’ private utility functions to have
In this article, we show how communication restrictions iRjgh learnability, intuitively meaning that an agent's utility

a system can be overcome by modifying the agents’ utilitieshould be sensitive to its own actions and insensitive to actions

of others. As a trivial example, any system in which all the

2The design of a collective problem is related to work in many fields beyorp\’ivate utility functions equat is factored [6]. However such
multiagent systems, including mechanism design, reinforcement learning for t it ffer f | . It . bl that
adaptive control, computational ecologies, and game theory. See [17] for¥SteEMSs olten sufrer from Iow signal-to-noise, a problem tha

detailed survey of collectives and related fields. get progressively worse as the size of the system grows. This



TABLE |

is because for large systems whéresensitively depends on
COMPARISON OFUTILITY TRADEOFFS

all components of the system, each agent may experience
difficulty discerning the effects of its actions oB. As a " Utlity Factoredness Learnability Required Communication

consequence, each may have difficulty achieving higly,,.  BY Full High Global
This signal-to-noise effect, calldgamability is the second 211 Full Low BroadcasyLocal

9 ) leh ) y . TTU Partial (low)  High Local
property that is crucial in the design of the agents’ privateBeu  Full Low Broadcast/Local
utility functions. Formally we can quantify the learnability of EEU _ Partial (high) High Local
a utility g, by:

(2) = V2,90 (2)]] (1) companies, in which each employee has a hard time seeing
197 -

IV, gn(2)l how his/her moves affect the company’s stock price.

So at a given state, the higher the learnability, the mogg(2) ¢ communication Restrictions
depends on the move of agepti.e., the better the associated _ )
signal-to-noise ratio for. Intuitively then, higher learnability I many real world problems the computation of the dif-

means it is easier foy to achieve a large values of its uti”ty_ference utility requires sufficier_n communication among the
agents to allow the agents to infer the value of the state of

B. Difference Utilities the entire system. In some specific domains, using difference
utilities results in many elements of the system state to cancel
out, allowing the agents to compute DU without knowing the

DUn=G(z) — G(z — 2y + vy) (2) full state. However in general, an agent may not have sulfficient

) communication to compute DU, and needs to approximate
whereu, is a constant vector. In the second term of DU, afiqer the constraints of communication restrictions.

states depending on are replaced by a constant, creating a Mathematically we represent the communication restrictions

virtual state. Difference utilities are factored no matter th1%r an agent; as elements of the system state that are
choice of v, precisely because the second term does Nt observable. We can can decompose the staigto a

depend ony’s state [21]. Furthermore, they usually have fanmponent observable by agent -°, and a component
better learnability than does settipgto G because the second,;yqen from agent), 2 (note > — 2% ;L,zhn) In this paper

term of DU removes a lot .Of the effect of other agents (i'ewe will define the communication level for agentas:
noise) fromn’s utility. In this work we setv,, to the “null’
vector, (e.9.v, = 6). Note, that when the null state is used, fzon dz'
DU is closely related to the economics technique of “endo- By = W ©)
genizing a player's (agent’s) externalities” [12]. Indeed, DU ‘
has conceptual similarities to Vickrey tolls [19], and Groveg®or a problem with countable state elemen, reduces to
mechanism [10], though the Groves mechanism results irthg the number of observable elements in the state divided
team game. by the total number of elements in the state. Note tBat
Intuitively, one can look at DU from the perspective of a hualways in the rang¢0.0, 1.0].
man company, withG, the “bottom line” of the company, the If the DU for agentn depends on any component of
agentsn, the employees of that company, and the associatelt thenn cannot compute it directly. Instead we introduce
gy, the employees’ performance-based compensation paffkir different approximations to the DU that vary in their
ages. For a “factored company”, each employee’'s compenbalance between learnability and factoredness. These four
tion package contains incentives designed such that the bettidlities are named so that the first two letters of the utility
the bottom line of the company, the greater the employeggpresent how the two terms of the difference utility deal with
compensation. For example the board of a company wishipgrtial observability. “B” stands for “broadcast” meaning that
to have the private utilities of the employees be factored withe world utility is broadcast to the system, “T” stands for
G may give stock options to the employees. The net effect $funcated” meaning that the hidden values are ignored, and
this action is to ensure that what is good for the employee‘®” stands for “estimated” meaning that the hidden variable
also good for the company. In addition, if the compensatios estimated from the observed variables. Table | shows the
packages have “high learnability”, the employees will have factoredness, learnability and communication level trade-offs
relatively easy time discerning the relationship between théir DU and each of the four utilities presented below (e.g.,
behavior and their compensation. In such a case the employB&$J is fully factored, has low learnability and uses local
will both have the incentive to help the company and beommunications as well as global broadcasts, whereas EEU
able to determine how best to do so. Note that in practids, partially factored, has high learnability and only uses local
providing stock options is generally more effective in smattommunications).
companies than in large ones. This makes perfect sense il) Broadcast/Truncated Utility (BTU)BTU is a variant of
terms of the formalism, since such options generally hai®J, where the communication restrictions force agetd set
higher learnability in small companies than they do in largeot only its own state, but also the states of all agents that it

