
Rule-Based Runtime Verification

Howard Barringer?1, Allen Goldberg2, Klaus Havelund2 and Koushik Sen??3

1 University of Manchester, England
2 Kestrel Technology, NASA Ames Research Center, USA

3 University of Illinois, Urbana Champaign, USA

Abstract. We present a rule-based framework for defining and implementing
finite trace monitoring logics, including future and past time temporal logic, ex-
tended regular expressions, real-time logics, interval logics, forms of quantified
temporal logics, and so on. Our logic,EAGLE, is implemented as a Java library
and involves novel techniques for rule definition, manipulation and execution.
Monitoring is done on a state-by-state basis, without storing the execution trace.

1 Introduction
Runtime verification, or runtime monitoring, comprises having a software module, an
observer, monitor the execution of a program and check its conformity with a require-
ment specification, often written in a temporal logic or as a state machine. Runtime
verification can be applied to automatically evaluate test runs, either on-line, or off-line
analyzing stored execution traces; or it can be used on-line during operation, potentially
steering the application back to a safety region if a property is violated. It is highly scal-
able. Several runtime verification systems have been developed, of which some were
presented at three recent international workshops on runtime verification [1].

Linear temporal logic (LTL) [19] has been core to several of these attempts. The
commercial tool Temporal Rover (TR) [6, 7] supports a fixed future and past time LTL,
with the possibility of specifying real-time and data constraints (time-series) as anno-
tations on the temporal operators. Its implementation is based on alternating automata.
Algorithms using alternating automata to monitor LTL properties are also proposed in
[9], and a specialized LTL collecting statistics along the execution trace is described
in [8]. The MAC logic [18] is a form of past time LTL with operators inspired by in-
terval logics and which models real-time via explicit clock variables. A logic based
on extended regular expressions [20] has also been proposed and is argued to be more
succinct for certain properties. The logic described in [16] is a sophisticated interval
logic, argued to be more user-friendly than plain LTL. Our own previous work includes
the development of several algorithms, such as generating dynamic programming al-
gorithms for past time logic [14], using a rewriting system for monitoring future time
logic [12, 13], or generating B̈uchi automata inspired algorithms adapted to finite trace
LTL [11].

? This author is most grateful to RIACS/USRA and to the UK’s EPSRC under grant
GR/S40435/01 for the partial support provided to conduct this research whilst at NASA Ames
Research Center.

?? This author is grateful for the support received from RIACS to undertake this research while
participating in the Summer Student Research Program at the NASA Ames Research Center.

This large variety of logics prompted us to search for a small and general framework
for defining monitoring logics, which would be powerful enough to capture essentially
all of the above described logics, hence supporting future and past time logics, interval
logics, extended regular expressions, state machines, real-time and data constraints, and
statistics. The framework should support the definition of new logics in an easy man-
ner and should support the monitoring of programs with their complex program states.
The result of our search is the logicEAGLE presented in this paper. TheEAGLE logic
and its implementation for runtime monitoring has been significantly influenced by ear-
lier work on the executable, trace generating as well as trace checking, temporal logic
METATEM [3]. In METATEM a linear-time temporal formula is separated [10] into a
boolean combination of pure past, present and pure future time formulas. Conditioned
by the past, the present-time, or state, formulas determine how the state for the current
moment in time is built and the pure future time formulas yield obligations that need
to be fulfilled at some time later. The separation result, rules and future obligations are
central in our current work. However, the fundamental difference betweenMETATEM
andEAGLE is that theMETATEM interpreter builds traces state by state, whereasEA-
GLE is used for checking given finite traces: costly implementation features, such as
backtracking and loop-checking, are not required.

We recently discovered parallel work [17] using recursive equations to implement
a real-time logic. However we had already developed the ideas further. We provide the
language of recursive equations to the user, we support a mixture of future time and
past time operators, we treat real-time as a special case of data values, and hence we
allow a very general logic for reasoning about data, including the possibility of relating
data values across the execution trace, both forwards and backwards.

This paper is structured as follows. Section 2 introduces our logic framework. In
section 3 we discuss the algorithm and calculus that underlies our implementation,
which is then briefly described along with initial experimentation in section 4. Fur-
ther papers onEAGLE are available covering material that couldn’t be covered in this
paper. In [4], we illustrate that whenEAGLE is specialized to a propositional LTL our
monitoring algorithm is space efficient with an upper bound ofO(m2 logm2m), where
m is the size of the monitored formula; in [5], we present full details of our current
Java-based monitoring algorithm and its associated rewrite calculus.

2 The Logic

In this section we introduce our temporal finite trace monitoring logicEAGLE. The
logic offers a succinct but powerful set of primitives, essentially supporting recursive
parameterized equations, with a minimal/maximal fix-point semantics together with
three temporal operators: next-time, previous-time, and concatenation. The next-time
and previous-time operators can be used for defining future time respectively past time
temporal logics on top ofEAGLE. The concatenation operator can be used to define in-
terval logics and an extended regular expression language. Rules can be parameterized
with formulas, and with data to allow for the expression of data constraints, includ-
ing real-time constraints. Atomic propositions are boolean expressions over a program
state, Java states in the current implementation. The logic is first introduced informally
through two examples whereafter its syntax and semantics is given. Finally, its relation-
ship to some other important logics is outlined.

