PRODUCT DISTRIBUTION
LAGRANGIANS

David H. Wolpert

NASA Ames Research Center
http://ic.arc.nasa.gov/~dhw/

August, 2003

CENTRAL CONCEPT

APPLICATION DOMAINS

Optimization
Distributed Control
Game theory
Sampling of probability distributions
Corrections to COIN algorithms

MAXENT LAGRANGIANS

Mathematical underpinnings
(Grand)Canonical ensemble, etc.
Team games / Mean-field theory
Maxent game theory
ADAPTIVELY SOLVING FOR PROD. DIST.’S

Brouwer updating Gradient descent Importance sampling
Adaptive Metropolis-Hastings Sim. annealing / Prod. Distributions

POTPOURRI

Coordinate transforms Continuous spaces Constrained optimization
Black box optimization Time-extended systems Block look-ahead
Entropy bounds (un)supervised mach. learning Observing agents

CENTRAL CONCEPT

- A space z can be anything:
 - uncountable, symbolic, time-extended, states of human beings, states of computers, mixtures of any of these, etc.

- N Spaces $\{x_i\}_{i=1}^N$:
 - x_i are the joint elements, $x_{(i)}$ is all $\{x_{|\mu|}\}$
 - Need a rule $f(x) = z$ to match any sample x with a z:

(Need not be invertible)

This is a semi-coordinate system
Any distribution \(P(x) \) induces a \(P(z) \):

\[
P(z) = P(\bigcap x = z) = \int dx \ P(x) \prod_i (x_i = z)
\]

But we don’t have \(P(x) \); we have \(N \) distributions \(q_i(x_i \in x) \).

Need a rule \(\{q_i(x_i)\} \prod P(x) \) to get \(P(z) \)

For simplicity, choose the product distribution rule:

\[
P(x) = \prod_i q_i(x_i)
\]

Need a rule to set \(q = (q_1, q_2, \ldots, q_N) \)

I) Each \(q_i \) directly optimizes its own criterion.

II) \(q \) induces an optimal \(P(z) \). E.g.,
 i) Best approximate a provided \(P^*(z) \)
 ii) Best approximate a sample of \(P^*(z) \)

So each optimal \(q_i \) is the vector minimizing the Lagrangian

\[
L_i(q_i, q_{(i)})
\]

subject to \(q_i \) being a probability

- \(q_i \) may depend on \(q_{(i)} \) — but \(x_i \) and \(x_{(i)} \) are independent
- More semi-coordinates allows more accurate approximation
TAKE-HOME MESSAGE:

Whenever you encounter a distribution $P(z)$ that is difficult to deal with, try expanding it as a product distribution

$$\prod_i q_i(x_i)$$

with associated Lagrangians.

APPLICATION DOMAINS

- **Optimization**
 - Sampling of probability distributions
- **Distributed Control**
 - Corrections to COIN algorithms
- **Game theory**
- **Maxent Lagrangians**
 - Mathematical underpinnings
 - (Grand) Canonical ensemble, etc.
 - Team games / Mean-field theory
 - Maxent game theory
OPTIMIZATION

- **Core issue:** how to use information at one point to choose a next sample point.
- **NP hard** is when such information is useless.

 Example: convex maximization in \mathbb{R}^3

- Why optimization (and therefore control, high-dimension integration, etc.) can be hard

- Best case is continuous domains, where smoothness can be exploited — if you aren’t trapped in a vertex
- So: Distort problem so solution is off the border, and then weaken the distortion.

 - distorted problem solution
 - original problem solution

- Example: Interior point methods
• Can do this for discrete domains by using a probability distribution as the continuous variable

\[
\begin{align*}
P(x_1 = a) & \\
P(x_1 = b) & \\
P(x_1 = c) & \\
\end{align*}
\]

- \(P(x_1) \)
- \(P(x_1) = \int [x_1 - (1, 0, 0)] \) if \(x_1 = c \) exactly

Get the solution off the border

1) For each successive distorted problem, exploit smoothness to search over \(P(x) \)’s
- Gradient descent, Newton’s method . . . even simulated annealing.