Considerdifference utilities, which are of the form:



cannot observe to the null state: the hidden elements cannot be perfectly estimated, significant
h amounts of noise can be eliminated from the system. Note

BIUy(2) = G(2) = Glz— 2" — ) ™) however that if the estimate is particularly poor, noise can

Note thatBTU, as well asBEU (discussed below), assumealso be introduced into the system.

that the true world utility can be broadcast despite the commu-4) Estimated/Estimated Utility (EEU)The fourth utility is

nication restriction. In many applications, this is a assumpti@imilar to 77U, except that instead of truncating the hidden

is reasonable since the world utility can often be computedements, the value of*” is estimated in both terms:

once and broadcast throughout the environment [9]. More

complex forms of broadcas?ing are often used for d[islcributed EEUy(2) = G(" + B[:"[2"]) -

multi-agent systems [5], but in this paper we will assume a G(z°" + B[2"[2] — z,). (7

very simple global broadcast of a single nhumber.

Despite creating a virtual state by setting more thato
the null state,BTU is still factored since it is in the form
of the difference utility (e.g., the second term of Equation
does not depend on). However, this utility generally has
significantly more ,noise tr_\an_a purely since the _difference closer to being factored with respectdz) than canl'TU.
removes pot onlly] S con_tr|but|on, but all states hidden from In addition this utility retaing"7’U’s desirable property that
- Acc_:ordlngly, in situations where a large nqmber of agenbsoth terms are using the same version of the state. Since both
are hidden fromn, BTU suffers from poor signal to noise

roblem ¢ the limit of tobserving onlv its own terms are estimating the values gf in the same way, any
problems, €.g., at the ol agentobserving only 1ts o contribution that the nom-terms ofz"» make on the first term
actions, the second term becon@g)).

i . will be subtracted out in the second term. Note that unlike with
2) Truncated/Truncated Utility (TTU)The second private i . . .
utility is conceptually similar toBT'U except that both terms BEU, even if the estimate of the hidden components is very

are computed under the communication restrictions: poor, no_i§e will not be added. o the system since bqth terms

’ of the utility use the same estimate. Instead, the quality of the
TTU,(z) = G(z—2")~G(z—z" —z,). (5) estimate only affects how close this utility is to being factored
with respect toG(z).

Essentially, EEU is a DU where z is approximated by
201 — B[zhn|207]. As was the case witlhi'T'U this utility is not
factored with respect to the world utilit¢¥. However, with a
good estimate of", the valueG(z°" — E[2"7]2°1]) will be
much closer ta=(z) thanG(z°"), so this utility can be much

Essentially, TTU is DU where is approximated by — z"».
Because of this, TTU is not factored with respect to the world I1l. CONGESTIONGAMES
utility G(z). While not being factored with world utilityl"7’U
generally has higher learnability thas(l'U [20].

Again, consider the case where a large number of age

Congestion games are characterized by having the world
utility depend on the agents use of a particular resource (e.g.,
; . ; ) - rHf]ality of an agent’s action depends on the number of other
not interacting \_Nlthr;, are hidden f_rom_y. The contnbutpn of agents selecting the same action) [2], [11]. This type of prob-
those agents will not be 'nCIl_JdEd in either temﬂt_TU, SINCE 1om arises in many domains, ranging from telecommunications
both terms are computed with the communication I’eStI’ICtIO&_g_, response of a link depends on the number of users),
Therefor_e this utility will hgve less noise. However, if thetransportation (e.g., value of a highway lane depends on the
assumption that (= — 2 is close toG(z) does not hold |\, her of cars), power/computer grids (e.g., performance
(.9, some h|dden agents are crucial to the system's behavlﬁr)a server depends on the number of scheduled jobs), and
thenTTU will not p.roduce gop_d system performance: ! public good distribution (e.g., enjoyment of a park/restaurant
: 3). BroadcasUEst|mated Uitility .(BEU):The third qt'“ty depends on the number of people using it). In each instance
IS similar to BThU' except Fhat instead of truncating theof the problem, at each time step, each agehts to decide
components sz. " (e.g., setting them to zero), their Value?/vhether to participate (e.g., use server, drive on a lane, attend
are estimated given the values £ restaurant) in the use of that resource or not. The nature of the

BEU,(2) = G(z)—G(2°" + E[z"|z°"] — z,)) (6) problem produces a “congestion” (e.g., if most agents believe