2

2.1 EAGLE by Example

Fundamental ConceptsAssume we want to state a property about a programP, which
contains the declaration of two integer variablesx andy. We want to state that whenever
x is positive then eventuallyy becomes positive. The property can be written as follows
in classical future time LTL:¤(x> 0→ ♦y> 0). The formulas¤F (alwaysF) and♦F
(eventuallyF), for some propertyF , usually satisfy the following equivalences, where
the temporal operator©F stands fornext F(meaning ‘in next stateF ’):

¤F ≡ F ∧©(¤F) ♦F ≡ F ∨©(♦F)

One can for example show that¤F is a solution to the recursive equivalenceX ≡
F ∧©X; in fact it is the maximal solution4. A fundamental idea in our logic is to
support this kind of recursive definition, and to enable users define their own temporal
combinators using equations similar to those above. In the current framework one can
write the following definitions for the two combinatorsAlways andEventually , and
the formula to be monitored (M1):

maxAlways (FormF) = F ∧©Always (F)
min Eventually (FormF) = F ∨©Eventually (F)
monM1 = Always (x > 0→ Eventually (y > 0))

TheAlways operator is defined as having a maximal fix-point interpretation; the
Eventually operator is defined as having a minimal interpretation. Maximal rules de-
fine safety properties (nothing bad ever happens), while minimal rules define liveness
properties (something good eventually happens). For us, the difference only becomes
important when evaluating formulas at the boundaries of a trace. To understand how
this works it suffices to say here that monitored rules evolve as new states are appear-
ing. Assume that the end of the trace has been reached (we are beyond the last state) and
a monitored formulaF has evolved toF ′. Then all applications inF ′ of maximal fix-
point rules will evaluate to true, since they represent safety properties that apparently
have been satisfied throughout the trace, while applications of minimal fix-point rules
will evaluate to false, indicating that some event did not happen. Assume for example
that we evaluate the formulaM1 in a state wherex > 0 andy≤ 0, then as a liveness
obligation for the future we will have the expression:

Eventually (y > 0)∧Always (x > 0→ Eventually (y > 0))

Assume that we at this point detect the end of the trace; that is: we are beyond the
last state. The outstanding liveness obligationEventually (y > 0) has not yet been
fulfilled, which is an error. This is captured by the evaluation of the minimal fix-point
combinatorEventually being false at this point. The remaining other obligation from
the∧-formula, namely,Always (x > 0→ Eventually (y > 0)), is a safety property and
evaluates to true.

For completeness we provide remaining definitions of the future time LTL operators
U (until) and W (unless) below. Note howW is defined in terms of other operators.

4 Similarly, ♦F is aminimalsolution to the equivalenceX ≡ F ∨©X

3

However, it could have been defined recursively.

min Until (FormF1,FormF2) = F2∨ (F1∧©Until (F1,F2))
maxUnless (FormF1,FormF2) = Until (F1,F2)∨Always (F1)

Data Parameters We have seen how rules can be parameterized with formulas. Let
us modify the above example to include data parameters. Suppose we want to state the
property:“whenever at some pointx = k > 0 for somek, then eventuallyy = k” . This
can be expressed as follows in quantified LTL:¤(x > 0→ ∃k.(x = k∧♦y = k)). We
use a parameterized rule to state this property, capturing the value ofx whenx > 0 as a
rule parameter.

min R(int k) = Eventually (y = k) monM2 = Always (x > 0→ R(x))

RuleR is parameterized with an integerk, and is instantiated inM2 whenx > 0, hence
capturing the value ofx at that moment. RuleR replaces the existential quantifier. The
logic also provides a previous-time operator, which allows us to define past time op-
erators; the data parametrization works uniformly for rules over past as well as future,
which is non-trivial to achieve since the implementation does not store the trace, see
Section 4. Data parametrization is also used to elegantly model real-time logics.

2.2 Syntax and Semantics

Syntax A specificationS consists of a declaration partD and an observer partO. D
consists of zero or more rule definitionsR, andO consists of zero or more monitor
definitionsM, which specify what to be monitored. Rules and monitors are named (N).

S ::= D O
D ::= R∗
O ::= M∗
R ::= {max|min} N(T1 x1, . . . ,Tn xn) = F
M ::= monN = F
T ::= Form| primitive type
F ::= expression| true| false| ¬F | F1∧F2 | F1∨F2 | F1 → F2 |

©F |⊙F | F1 ·F2 | N(F1, . . . ,Fn) | xi

A rule definitionR is preceded by a keyword indicating whether the interpretation is
maximal or minimal (which we recall determines the value of a rule application at the
boundaries of the trace). Parameters are typed, and can either be a formula of type
Form, or of a primitive type, such as int, long, float, etc.. The body of a rule/monitor
is a boolean valued formula of the syntactic categoryForm (with meta-variablesF ,
etc.). Any recursive call on a rule must be strictly guarded by a temporal operator. The
propositions of this logic are boolean expressions over an observer state. Formulas are
composed using standard propositional logic operators together with a next-state op-
erator (©F), a previous-state operator (

⊙
F), and a concatenation-operator (F1 ·F2).