Gradient descent to optimize categorical variables
subject to categorical constraints

2) Example: To minimize \(G(z) \), find the \(P(x) \) minimizing

\[
L(P) = \mathbb{E}_P(G(\mathbb{E}(x))) - S(P)
\]
- \(S(P) \) has infinite derivative at the simplex border
- Larger \(\square = \) less distortion — **anneal**
\[E_p(G) = \int x G(x) P(x) \text{ is linear in } P(x). \] Therefore,

\[\text{If } -S(P) \text{ is convex, so is } L(P) \]

So \(L(P) \) has a unique minimum, off the border

Example: Take \(S(P) \) to be the Shannon entropy,

\[S(P) = -\int x P(x) \ln[P(x)] \]

- As required, \(-S(P) \) is convex, with infinite derivative at the simplex border

- \(L(P) \) is minimized by the \textit{Boltzmann distribution},

\[P(x) = \exp(-G(x)) \]
As \square, $P(x)$ becomes a delta function about the x minimizing $G(x)$

Simulated annealing:

1) At each \square, perform an associated Metropolis-Hastings random walk

2) That walk eventually gives a random sample of $P(\square|x)$

3) When you think it has, increase \square, and repeat

So when you get to high \square, your sample is likely to be close to argmin $G[(\square|x)]$

... inefficient
Alternative: Use gradient descent (for example) to find \(P(x) \) at each \(b \):

\[
E_P(G(\{x\}))
\]

\[
L(P) \text{ (high } b)\n\]

\[
L(P) \text{ (low } b)\n\]

\[P(x_i = c)\]

\[P(x) \text{ lives in a huge space. How parameterize it?}\]

With a distributed parameterization, parameters can be estimated separately from each other. So optimization

i) can be parallelized,

ii) can be used for distributed control,

So . . .

Use a product distribution: \[P(x) = q(x) = \prod_i q_i(x_i) \]
Downside:

- \[L(q) = \mathbb{E}_q(G(x)) - S(q) = \mathbb{E}_x G(x) q_i(x) - S(q) \]

- \(L \) is linear in \(P \) — but *multilinear* in the \(q_i \)

- So even for convex \(S(q) \), \(L(q) \) need not be convex:
 - **At any \(b \), \(L(q) \) can have multiple minima**

- Even for entropic \(S \),
 - **At any \(b \), \(q(x) \) can have multiple peaks**
 (just like multiple Nash equilibria . . .)

Intuition:

- \(L \) convex over \(\mathbb{P}^+ \), the simplex of all distributions

- \(L \) *not* convex over \(\mathbb{P} \), the submanifold through \(\mathbb{P}^+ \) of all product distributions

\(\mathbb{P}^+ \):
Solutions:

1) If \(S(q) = \prod_i S_i(q_i) \), then for fixed \(q(i) \), \(L_i(q) \) is convex in \(q_i \).

2) Anneal \(\mathbb{Q} \):

3) Change coordinates:

APPLICATION DOMAINS

- Optimization
- Distributed Control
- Game theory
- Sampling of probability distributions
- Corrections to COIN algorithms

Maxent Lagrangians

Mathematical underpinnings
(Grand) Canonical ensemble, etc.
Team games/Mean-field theory
Maxent game theory
1) The challenge:
 i) $z = (z_1, z_2)$
 ii) G a function of both z_i
 iii) Can only control z_1 . . .

2) So choose z_1 to maximize $E(G \mid z_1)$, i.e.,
 \[\max_{z_2} G(z_1, z_2) P(z_2 \mid z_1) \]

3) Want each control variable z_1 set autonomously

1) “Just” optimization;
 Basis of conventional control theory

2) For our desired distributed solution, use a product
distribution approach instead of control theory?

3) Two major problems:
 i) In naive prod. distribution optimization you set all q_i
 - here you can’t set q_2.
 ii) $P(z)$ is explicitly not a product distribution.
Solution:

Puppet master moves sticks \(q_p \), which move strings \(P(z_2 \mid z_p) \), which move puppet, *expected* \(G \)

Formally,

1) \(x = \) the control variables, \(z_1 \)

So \(E_q(G \mid x) = \int dx \ q(x) \ E(G \mid z_1 = x) \)

\(= \int dx_1 \ q(x) \int d(z_2) G(z_1, z_2) P(z_2 \mid z_1 = x) \)

\(= \int dx_1 \ \prod_i q_i(x_i) \int d(z_2) \ G(z_1, z_2) P(z_2 \mid z_1 = x) \)

2) Get off the border: \(L(q) = \mathbb{E}E_q(G \mid x) - S(q) \)

Overview:

\[\begin{array}{c}
\text{minimizing} \quad \text{Expected } G \text{ hard to find.} \\
\text{So use a product distribution, and get off the border:} \\
\text{Find } q(x) \text{ minimizing } L(q) \text{ (easy), and then raise } \mathbb{E}.
\end{array} \]
APPLICATION DOMAINS

Optimization
Distributed Control
Sampling of probability distributions
Corrections to COIN algorithms

Maxent Lagrangians
Mathematical underpinnings
(Grand) Canonical ensemble, etc.
Team games / Mean-field theory