A : , _ the resource will be under-used, they will use it and cause it
where E[2"7[2°"] gives the expected hidden state given thg) 1o over-used. and vice-versa)

states observable tg. As long as this estimate is not influ- In this work, we focus on the following instantiation of the

enced by the actions of beyondz,, this utility is factored, congestion game: There ané agents, each picking one out

singe the first term of the difference equation is sfir). of K actions each time step. Those actions result in a world
While both BTU and BEU are factored,BEU may have utility, G, given by:

less noise, depending on how good the estimate:*foris.
Again, consider a system where a large number of agents K —ep(2)

that do not interact with; that are hidden fromy’s state, G(z) = Zxk(z) e+ (8)

but that their values can be approximated from the visible k=1

components of the state. In this case the first ter®@ BT will wherex(z) is the number of agents choosing actignz;, is

contain the agents’ contribution t8(z), but the second term 5’s choice at that time step; ang is the optimal “capacity” of

will subtract out their inferred contribution. Even if effects ofesourcek. At the end of the time step, the associated private



utilities for each agent are communicated to that agent, afadtt, rather than subtracting out noise, the second term adds
the process is repeated. noise.
Since we wish to concentrate on the effects of the utilities

rather than on the algorithms that use them, we use a very
simple learning algorithm, though a number of learning meth- 09
ods (e.g., neural networks, Q-learning) can be used. In this
simple algorithm each agentkeeps aK-dimensional vector
giving its estimates of the utility it would receive for choosing
that action. The decisions are made using the vector, withan o o6
greedy learner with set to 0.05. All of the vectors are initially 05 -
set to zero and there is a learning rate decay is 0.99.

A. Communication Restrictions 03 1 i) 1

H H H H H H 02 1 1 1 1 1 1 1 1 1
We model communication restrictions in this problem by o o1 o2 03 o4 o5 o6 o7 o8 oo 1

controlling how many other agents one agent can “talk” to. Communication Level
Without this communication the agent cannot know what thry. 2. Performance of four utility functions for a range of communication
other agents have done. We define a communication gve| levels. For moderate communication levélgU performs best. For very low

. . communicationBT'U performs best since, it uses information from world
the range(0.0, 1.0] representing the fraction of all the agentgy,
to which an agent can talk. WheB = 1.0 an agent can talk

to the all other agents, whereas whBnr= 0.0 an agent has no

communication, and thus is only aware of its own action. In 1

this problem, communication restrictions result in variations e L =3
on howz;(z) is computed. For truncated versions of the DU, 0o & o |
(BTU andTTU), n useszy(z°") which provides the number

of observable agents that have selected actio(note since os bl EEU [ 4
in BTU the first term is broadcast, the agent does not need to, BTy ?
compute it). For utilities using an estimate of the stabd{/ 0_7E_3 TTU =K |

and EEU), z,(2°") is scaled, andszy(2°) represents agent
7's estimate of how many agents selected actioiNote this

is an extremely simple estimation procedure and does not take
any information an agent collects to modify how it forms this

4 0. . . . . . . . . .
estimate. ° 0 100 200 300 400 500 600 700 800 900 1000
Learning Time
IV. EXPERIMENTAL RESULTS Fig. 3. Learning rates of four utility functions at 40% communicatiBizU

learns far more quickly than the others, because it provides a cleaner signal.
We tested the performance of the four versions of tH¢ote that even thougA™T'U is _highly learnable, ‘it is not close to being
DU with varying levels of communication. The test WeréggsoUreld with respect to G, so it has a flat learning curve. B8fiU and N
earn because they are factored, but because they have low learnability
conducted in a congestion game with 100 agents and witbo much noise in the signal) their learning curve is extremely slow.
c, = 5 for all k. All of the trials were conducted for 1000
episodes, and were run 25 times. For most levels of communication restriction, tAR&'U per-
Figure 2 shows the performance of the four utilities witliorms the best and performs up to 75% closer to optimal than
different levels of communication. When the communicatioutilities which use the same information. Recall tRF'U and
level is high, the utilities converge to DU. When commu?'TU are not factored, whereaBTU and BEU are. What
nication is very low, theBTU and BEU have the best helps EEU in this case is that though it is not factored, as
performance because their first terd, is not affected by long as the estimate faF in the first term is sufficiently close
the communication restriction. They essentially are reducesG, it is close to being factored. Furthermore, because both
to a team game, and give moderately good performance. Nthe first and second terms use the same estimate for the state,
that the performance dBT'U is worse at 50% communicationthe subtraction does remove noise, as intended. The utility
than at 5%. This counterintuitive result is explained by how tHET'U performs the worst even though there may not be much
utility is computed in this problem. With little communication,noise in the utility. This is caused byTU being far from
the total number of agents that can be seen is small, and thetored due to the truncation of the hidden state components.
contribution of the second term is small. With 50% communi- Figures 3 and 4 give a clearer view of the performances
cation on the other hand, the second term will be large enougtha fixed level of communication restrictiod0(%s and 70%
to have an impact on the utility. However, because both @spectively)EEU is clearly superior at 40% communication.
5% and 50% communication levels,(z°") is significantly itis close to being factored and because of it's high learnability
different thanz(z), neither provide a usable second term. lit rapidly converges to a good solution. BaBY'U and BEU
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collective [1]. Future work in this area includes investigating
new utility functions for the agents, dynamic team formation
where agents may join and/or leave teams in an adaptive fash-
ion, and incurring a cost for sharing information. Furthermore,
we are deterining the effectiveness of using the utilities as
fithess evaluation functions for evolutionary computation with
neural networks.
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