Finally, rules can be applied and their arguments must be type correct. That is, an ar-
gument of type Formcan be any formula, with the restriction that if the argument is

4

an expression, it must be of boolean type. An argument of a primitive type must be an
expression of that type. Arguments can be referred to within the rule body (xi).

In what follows, a ruleN of the form

{max|min} N(Form f1, . . . ,Form fm,T1 p1, . . . ,Tn pn) = F,

where f1, . . . fm are arguments of type Formand p1, . . . pn are arguments of primitive
type, is written in short as

{max|min} N(Form f ,T p) = F

where f andp represent tuples of typeFormandT respectively. Without loss of gener-
ality, in the above rule we assume that all the arguments of type Formappear first.

Semantics The semantics of the logic is defined in terms of a satisfaction relation|=
between execution traces and specifications. An execution traceσ is a finite sequence
of program statesσ = s1s2 . . .sn, where|σ|= n is the length of the trace. The i’th statesi

of a traceσ is denoted byσ(i). The termσ[i, j] denotes the sub-trace ofσ from position
i to position j, both positions included; ifi ≥ j thenσ[i, j] denotes the empty trace. In
the implementation a state is a user defined Java object that is updated through a user
providedupdateOnEventmethod for each new event generated by the program. Given
a traceσ and a specificationD O, satisfaction is defined as follows:

σ |= D O iff ∀ (monN = F) ∈O . σ,1 |=D F

That is, a trace satisfies a specification if the trace, observed from position1 (the first
state), satisfies each monitored formula. The definition of the satisfaction relation|=D

⊆ (Trace× nat)× Form, for a set of rule definitionsD, is presented below, where
0≤ i ≤ n+1 for some traceσ = s1s2 . . .sn. Note that the position of a trace can become
0 (before the first state) when going backwards, and can becomen+ 1 (after the last
state) when going forwards, both cases causing rule applications to evaluate to either
true if maximal or false if minimal, without considering the body of the rules at that
point.

σ, i |=D expressioniff 1≤ i ≤ |σ| andevaluate(expression)(σ(i)) == true
σ, i |=D true
σ, i 6|=D false
σ, i |=D ¬F iff σ, i 6|=D F
σ, i |=D F1∧F2 iff σ, i |=D F1 andσ, i |=D F2

σ, i |=D F1∨F2 iff σ, i |=D F1 or σ, i |=D F2

σ, i |=D F1 → F2 iff σ, i |=D F1 impliesσ, i |=D F2

σ, i |=D ©F iff i ≤ |σ| andσ, i +1 |=D F
σ, i |=D

⊙
F iff 1≤ i andσ, i−1 |=D F

σ, i |=D F1 ·F2 iff ∃ j s.t. i ≤ j ≤ |σ|+1 andσ[1, j−1], i |=D F1 andσ[j,|σ|],1 |=D F2

σ, i |=D N(F ,P) iff





if 1≤ i ≤ |σ| then:
σ, i |=D F [f 7→ F , p 7→ evaluate(P)(σ(i))]
where (N(Form f ,T p) = F) ∈ D

otherwise, ifi = 0 or i = |σ|+1 then:
ruleN is defined as maxin D

5

An expression (a proposition) is evaluated in the current state in case the positioni is
within the trace (1≤ i ≤ n). In the boundary cases (i = 0 and i = n+ 1) a proposition
evaluates to false. Propositional operators have their standard semantics in all positions.
A next-time formula©F evaluates to true if the current position is not beyond the
last state andF holds in the next position. Dually for the previous-time formula. The
concatenation formulaF1 ·F2 is true if the traceσ can be split into two sub-tracesσ =
σ1σ2, such thatF1 is true onσ1, observed from the current positioni, andF2 is true
on σ2 (ignoringσ1, and thereby limiting the scope of past time operators). Applying a
rule within the trace (positions1. . .n) consists of replacing the call with the right-hand
side of the definition, substituting arguments for formal parameters; if an argument is of
primitive type its evaluation in the current state is substituted for the associated formal
parameter of the rule, thereby capturing a desired freeze variable semantics. At the
boundaries (0 andn+1) a rule application evaluates to true if and only if it is maximal.

2.3 Relationship to Other Logics

The logical system defined above is expressively rich; indeed, any linear-time tempo-
ral logic, whose temporal modalities can be recursively defined over the next, past or
concatenation modalities, can be embedded within it. Furthermore, since in effect we
have a limited form of quantification over possibly infinite data sets, and concatenation,
we are strictly more expressive than, say, a linear temporal fixed point logic (over next
and previous). A formal characterization of the logic is beyond the scope of this paper,
however, we demonstrate the logic’s utility and expressiveness through examples.