Central Concept

NONCOOPERATIVE GAME THEORY

1) A set of N players, each choosing a pure strategy, \(z_i \)
2) A set of N payoff functions \(h_i(z) \)
3) \(z \) is a Nash equilibrium iff for all players i,
 for all \(z', h_i(z', z(i)) \leq h_i(z_i, z(i)) \)

Example: Prisoner’s dilemma
payoff table \((h_1(z), h_2(z))\)
Player 1’s move: \((2, 2), (10, 0)\)
Player 2’s move: \((0, 10), (7, 7)\)
• **Problem:**
 Some games have no Nash equilibrium

• **Solution:**
 i) Players take mixed strategies $P_i(z_i)$;
 ii) $\square_i P_i(z_i)$ a Nash equilibrium iff for all players i,
 no change to $P_i(z_i)$ will increase $\square \{ h_i(z) \} \square_i P_i(z_i)$

 \[\ldots \text{gee, a product distribution} \ldots \]

• Nash used Brouwer’s fixed point theorem to prove
 always exists a mixed strategy Nash equilibrium

 \[\ldots \text{gee, “Brouwer” is the name of a rule for}
 \text{setting product distributions} \ldots \]

• **Unresolved problems:**
 1) Finding Nash equilibria is a (hard) multi-criteria optimization problem
 2) In real world, never at a Nash equilibrium, due to limited computational power, if nothing else.

 \[\text{Bounded rationality} \]

• Attempts to date to solve (2) are just more elaborate models of (human) players
 - Underlying problem is arbitrariness of the models.
Alternative:

1) For now, take \(\square = \square \) and define \(g_i(x) = -h_i(x) \)
2) At Nash equilibrium, each \(q_i \) minimizes
\[
L_i(q) = E_{q_i}(g_i | q_{(i)})
= \mathbb{E}_x g_i(x) \quad j \quad q_j(x_j)
\]
3) Allow broader class of Lagrangians.
 E.g., each \(q_i \) minimizes
\[
L_i(q) = \mathbb{E}_{q_i}(g_i | q_{(i)}) - S(q)
\]
4) \(\square < \) is bounded rationality

1) \(S(q) \) can be set from first principles (e.g., using information theory)
2) \(S(q) \) can be set to enforce a particular model of rationality
3) Can also set the model of rationality by replacing the \(g_i \) term in \(L_i \). E.g.,
\[
-g_i(x) = h_i(\square x) - [h_i(\square x)]^2
\]
penalizes \(q_i \) for which the r.v. \(h_i(\square x) \) has large variance.
4) Alternatively, replacing \(g_i \) with
\[
g_i(x) = \mathbb{E}_j f_{ij}(x)
\]
is equivalent to having player \(i \) try to optimize several payoff functions at once
1) If \(S(q) \) has infinite derivatives at \(Q \)'s border, the optimal \(q \) for \(Q < \) is off that border — and usually easier to find.

2) If in addition \(S(q) = \bigcup_{i} X_{i} S_{i}(q_{i}(x_{i})) \) and \(S_{i} \) is bounded below, minimizing \(L_{i}(q) \) is conventional (full rationality) game theory — just with a new payoff function,

\[
f_{i}(x, q) = g_{i}(x) - \frac{S_{i}(q_{i}(x_{i}))}{q_{i}(x_{i})}
\]

So \(-\frac{S_{i}(q_{i}(x_{i}))}{q_{i}(x_{i})} \) is a preference ordering for (the difficulty of) the computation of \(q_{i}(x_{i}) \)

1) If \(Q \neq Q \) every \(x_{i} \) \(Q \) delineates a set of binding contracts among the players — a set of \(z \) — that coordinate \(i \) “offers”:

\[
Q = x_{i} Q z Q X_{i} Q(x_{i}, x_{(i)})
\]

2) The contract finally accepted — the value of \(z \) — is the intersection of the contract sets offered by all players.
In addition, if \(\square \neq \square \), the strategies of the players are no longer independent:

\[
P(z_i, z_j) = \int dx \int_k q_k(x_k) \left(\frac{\partial G}{\partial x} - z_i \right) \left(\frac{\partial G}{\partial z} - z_j \right)
\]

- So player \(i \)'s strategy choice affects the strategy choice of player \(j \)

1) Stochastic dependence, but not necessarily Bayes-optimality (as in correlated equilibria)

2) If \(z \) is interpreted as the final joint action in a multi-stage game, this gives Stackelberg games, signalling, etc.

