Neuro-Electric Machine Control

Overview of the Extension of the Human Senses Group Activities

Kevin R. Wheeler, Ph.D.
NASA Ames Research Center
kwheeler@mail.arc.nasa.gov

Funded by NASA CICT/ITSR/ICD/NEMC, IS/HCC, IS/IDU
Extension of the Human Senses Group

Principal Investigators:

Kevin R. Wheeler, Ph.D. – Group Lead, EMG recognition
Chuck Jorgensen, Ph.D. – Chief Scientist, silent speech, spiking neurons
Leonard J. Trejo, Ph.D. – EEG Brain Computer Interfaces

Group Members:
Mark Millonas, Ph.D.
Mark Allan, QSS Group Inc.
Charles Curry, QSS Group Inc.
Bryan Matthews, QSS Group Inc.
Shane Agabon, QSS Group Inc.
Diana Lee, SAIC
Jack Culpepper, student,
Walter Lee, student

P.O.C:
Kevin.R.Wheeler@nasa.gov
www.ic.arc.nasa.gov/projects/ne/ehs.html

Funded by NASA CICT/ITSR/ICD/NEMC, IS/HCC, IS/IDU
Group Projects

control with gestures

robotic interfaces
semi-autonomy

brain computer interfaces

Tool Grasps

silent speech

atmospheric inference

streaming frameworks
Applications

Neuro-electric Interfaces

Nano Device Control
Planetary Discovery
Exoskeleton Control
Silent Communication
Manipulator Control
Wearable Cockpits
Data World Immersion
Human/Machine Communication
Output sensory mapping
Virtual joystick
Output sensory mapping
Virtual Keypad
Gestures for semi-autonomy

Tool Grasps
Brain Computer Interfaces

Leonard J. Trejo, Ph.D.

mu rhythm control:

Real Movement

Imagined Movement

EEG(C3,C4): 8.7 Hz ERD
EMG: 40 Hz ERS

Subject 01
11 Real Motions

REST
MOVE
REST

REST
IMAGINE
REST
Sensor Positioning System

1. 64-electrode EEG signal from real-motion condition
2. Narrow-band filter at desired frequency
3. Select artifact-free EEG segments
4. Spatial SVD
5. First 2 Orthogonal Components
6. Approximate C1, C2 with 2 electrode pairs
7. Incorporate in sensor design for real-time system
Non-contact Sensor Development

Design Goals

Near-term
- Refine non-contact technology
- E-field sensor (normal to scalp)
- Shielded room

Mid-term
- Differential sensor (tangential to scalp)
- Mini sensors (2-3X smaller, thinner, with manufactured cover)

Long-term
- Unshielded room
- Multichannel

QUASAR: Quantum Applied Science and Research Inc.
Application of KPLS and SVM

- Classification of EEG patterns associated with single-tap typing motions in three subjects
- Developed and tested a linear PLS preprocessing system
- Combined PLS system with linear SVM classifier
- PLS-SVM system detected single-tap patterns with accuracy of 80% to 95% (an increase of 15% to 30% over previous system)
- Implemented and tested PLS-SVM system in real-time framework
Silent Speech

Charles Jorgensen, Ph.D.

Electrode Placement:

Ground
Gesture Control

movie
Signal Processing Environment for Algorithm Development
The Need for SPEAD

Earth Sciences –
• **data**: large, distributed, heterogeneous formats, lacking docs
• **time waste**:
 – formatting and manipulating files (80/20 rule)
 – implementing machine learning algorithms from literature for discovery tasks
 – lack of scientific method due to accessibility of appropriate forward models (need implementation using first principles)

Neurosciences –
• **data**: never enough, many artifacts, heterogeneous formats
• **time waste**:
 – formatting and manipulating files
 – manual artifact rejection
 – implementing machine learning algorithms for pattern recognition
 – porting from batch to “live” environments for closed-loop experiments
System Requirements

• Easy to program (graphical wiring diagrams)
• Multiple platforms (Mac OS X, Linux)
• Runs on single or multiple machines
• Very fast interactive 2-D & 3-D graphics (OpenGL)
• Support commercial domain packages (e.g. Matlab)
• Seamless transition from batch to streaming processing
• Ability to work with HDF, XML, text, Matlab, and other formats
• Scripts can be run without graphical front-end
• Inclusion of atmospheric forward modeling code for Bayesian inference
• Easy to modify for different scenarios
Conclusion

Collaborations & Partnerships

Kevin Wheeler
kwheeler@mail.arc.nasa.gov
www.ic.arc.nasa.gov/projects/ne/ehs.html
Atmospheric Inference
Naïve Bayes Classification
Concluding Goals

• Collaborations & Partnerships:
 • pattern recognition for streaming data problems
 • providing software framework to partners
 • application of bioelectric interfaces to real-world problem domains.
 • converting from full manual to semi-autonomous control
 • atmospheric inference
 • Bayesian modeling techniques
 • Space based construction
Conclusion

control with gestures

robotic interfaces
semi-autonomy

brain computer interfaces

atmospheric inference

streaming frameworks

silent speech