Past Time LTL: A past time linear temporal logic, i.e. one whose temporal modali-
ties only look to the past, could be defined in the mirror way to the future time logic
exemplified in the introduction by using the built-in previous modality,

⊙
, in place of

the future next time modality,©. Here, however, we present the definitions in a more
hierarchic (and logical) fashion. Note that theZince rule defines the past time corre-
spondent to the future time unless, or weak until, modality, i.e. it is a weak version of
Since .

min Since (FormF1,FormF2) = F2∨ (F1∧⊙
Since (F1,F2))

min EventuallyInPast (FormF) = Since (true,F)
maxAlwaysInPast (FormF) = ¬EventuallyInPast (¬F)
maxZince (FormF1,FormF2) = Since (F1,F2)∨AlwaysInPast (F1)

Combined Future and Past Time LTL: By combining the definitions for the future
and past time LTLs defined above, we obtain a temporal logic over the future, present
and past, in which one can freely intermix the future and past time modalities (to any
depth)5. We are thus able to express constraints such as if ever the variablex exceeds
0, there was an earlier moment when the variabley was 4 and then remains with that
value until it is increased sometime later, possibly after the moment whenx exceeds 0.

monM2 = Always (x > 0→ EventuallyInPast (y = 4∧Until (y = 4,y > 4)))

5 See [4] for the correctness argument for such an embedding of propositional LTL inEAGLE.

6

Extended LTL and µTL: The ability to define temporal modalities recursively pro-
vides the ability to define Wolper’s ETL or the semantically equivalent fixpoint temporal
calculus. Such expressiveness is required to capture regular properties such as temporal
formulaF is required to be true on every even moment of time:

maxEven(FormF) = F ∧©©Even(F)

The µTL formula νx.(p∧©© x∧ µy.((q∧©x)∨⊙
y)), wherep and q are atomic

formulas, would be denoted by the formula,X(), where rulesX andY are:

maxX() = p∧©©X()∧Y() min Y() = (q∧©X())∨⊙
Y()

Extended Regular Expressions:The language of Extended Regular Expressions (ERE),
i.e. adding complementation to regular expressions, has been proposed as a powerful
formalism for runtime monitoring. EREs can straightforwardly be embedded within
our rule-based system. Given,E ::= /0|ε|a|E · E|E + E|E ∩ E|¬E|E∗, let Tr (E) de-
note the EREE’s correspondingEAGLE formula. For convenience, we define the rule
max Empty () = ¬© true which is true only when evaluated on an empty (suffix) se-
quence.Tr is inductively defined as follows.

Tr (/0) = false Tr (ε) = Empty ()
Tr (a) = a∧©Empty () Tr (E1 ·E2) = Tr (E1) ·Tr (E2)
Tr (E1 +E2) = Tr (E1)∨Tr (E2) Tr (E1∩E2) = Tr (E1)∧Tr (E2)
Tr (¬E) = ¬Tr (E)
Tr (E∗) = X() where maxX() = Empty () ∨ (Tr (E) ·X())

Real Time as a Special Case of Data Binding:Metric temporal logics, in which
temporal modalities are parameterized by some underlying real-time clock(s), can be
straightforwardly embedded into our system through rule parameterization. For exam-
ple, consider the metric temporal modality,¦[t1,t2] in a system with just one global clock.
An absolute interpretation of¦[t1,t2]F has the formula true if and only ifF holds at some
time in the future when the real-time clock has a value within the interval[t1, t2]. For
our purposes, we assume that the states being monitored are time-stamped and that the
variableclockholds the value of the real-time clock for the associated state. The rule

min EventAbs (FormF,float t1,float t2) =
(F ∧ t1 ≤ clock∧clock≤ t2)∨
((clock< t1∨ (¬F ∧clock≤ t2))∧©EventAbs (F, t1, t2))

defines the operator¦[t1,t2] for absolute values of the clock. The rule will succeed when
the formulaF evaluates to true andclock is within the specified interval[t1, t2]. If either
the formulaF doesn’t hold and the time-stamp is within the upper time bound, or the
lower bound hasn’t been reached, then the rule is applied to the next input state. Note
that the rule will fail as soon as either the time-stamp is beyond the given interval,
i.e. clock> t2, and the formulaF has not been satisfied, or the end of the input trace
has been passed. A relativized version of the modality can then be defined as:

min EventRel (FormF,float t1,float t2) = EventAbs (F,clock+ t1,clock+ t2)

7

Counting and Statistical Calculations: In a monitoring context, one may wish to
gather statistics on the truth of some property, for example whether a particular state
propertyF holds with at least some probabilityp over a given sequence, i.e. it doesn’t
fail with probability greater than(1− p). Consider the operator¤pF defined by:

σ, i |= ¤pF iff ∃S⊆ {i..|σ|} s.t.
|S|

|σ|− i
≥ p∧∀ j ∈ S . σ, j |= F

An encoding within our logic can then be given as:

min A(FormF,float p, int f , int t) =
(©Empty ()∧ ((F ∧ (1− f

t) >= p)∨ (¬F ∧ (1− f+1
t) >= p)))∨

(¬Empty ()∧ ((F →©A(F, p, f , t +1))∧ (¬F →©A(F, p, f +1, t +1))))

min AtLeast (FormF,float p) = A(F, p,0,1)

The auxiliary ruleA counts the number of failures ofF in its argumentf and the number
of events monitored in argumentt. Thus, at the end of monitoring, the first line ofA’s
body determines whetherF has held with the desired probability, i.e.≥ p. AtLeast
therefore callsA with argumentsf andt initialized to 0 and 1 respectively.