1) In a *team game*, all \(g_i \) are the same function, the *world utility*, \(G \)

E.g., \(G(x) = \int_i h_i(\square(x)) \)

2) For \(S(P) \) concave with infinite derivative at \(\square \)'s border, \(L(P) = \int E_p(G(\square(x))) \) - \(S(P) \) is a convex surface with a single global minimum:

- One and only one solution
- The solution is easy to find

3) This optimal \(G \) is not a product distribution in general, i.e., it couples the players, regardless of whether \(\square = \square \)
Central Concept

APPLICATION DOMAINS

Optimization
Distributed Control
Game theory

Sampling of probability distributions
Corrections to COIN algorithms

Maxent Lagrangians
Mathematical underpinnings
(Grand) Canonical ensemble, etc.
Team games / Mean-field theory
Maxent game theory

SAMPLING PROBABILITY DISTRIBUTIONS

• Say you want to evaluate a high-dimensional integral

\[\int d\mathbf{z} f(\mathbf{z}) p(\mathbf{z}) \]

where \(p(\mathbf{z}) \) is a probability distribution

• A very common problem, e.g., in Bayesian analysis, materials science, physics, chemistry, etc.

• In Monte Carlo algorithms, one does this by repeatedly sampling \(p(\mathbf{z}) \), and averaging the associated values of \(f(\mathbf{z}) \)

• But how do you sample \(p(\mathbf{z}) \)?
1) Perform a guided random walk through
 i) **Metropolis Hastings** (MH) algorithm — the basis of
 simulated annealing
 ii) Only exactly correct asymptotically

2) Approximate \(p(z) \) with a product distribution \(q \) and
 sample \(q \) directly
 i) No wait for asymptotia
 ii) There are two primary approximation error
 measures: **forward KL** and **backward KL**
 iii) They give different Lagrangians, and so different
 algorithms for estimating optimal \(q \)
 iv) Associated integration errors may be correctable
 with **importance sampling**

Hybrid combinations of (1) and (2):

I) MH uses a distribution \(R \) to set the walk’s initial \(z \)

II) MH uses a **proposal distribution** \(Q \) after that:

 i) \(Q \) gives the “exploration” point \(z_e \) found from the
 current point \(z^i \)

 ii) \(z^i \) becomes \(z_e \) always if \(p(z^e) > p(z^i) \)

 iii) else \(z^i \) becomes \(z_e \) with probability
 \(p(z^e)Q(z^i) / p(z^i)Q(z^e) \)

 Either \(R \) and/or \(Q \) can be set to
 the \(q \) found via either inverse KL and/or forward KL.
Hybrid combinations of (1) and (2):

I) MH’s walk gives a sample D of p;

D can be used to estimate the q that best approximates p

- Can be used for either the approximation error of inverse KL q or of forward KL q
- Can then sample from this q (not the same as re-sampling from D)

II) In adaptive MH, (I) is done repeatedly;

- Each time the new q is used to modify Q
- Crucial that the modification is Markovian
CORRECTIONS TO COIN ALGORITHMS

1) In optimization and sampling, calculating the optimal \{q_i\} usually intractable.

The \{q_i\} must be set adaptively

2) In control, often don’t even know what to calculate (can’t accurately model the system) . . .

Agents — the \{q_i\} — must be set adaptively

3) Control should be robust against failures/noise, and if distributed have few communication requirements . . .

The \{q_i\} must be set adaptively

• A collective is

i) A set of agents \{i\}, each of which

ii) tries to make the move \(x_i\) that maximizes an associated private utility function \(g_i(x)\),

iii) together with a world utility \(G(x)\) measuring the performance of the overall system

• The probability distribution across \(G\) values is set by

i) how “aligned” each \(g_i\) is with \(G\); does replacing \((x_p, x_{(i)}) \square (x'_p, x_{(i)})\) improve \(g_i\) iff it improve \(G\)?

ii) the size of the “signal” of the change in \(g_i\) under \((x_p, x_{(i)}) \square (x'_p, x_{(i)})\) in comparison to the “noise” of the change under \((x_p, x_{(i)}) \square (x_{(i)}, x'_{(i)})\)
• In COllective INtellience (COIN) experiments, at each iteration the simplest common machine learning algorithm was used by each i to choose x_i:

i) For each $x_i \in \mathbb{I}$, estimate $g_i(x_i, x_{(i)})$ by averaging the g_i values in previous iterations in which $\mathbb{I} = x_i$

ii) To trade off “exploration vs. exploitation”, choose among the x_i according to a Boltzmann distribution over those estimated g_i values

Product distribution theory provides an alternative perspective:

Rather than “trying to maximize g_i” by “trading off exploration and exploitation”, the algorithms “try to find a bounded rational equilibrium”

1) Previous work based on a set of mathematical premises expected to hold for any learning algorithm