Towards Context Free: Above we showed thatEAGLE could encode logics such as
ETL, which extend LTL with regular grammars (when restricted to finite traces), or
even extended regular expressions. In fact, we can go beyond regularity into the world
of context-free languages, necessary, for example, to express properties such as every
login is matched by a logout and at no point are there more logouts than logins. Indeed,
such a property can be expressed in several ways inEAGLE. Assume we are monitor-
ing a sequence of login and logout events, characterized, respectively, by the formulas
login and logout. We can define a ruleMatch (Form F1,Form F2) and monitor with
Match (login, logout) where:

min Match (FormF1,FormF2) = F1 ·Match (F1,F2) ·F2 ·Match (F1,F2) ∨ Empty ()

Less elegantly, and which we leave as an exercise, one could use the rule parametriza-
tion mechanism to count the numbers of logins and logouts.

3 Algorithm

In this section, we briefly outline the computation mechanism used to determine whether
a given monitoring formula holds for some given input sequence of events. For details
on the algorithm, the interested readers can refer to [5]. In the algorithm, we assume
that a local state is maintained on the observer side. Theexpressionsor propositions
are specified with respect to the variables in this local state. At every event the observer
modifies the local state of the observer, based on that event, and then evaluates the mon-
itored formulas on the new state, and generates a new set of monitored formulas. At the
end of the trace the values of the monitored formulas are determined. If the value of a
formula is true, the formula is satisfied, otherwise the formula is violated.

8

First, a monitor formulaF is transformed to another formulaF ′. This transforma-
tion addresses the semantics ofEAGLE at the beginning of a trace. Next, the trans-
formed formula is monitored against an execution trace by repeated application of
eval. The evaluation of a formulaF on a states = σ(i) in a traceσ results in an
another formulaeval〈〈F,s〉〉 with the property thatσ, i |= F if and only if σ, i + 1 |=
eval〈〈F,s〉〉. The definition of the functioneval : Form×State→ Form uses an auxil-
iary functionupdatewith signatureupdate: Form×State→ Form. update’s role is to
pre-evaluate a formula if it is guarded by the previous operator

⊙
. Formally,update

has the property thatσ, i |= ©F iff σ, i + 1 |= update〈〈F,s〉〉. Had there been no past
time modality inEAGLE updatewould be unnecessary and the identityσ, i |=©F iff
σ, i + 1 |= F could have been used. At the end (or at the beginning) of a trace, the
functionvalue : Form→{true, false} when applied onF returns trueiff σ, |σ|+1 |= F
(or σ,0 |= F) and returns falseotherwise. Thus given a sequence of statess1s2 . . .sn,
an EAGLE formula F is said to be satisfied by the sequence of states if and only if
value〈〈eval〈〈. . .eval〈〈eval〈〈F ′,s1〉〉,s2〉〉 . . . ,sn〉〉〉〉 is true. The functionseval, updateand
valueare the basis of the calculus for our rule-based framework.

3.1 Calculus

Theeval, updateandvaluefunctions are defined a priori for all operators except for the
rule application. The definitions ofeval, updateandvaluefor rules get generated based
on the definition of rules in the specification. The definitions ofeval, updateandvalue
on the different primitive operators are given below.

eval〈〈true,s〉〉 = true
eval〈〈false,s〉〉 = false
eval〈〈jexp,s〉〉 = value ofjexp in s

eval〈〈F1 opF2,s〉〉 = eval〈〈F1,s〉〉 op eval〈〈F2,s〉〉
eval〈〈¬F,s〉〉 = ¬eval〈〈F,s〉〉

eval〈〈©F,s〉〉 = update〈〈F,s〉〉
eval〈〈F1 ·F2,s〉〉 =

=
{

eval〈〈F1,s〉〉 ·F2 if value〈〈F1〉〉= false
(eval〈〈F1,s〉〉 ·F2)∨eval〈〈F2,s〉〉 otherwise

value〈〈true〉〉 = true
value〈〈false〉〉 = false
value〈〈jexp〉〉 = false

value〈〈F1 opF2〉〉 = value〈〈F1〉〉 op value〈〈F2〉〉
value〈〈¬F〉〉 = ¬value〈〈F〉〉

value〈〈©F〉〉
=

{
F if at the beginning of trace
false if at the end of trace

value〈〈F1 ·F2〉〉 = value〈〈F1〉〉∧value〈〈F2〉〉

update〈〈true,s〉〉 = true
update〈〈false,s〉〉 = false
update〈〈jexp,s〉〉 = jexp

update〈〈F1 opF2,s〉〉 = update〈〈F1,s〉〉 op update〈〈F2,s〉〉
update〈〈¬F,s〉〉 = ¬update〈〈F,s〉〉