2) Using those can solve for the g_i of a particular form that are aligned with G and have best signal / noise:

$$AU_i(x) = G(x) - \int_{x'} f(x') G(x', x_{(i)})$$

for a distribution $f(.)$

3) Usually arbitrarily chose $f(.)$ to be uniform

Product distribution theory says what $f(.)$ should be

- uniform is not correct
1) Computer experiments compared $g_i = AU_i$ and the team game $g_i = G$

It was found that when they shared the same temperature, for some temperature ranges the team game outperformed AU

2) No understanding of how to avoid this without modifying AU’s temperature

P.D. theory shows that this phenomenon is due to a biased estimator of the Boltzmann exponentials

1) A problem with AU_i is that it requires evaluating G for counter-factual x_i values

2) A partial solution is to approximate $f(x_i) = \mathbb{I}(x_i, CL_i)$ for some “clamping parameter” CL_i.

3) This defines the private utility WLU_i

4) Didn’t know how to choose CL_i in practice (intuition usually used)

P.D. theory says what CL_i should be to best approximate the correct AU
1) In computer experiments, there was an initial data-gathering period in which all coordinates were set randomly.

2) After that, learning algorithms were turned on a few at a time, to avoid too much disruption to the system.

3) Didn’t know how fast to turn on the algorithms, which to turn on when, etc.

P.D. theory shows this to be “mixed serial-parallel Brouwer updating”, which can be optimized.

• In Intelligent Coordinates (IC), the random exploration step of simulated annealing is replaced by “intelligent exploration”:
 Each variable’s exploration value is set by the move of an associated learning algorithm of an underlying collective.

P.D. theory shows that this is “adaptive Metropolis-Hastings with Brouwer updating” — and with the mistake that the keep/reject step does not reflect the proposal distribution.
MATHEMATICAL FOUNDATIONS

1) We want to formalize how “surprised” you are if you observe a value s generated from a distribution $P(s)$

2) We want the surprise at seeing the IID pair (s, s') to equal the sum of the surprises for s and for s'

3) This means surprise(s) = $-\ln[P(s)]$

4) So expected surprise is the Shannon entropy

$$S(p) = -\sum P(s)\ln[P(s)]$$

- Shannon entropy is concave over P
- Information in P is what’s left over after surprise: $-S(P)$

Maxent: Given only constraints $\{E(g) = 0\}$, choose minimal information P consistent with those constraints
1) We want to formalize “how far apart” P_1 and P_2 are

2) Generate m unordered data D by IID sampling P_1, then misassigning to each $d_i \in D$ the probability $P_2(d_i)$

3) So you assign to all of D the likelihood $\prod_{i=1}^{m} P_2(d_i) \cdot C(D)$ where $C(D)$ is the multinomial counting factor

4) Take log of this and divide by m, to get “likelihood rate”. As $m \to \infty$, with $S(P || P') = -\sum P(s) \ln[P'(s)]$, the rate is the Kullback-Leibler distance

$$KL(P_1 \parallel P_2) = S(P_1 \parallel P_2) - S(P_1 \parallel P_1)$$

- $KL(P_1 \parallel P_2)$ is never negative, and equals 0 iff $P_1 = P_2$

- We want to minimize a smooth function $f(s \in \mathbb{R}^n)$ subject to K constraints $\{g_i(s) = 0\}$

- Define $L(f, \{g_i\})(s) = f(s) + \sum L_i g_i(s)$

- L is the Lagrangian, and the $\{L_i\}$ the Lagrange parameters

- Set the partial derivatives of L with respect to both s and the Lagrange parameters to 0. Voila.

Example: Each $g_i(s)$ forces a different subset of s’s components to sum to 1, i.e., to be a probability distribution.
- Convex f enforces non-negativity.
Brouwer’s fixed point theorem:

- Let \(f(s) \) be a smooth map from \(V \), into \(V \), where \(V \) is a bounded convex connected subset of \(\mathbb{R}^n \)
- Then there exists \(s \) such that \(s = f(s) \)

1) Both \(\square \) and \(\square^+ \) are bounded convex connected subsets of \(\mathbb{R}^n \)
 - So any smooth map over them has a fixed point

2) In particular, if the Lagrange minimization problem gives \(q = f(q) \) for a smooth \(f(.) \), then the problem has a solution
 - \(q \square \ f(q) \) is a *Brouwer update* of \(q \)

Problem: How to express arbitrary \(P(z) \) with a prod. dist.?