update〈〈F1 ·F2,s〉〉 = update〈〈F1,s〉〉 ·F2

In the above definitions,op can be∧,∨,→. In most of the definitions we simply prop-
agate the function to the subformulas. However, the concatenation operator is handled
in a special way. Theevalof a formulaF1 ·F2 on a states first checks ifvalue〈〈F1〉〉 is
true or not. If the value is true then one cannon-deterministicallysplit the trace just
before the states. Hence, the evaluation becomes(eval〈〈F1,s〉〉 ·F2)∨eval〈〈F2,s〉〉 where
∨ expresses the non-determinism. Otherwise, if the trace cannot be split, the evaluation
becomes simplyeval〈〈F1,s〉〉 ·F2. The functionupdateon the formulaF1 ·F2 simply up-
dates the formulaF1, asF2 is not effected by the trace that effectsF1. At the end of a

9

trace, thatF1 ·F2 is satisfied means that the remaining empty trace can be split into two
empty traces satisfying respectivelyF1 andF2; hence the conjunction invalue〈〈F1 ·F2〉〉.
Since the semantics of© is different at the beginning and at the end of a trace, we have
to consider the two cases in the definition ofvaluefor ©F .

The operator
⊙

requires special attention. If a formulaF is guarded by a previous
operator then we evaluateF at every event and use the result of this evaluation in the
next state. Thus, the result of evaluatingF is required to be stored in some temporary
placeholder so that it can be used in the next state. To allocate a placeholder for a⊙

operator, we introduce the operator Previous: Form×Form→ Form. The second
argument for this operator acts as the placeholder. We transform a formula

⊙
F at the

beginning of monitoring as follows:
⊙

F → Previous(F ′,value〈〈F ′〉〉) whereF ′ is the transformed version ofF

We defineeval, update, andvaluefor Previousas follows:

eval〈〈Previous(F,past),s〉〉= eval〈〈past,s〉〉
update〈〈Previous(F,past),s〉〉= Previous(update〈〈F,s〉〉,eval〈〈F,s〉〉)
value〈〈Previous(F,past)〉〉=

{
false if at the beginning of trace
value〈〈past〉〉 if at the end of trace

Here,eval of Previous(F,past) returns theeval of the second argument of Previous,
past, that contains the evaluation ofF in the previous state. Inupdatewe not only
update the first argumentF but also evaluateF and pass it as the second argument of
Previous. Thus in the next state the second argument of Previous, past, is bound to⊙

F . Thevalue〈〈F ′〉〉 that appears in the transformation of
⊙

F is the value ofF ′ at the
beginning of the trace. This takes care of the semantics ofEAGLE at the beginning of a
trace.

3.2 Monitor Synthesis for Rules

In what follows,ρb.H(b) denotes a recursive structure where free occurrences ofb in H
point back toρb.H(b). Formally,ρb.H(b) is a closed form term that denotes a fix-point
solution to the equationx = H(x) and henceρb.H(b) = H(ρb.H(b)). The open form
H(b) denotes a formula with free recursion variableb. In structural terms, a solution to
x = H(x) can be represented as a graph structure where the leaves, denoted by x, point
back to the root node of the graph. Our implementation uses this structural solution.

We replace every ruleR by an operator Rduring transformation. For a subformula
R(F ,P), where the ruleR is defined as{max|min} R(Form f ,T p) = B, we transform
the subformula as follows:

R(F ,P)→ R(ρb.B′[f 7→ F ′],P)
whereB′ andF ′ are transformed versions ofB andF respectively

R(F ,P′)→ R(b,P′) whereR(F ,P′) is a subformula ofB

The second equation is invoked if a recursion is detected6; that is while transforming
B if R(F ,P′) is encountered as a subformula ofB. Note that here the variableb should

6 A formal description of recursion detection mechanism can be found in [5].

10

be a fresh name to avoid possible variable capturing. For example consider the for-
mula¤(x > 0→∃k(k = x∧♦· (z> 0∧y = k))). A specification for this monitor can be
presented inEAGLE as follows:

maxA(Form f) = f ∧©A(f)
min Ep(Form f) = f ∨⊙

Ep(f)
min Ev(int k) = Ep(z> 0∧y = k)
monM = A(x > 0→ Ev(x))

The transformed version ofM is as follows:

M′ = A(ρb1.((x > 0)→
Ev(ρb2.Ep(ρb3.((z> 0)∧ (y = k)∨Previous(Ep(b3), false))),x))∧Next(A(b1)))

The definitions ofupdate, evalandvaluefor R are as follows:

update〈〈R(ρb.H(b),P),s〉〉= R(ρb′.update〈〈H(ρb.H(b)),s〉〉,P)
update〈〈R(ρb.H(b),P),s〉〉= R(b′,P)

if R(ρb.H(b),P) is a subformula ofH(ρb.H(b))

Here,ρb.H(b) is first expanded toH(ρb.H(b)) and thenupdateis applied on it; that is,
the body of the rule is updated. The second equation detects a recursion, that is, update
of H(ρb.H(b)) encounters R(ρb.H(b),P) as a subformula ofH(ρb.H(b)). In that case
R(b′,F ,P) is returned terminating the recursion.

eval〈〈R(ρb.H(b),P),s〉〉= eval〈〈H(ρb.H(b))[p 7→ eval〈〈P,s〉〉],s〉〉

Here,ρb.H(b) is first expanded toH(ρb.H(b)) and then any arguments of primitive
type are evaluated and substituted in the expansion. The functioneval is then applied
on the expansion. Note that the result ofeval〈〈P,s〉〉, whereP is an expression, may
be a partially evaluated expression if expressions referred to by some of the variables
in P are partially evaluated. The expression gets fully evaluated once all the variables
referred to by the expressions are fully evaluated.

value〈〈R(B,P)〉〉= falseif R is minimal value〈〈R(B,P)〉〉= trueif R is maximal

Thevalueof a maxrule is trueand that of a minrule is false.
For example, for a sequence of states sequence{x = 0,y = 3,z = 1},{x = 0,y =

5,z= 2},{x = 2,y = 2,z= 0}, step-by-step monitoring of the formulaM′ on this se-
quence takes place as follows:

Step 1:s= {x = 0,y = 3,z= 1}
F1 = eval〈〈F,s〉〉

= A(ρb1.((x > 0)→
Ev(ρb2.Ep(ρb3.((z> 0)∧ (y = k)∨Previous(Ep(b3),(3 = k)))),x))∧Next(A(b1)))

Observe that in the above step the second argument of Previousis partially evaluated as
the value ofk is not available. The value ofk becomes available when we applyevalon
Ev. At that timeevalalso replaces the free variablek appearing in the first argument of
Ev by the actual value. This replacement can easily be seen if the definition ofevalof

11

Ev is written down.

Step 2:s= {x = 0,y = 5,z= 2}
F2 = eval〈〈F1,s〉〉

= A(ρb1.((x > 0)→ Ev(ρb2.Ep(ρb3.((z> 0)∧ (y = k)∨
Previous(Ep(b3),(3 = k)∨ (5 = k)))),x))∧Next(A(b1)))

Step 3:s= {x = 2,y = 2,z= 0}
F3 = eval〈〈F2,s〉〉= false

Thus the formula is violated on the third state of the trace.

4 Implementation and Experiments

We have implemented this monitoring framework in Java. The implemented system
works in two phases. First, it compiles the specification file to generate a set of Java
classes; a class is generated for each rule. Second, the Java class files are compiled into
Java bytecode and then the monitoring engine runs on a trace; the engine dynamically
loads the Java classes for rules at monitoring time.

Our implementation of propositional logic uses the decision procedure of Hsiang
[15]. The procedure reduces a tautological formula to the constant true, a false formula
to the constant false, and all other formulas to canonical forms which are exclusive or
(⊕) of conjunctions. The procedure is given below using equations that are shown to be
Church-Rosser and terminating modulo associativity and commutativity.

true ∧φ = φ false∧φ = false φ1∧ (φ2⊕φ3) = (φ1∧φ2)⊕ (φ1∧φ3)
φ∧φ = φ false⊕φ = φ φ1∨φ2 = (φ1∧φ2)⊕φ1⊕φ2
φ⊕φ = false ¬φ = true⊕φ φ1 → φ2 = true⊕φ1⊕ (φ1∧φ2)

φ1 ≡ φ2 = true⊕φ1⊕φ2

The above equations ensure that the size of a formula is small. In the translational phase,
a Java class is generated for each rule in the specification. The Java class contains a
constructor, avalue method, aneval method, and aupdate method corresponding
to thevalue, evalandupdateoperators in the calculus. The arguments are made fields
in the class and they are initialized through the constructor. The choice of generating
Java classes for the rules was made in order to achieve an efficient implementation.
To handle partial evaluation we wrap every Java expression in a Java class. Each of
those classes contains a methodisAvailable() that returnstrue whenever the Java
expression representing that class is fully evaluated and returnsfalse otherwise. The
class also stores, as fields, the different other Java expression objects corresponding
to the different variables (formula variables and state variables) that it uses in its Java
expression. Once all those Java expressions are fully evaluated, the object for the Java
expression evaluates itself and any subsequent call ofisAvailable() on this object
returnstrue .

Once all the Java classes have been generated, the engine compiles all the generated
Java classes, creates a list of monitors (which are also formulas) and starts monitoring
all of them. During monitoring the engine takes the states from the trace, one by one,

12

and evaluates the list of monitors on each to generate another list of formulas that be-
come the new monitors for the next state. If at any point a monitor (a formula) becomes
false an error message is generated and that monitor is removed from the list. At the
end of a trace the value of each monitor is calculated and if false, a warning message
for the particular monitor is generated. The details of the implementation are beyond
the scope of the paper. However, interested readers can get the tool from the authors.