Solution:

\(\square = \square \) won’t work . . . so introduce more semi-coordinates

Example:

1) i) \(z = (z_1, z_2) \)
 - ii) \(|\square| \) possible values of each \(z_i \)
2) i) Have \(\square_k = \square \) — the value of \(x_1 \) tells you \(z_1 \)
 - ii) Have an extra \(\square \) for each possible value of \(z_1 \);
 - \(x_{z_1} \) says what value \(z_2 \) has when \(\square_k = z_1 \)
Formally,

\[z_1 = P(x_1, x_{z',1}, x_{z'',1}, \ldots, x_{|z|+1}) = x_1 \]
\[z_2 = P(x_1, x_{z',1}, x_{z'',1}, \ldots, x_{|z|+1}) = x_{z'} = x_{z''} \]

So

\[P(z_1) = P(x_1) = q_1(x_1) \]
\[P(z_2 | z_1) = P(x_{z1} = z_2 | x_1 = z_1) = q_{z1}(x_{z1}) \]

Representation theorem: For any \(P(z) \), there exists a coordinate system \(P(.) \) and product distribution \(q(.) \) such that \(q \) induces \(P \).
1) Consider the Lagrangian \(L_i(q) = \nabla E_{q_i}(g_i | q_{(i)}) - S(q) \) where \(S \) is Shannon entropy.

2) This \(L_i \) minimizes \(KL(q || p_{\text{Bi}}) \), where \(p_{\text{Bi}} \) is the exact Canonical ensemble.

3) Its optimizing \(q_i \) is
\[
q_i^g(x_i) = \frac{e^{\sum_i g_i(x_i) q_{(i)}}}{\prod_i \int e^{\sum_i g_i(x_i) q_{(i)}} dx_i}
\]

where as before \([g_i]_{q_{(i)}}(x_i) \) is expected \(g_i \) conditioned on \(x_i \), when other coordinates are distributed according to \(q_{(i)} \).

Each “particle” \(i \) coupled to its own distinct “heat bath”, i.e., a mean field approximation.

1) Now have each \(g_i(x) = G(x) + \prod_i h_i(x) \), where the \(\{h_i\} \) are all integer-valued functions.

2) Then the \(L \)-minimizing \(P \) is the Grand canonical ensemble, and the minimizing \(q \) is a mean field approximation to it

- \(x_i \) encodes the state of all particles of type \(i \)
- \(h_i(x) \) is the chemical potential of particles of type \(i \) multiplied by their number — which is allowed to vary

- If we minimize \(KL(p_{\text{Bi}} || q) \) instead, we get the marginal,
\[
q_i(x_i) = p_{\text{Bi}}(x_i)
\]

- Unlike \(q_i^{g_i} \), this inverse \(KL \) \(q \) is independent of \(q(i) \)
- Can calculate it through importance sampling.
Consider bounded rational game theory with Lagrangians $L_i(q) = \mathbb{E}_{q_i}(g_i | q^{(i)}) - S(q)$ where S is Shannon entropy.

1) This Lagrangian arises if each player (chooses its mixed strategy to) maximize its entropy, subject to a provided expected payoff and the other players’ mixed strategies.

2) Alternatively, it arises if each player maximizes its expected payoff, subject to a provided entropy.

All mathematical machinery of statistical physics can be applied to bounded rational game theory.
1) Want a measure of “how rational” \(q_i \) is

 • Can’t use \(E_{q_i}(g_i) \) — it depends on \(q_{(i)} \)

2) A *rationality function* \(R(U, q_i) \) measures how peaked \(q_i \) is about \(\arg\min_{x_i} U(x_i) \) for any function \(U \)

 i) Rationality is the inverse temperature if \(q_i \) is a Boltzmann distribution in \(U \):

 \[
 R(U, q_i) = \begin{cases}
 \text{if } q_i
 \end{cases} \text{exp}\{-\text{U}\}
 \]

 ii) Maximizing entropy subject to a rationality value gives a Boltzmann distribution at that temperature:

 Of all \(q_i \) such that \(R(U, q_i) = \text{max} \), the one with maximal entropy is \(q_i \)

3) We are interested in \(U(x_i) \) that measure expected payoff to \(i \) if it makes move \(x_i \). So for any function \(V(x) \), define

 \[
 [V]_{i,q}(x_i) = E_{q_i}(V(x_i)) = \int_{x_i} V(x_i, x_{(i)}) q_i(x_{(i)})
 \]

4) \(R([g_i]_{i,q}, q_i) \) is our measure of “how rational” \(q_i \) is.