EAGLE has been applied to test a planetary rover controller in a collaborative effort
with other colleagues, see [2] for an earlier similar experiment using a simpler logic.
The rover controller, written in 35,000 lines of C++, executes action plans. The testing
environment, consists of a test-case generator, automatically generating input plans for
the controller. Additionally, for each input plan a set of temporal formulas is gener-
ated that the plan execution should satisfy. The controller is executed on the generated
plans and the implementation ofEAGLE is used to monitor that execution traces sat-
isfy the formulas. The automated testing system found a missing feature that had been
overlooked by the developers: the lower bounds on action execution duration were not
checked by the implementation, causing some executions to succeed while they in fact
should fail due to the too early termination of some action execution. The temporal for-
mulas, however, correctly predicted failure in these cases. This error showed up later
during actual rover operation before it was corrected.

5 Conclusion and Future Work

We have presented the succinct and powerful logicEAGLE, based on recursive param-
eterized rule definitions over three primitive temporal operators. We have indicated its
power by expressing some other sophisticated logics in it. Initial experiments have been
successful. Future work includes: optimizing the current implementation; supporting
user-defined surface syntax; associating actions with formulas; and incorporating auto-
mated program instrumentation.

References

1. 1st, 2nd and 3rd CAV Workshops on Runtime Verification (RV’01 - RV’03), volume 55(2),
70(4), 89(2) ofENTCS. Elsevier Science: 2001, 2002, 2003.

2. C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, G. Roşu, and
W. Visser. Experiments with Test Case Generation and Runtime Analysis. In E. Börger,
A. Gargantini, and E. Riccobene, editors,Abstract State Machines (ASM’03), volume 2589
of LNCS, pages 87–107. Springer, March 2003.

3. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens.METATEM: An Introduction.
Formal Aspects of Computing, 7(5):533–549, 1995.

4. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Eagle does Space Efficient LTL Mon-
itoring. Pre-Print CSPP-25, University of Manchester, Department of Computer Science,
October 2003. Download: http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp25.pdf.

5. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Eagle Monitors by
Collecting Facts and Generating Obligations. Pre-Print CSPP-26, University
of Manchester, Department of Computer Science, October 2003. Download:
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp26.pdf.

13

6. D. Drusinsky. The Temporal Rover and the ATG Rover. In K. Havelund, J. Penix, and
W. Visser, editors,SPIN Model Checking and Software Verification, volume 1885 ofLNCS,
pages 323–330. Springer, 2000.

7. D. Drusinsky. Monitoring Temporal Rules Combined with Time Series. InCAV’03, volume
2725 ofLNCS, pages 114–118. Springer-Verlag, 2003.

8. B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting Statistics over Runtime Exe-
cutions. InProceedings of the 2nd International Workshop on Runtime Verification (RV’02)
[1], pages 36–55.

9. B. Finkbeiner and H. Sipma. Checking Finite Traces using Alternating Automata. InPro-
ceedings of the 1st International Workshop on Runtime Verification (RV’01)[1], pages 44–
60.

10. D. Gabbay. The Declarative Past and Imperative Future: Executable Temporal Logic for In-
teractive Systems. InProceedings of the 1st Conference on Temporal Logic in Specification,
Altrincham, April 1987, volume 398 ofLNCS, pages 409–448, 1989.

11. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Properties
on Running Programs. InProceedings, International Conference on Automated Software
Engineering (ASE’01), pages 412–416. ENTCS, 2001. Coronado Island, California.

12. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. InProceed-
ings of the 1st International Workshop on Runtime Verification (RV’01)[1], pages 97–114.
Extended version to appear in the journal: Formal Methods in System Design, Kluwer, 2004.

13. K. Havelund and G. Roşu. Monitoring Programs using Rewriting. InProceedings, Interna-
tional Conference on Automated Software Engineering (ASE’01), pages 135–143. Institute
of Electrical and Electronics Engineers, 2001. Coronado Island, California.

14. K. Havelund and G. Roşu. Synthesizing Monitors for Safety Properties. InTools and Algo-
rithms for Construction and Analysis of Systems (TACAS’02), volume 2280 ofLNCS, pages
342–356. Springer, 2002. Extended version to appear in the journal: Software Tools for
Technology Transfer, Springer, 2004.

15. Jieh Hsiang. Refutational Theorem Proving using Term Rewriting Systems.Artificial Intel-
ligence, 25:255–300, 1985.

16. D. Kortenkamp, T. Milam, R. Simmons, and J. Fernandez. Collecting and Analyzing Data
from Distributed Control Programs. InProceedings of the 1st International Workshop on
Runtime Verification (RV’01)[1], pages 133–151.

17. K. Jelling Kristoffersen, C. Pedersen, and H. R. Andersen. Runtime Verification of Timed
LTL using Disjunctive Normalized Equation Systems. InProceedings of the 3rd Interna-
tional Workshop on Runtime Verification (RV’03)[1], pages 146–161.

18. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime Assurance Based
on Formal Specifications. InProceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, 1999.

19. A. Pnueli. The Temporal Logic of Programs. InProceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pages 46–77, 1977.

20. K. Sen and G. Roşu. Generating Optimal Monitors for Extended Regular Expressions. In
Proceedings of the 3rd International Workshop on Runtime Verification (RV’03)[1], pages
162–181.

14