5) Intuitively, it is the inverse temperature of the distribution over \(i \)’s expected payoffs when it chooses moves according to \(q_i \).
• The optimal \(q \), given rationalities \(\{ \{ \Box \}_i \} \), is the minimizer over \(q \) and the \(\{ \Box \}_i \) of

\[
L(q, \Box) = \prod_i \left[R([g_i]_{i,q}, q_i) - \prod_i \right] - S(q)
\]

• At any local minimum of \(L(q, \Box) \), for all \(i \),

\[
q_i \exp \{ -\prod_i [g_i]_{i,q_i} \}
\]

Proof: i) The Lagrange parameter term forces any local minimum to obey \(R([g_i]_{i,q_i}, q_i) = \prod_i \) for all \(i \).

ii) The \(q_i \) maximizing entropy while obeying \(R([g_i]_{i,q_i}, q_i) = \prod_i \) is the Boltzmann distribution. QED

The maxent \(q \) is the minimal information \(q \) that is consistent with specified player rationalities

• Finding the Nash equilibria of a non-team game is typically viewed as a multi-criteria optimization problem

• Finding the bounded rational equilibria is a single-criteria optimization problem:

Minimize \(L(q, \Box) \)

• All solutions to this problem are off \(\Box \)'s border, and therefore easy to find
Example: Rationality is the inverse temperature of that Boltzmann distribution that best fits q_i:

$$R(U, q_i) = \arg\min_{q_i} [\text{KL}(q_i \parallel \exp\{-U\} / N(U))]$$

Must establish both requirements of a rationality function are met:

1) KL distance is non-negative, equalling zero only if its arguments are equal.

 If $q_i = \exp\{-U\} / N(U)$, taking $b = U$ gives a KL distance of 0.

 So the rationality of this q_i is 0, as required.

2) i) Writing it out,

 $$R(U, q_i) = \arg\min_{q_i} [\mathbb{E}_{q_i}[U(x_i)] + \ln(N(U))]$$

 ii) So $\mathbb{E}_{q_i}[U(x_i)] = -\partial_b \ln(N(U))|_{b=R(U, q_i)}$

 iii) So all q_i with rationality b have the same $\mathbb{E}_{q_i}[U(x_i)]$

 iv) Therefore of all q_i with rationality b, the one with the maximal entropy is the Boltzmann distribution with that inverse temperature. QED

In practice, replacing the rationality constraint term in $L(q, \square)$ with an expected utility constraint may be easier.
The grand canonical ensemble can model bounded rational games in which the number of actors varies.

Intuition: Actors have “types”, just like particles have properties

Example 1 (microeconomics):
- i) A set of bounded rational companies,
- ii) with payoff functions given by market valuations,
- iii) each of which must decide how many employees of various types to have.

Example 2 (evolutionary game theory):
- i) A set of species,
- ii) with payoff functions given by fractions of total resources they consume,
- iii) each of which must “decide” how many phenotypes of various types to express.

ADAPTIVELY SOLVING FOR PROD. DIST.’S

<table>
<thead>
<tr>
<th>Brouwer updating</th>
<th>Gradient descent</th>
<th>Importance sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Metropolis-Hastings</td>
<td>Sim. annealing / Prod. Distributions</td>
<td></td>
</tr>
</tbody>
</table>

POTPOURRI
Coordinate transforms
Black box optimization
Entropy bounds
BROUWER UPDATING

1) To “set q_i adaptively” means iteratively trying to minimize $L(q_i, q_{(i)})$, given partial information about $q_{(i)}$.

2) As an example, consider again the Lagrangian

$$L_i(q) = E_q(g_i(x)) - S(q)$$

3) Say $S(q) = \int_i S_i(q)$

So S is linear in the coordinates . . .

3) E.g., recall that since q is a product distribution, such linearity holds when S is the entropy,

$$S(q) = -\int x q(x) \ln[q(x)] = -\int_i \int x_i q(x_i) \ln[q(x_i)]$$

4) For any such linear S, L is linear:

$$L(q) = \int_i \left(\int x_i q_i(x_i) [g_i]_{i|q}(x_i) - S_i(q_i) \right)$$

where as before, $[g_i]_{i|q}(x_i)$ is expected g_i conditioned on x_i, when other coordinates are distributed according to $q_{(i)}$.
5) i) If we sample \(g_i(x) \) repeatedly for a particular \(x_i \), we get an estimate of \([g_i]_{i,q}(x_i) \)
ii) Say the adaptive algorithm setting \(q_i \) can always evaluate the current \(S_i(q_i) \)

In this situation,

Each \(q_i \) can adaptively estimate its contribution to \(L(q) \)

6) Recall that at the \(q \) minimizing the entropic \(L(q) \),

\[
q_i^{g_i}(x_i) = e^{\sum_{i} [g_i]_{i,q}(x_i)}
\]

Each \(q_i \) can adaptively estimate its best-case form

Parallel Brouwer updating: All coordinates \(i \) simultaneously replace

\[
q_i(x_i) = \frac{e^{\sum_{i} [\hat{g}_i]_{i,q}(x_i)}}{N_{i,q}(\sum_{i} [\hat{g}_i]_{i,q})}
\]

where \([\hat{g}_i]_{i,q}(.) \) is the estimated \([g_i]_{i,q} \), and \(N_{i,q}(\cdot) \) is the associated normalization constant (partition function).

- Akin to game theory’s “fictitious play” strategy
- Slow convergence — jumps all over \(\square \). Can even worsen the approximation in any given update
Serial Brouwer updating:

One coordinate i at a time Brouwer updates

- Guaranteed to decrease L_i if estimate of $[g_i]_{i,q}$ is accurate

Greedy serial Brouwer updating:

1) The Lagrangian gap of coordinate i is how much L_i drops if only i updates:

$$\ln|N_{i,q}([g_i]_{i,q})| + E_{q_i}([g_i]_{i,q}) + S_i(q_i)$$

2) The coordinate with the largest gap updates

Mixed serial/greedy Brouwer updating:

Optimal COIN “turning on algorithms”, i.e., optimal Stackelberg game, i.e., optimal organization chart

ADAPTIVELY SOLVING FOR PROD. DIST.’S

<table>
<thead>
<tr>
<th>Brouwer updating</th>
<th>Gradient descent</th>
<th>Importance sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Metropolis-Hastings</td>
<td>Sim. annealing / Prod. Distributions</td>
<td></td>
</tr>
</tbody>
</table>

POTPOURRI

<table>
<thead>
<tr>
<th>Coordinate transforms</th>
<th>Continuous spaces</th>
<th>Constrained optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black box optimization</td>
<td>Time-extended systems</td>
<td>Block look-ahead</td>
</tr>
<tr>
<td>Entropy bounds</td>
<td>(un)supervised mach. learning</td>
<td>Observing agents</td>
</tr>
</tbody>
</table>
1) Say \(S_i(q_i) = \mathbb{V}_{q_i} S_{i,x_i}(q_i(x_i)) \) (again, like with entropy).

2) Then the \(q_i(x_i) \) component of \(\mathbb{V}L(q) \), projected onto the space of allowed \(q_i(x_i) \), is

\[
\mathbb{V}[G]_{i,q}(x_i) + S_{i,x_i}(q_i(x_i)) / q_i(x_i)
\]

\[= \mathbb{V}x_i \left(\mathbb{V}[G]_{i,q}(x_i) + S_{i,x_i}(q_i(x_i)) / q_i(x_i) \right) \]

- The subtracted term ensures normalization

3) The \(S_{i,x_i}(q_i(x_i)) / q_i(x_i) \) values are known by inspection

4) The \(\mathbb{V}[G]_{i,q}(x_i) \) terms are estimated as in Brouwer updating

Each \(q_i \) can adaptively estimate how it should change under gradient descent over \(L(q) \)

5) Similarly the Hessian can readily be estimated (for Newton’s method), etc.
1) Consider a team game. Let \(n_i \) be the samples of \(G \) used by coordinate \(i \) to decide how to change under gradient descent.

2) The expected quadratic error in that descent step is

\[
\min_{q(0), \{P(n_i | q(i), g_i)\}} \left[\sum_{n_i} P(n_i | q(0), g_i) \{L_G(q) - L_{n_i}(q_i)\}^2 \right]
\]

where the gradients are the true gradient of \(L \) for utility \(G \) and the estimated gradient for utility \(g_i \).

3) This is just a conventional bias\(^2\) plus variance!

4) Of the \(g_i \) guaranteed to be unbiased, the one with the smallest variance is

\[
G(x) - \sum_{x_i'} G(x_i', x_{(i)}) A(x_i')
\]

where \(A(.) \) a distribution, \(A(x_i') \) being proportional to the reciprocal of the number of times \(x_i' \) occurred in \(n_i \).

CENTRAL CONCEPT

APPLICATION DOMAINS

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Distributed Control</th>
<th>Game theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling of probability distributions</td>
<td>Corrections to COIN algorithms</td>
<td></td>
</tr>
</tbody>
</table>

MAXENT LAGRANGIANS

- Mathematical underpinnings
- (Grand) Canonical ensemble, etc.
- Team games / Mean-field theory
- Maxent game theory
Whenever you encounter a distribution $P(z)$ that is difficult to deal with, try expanding it as a product distribution

$$\prod_i q_i(x_i)$$

with associated Lagrangians.