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ABSTRACT
When designing products, it is crucial to assure failure and

risk-free operation in the intended operating environment. Fail-
ures are typically studied and eliminated as much as possible dur-
ing the early stages of design. The few failures that go undetected
result in unacceptable damage and losses in high-risk applica-
tions where public safety is of concern. Published NASA and
NTSB accident reports point to a variety of components identi-
fied as sources of failures in the reported cases. In previous work,
data from these reports were processed and placed in matrix form
for all the system components and failure modes encountered,
and then manipulated using matrix methods to determine simi-
larities between the different components and failure modes. In
this paper, these matrices are represented in the form of a lin-
ear combination of failures modes, mathematically formed using
Principal Components Analysis (PCA) decomposition. The PCA
decomposition results in a low-dimensionality representation of
all failure modes and components of interest, represented in a
transformed coordinate system. Such a representation opens the
way for efficient pattern analysis and prediction of failure modes
with highest potential risks on the final product, rather than mak-
ing decisions based on the large space of component and failure
mode data. The mathematics of the proposed method are ex-
plained first using a simple example problem. The method is
then applied to component failure data gathered from helicopter
accident reports to demonstrate its potential.
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BACKGROUND AND OBJECTIVES
Prevention of potential failure modes during product devel-

opment is especially crucial in high-risk aerospace applications,
where failures are unacceptable at any frequency. Failures modes
are analyzed thoroughly during the early stages of design to pre-
vent occurrence during operation. However, the number of fail-
ure modes for each of the components that make up a system can
be overwhelming when predictions are performed, especially in
complex systems. In our work, component, failure, and func-
tionality information is derived from engineering drawings and
specifications, accident reports, and functional bases, to estab-
lish a link between functionality of components and the poten-
tial failure modes (Collins and Hagan, 1976; Harris et al., 2000;
NTSB, 2001; Stone and Wood, 2000; Shafer, 1980). This infor-
mation has been used by the authors to draw similarities between
different designs (Tumer and Stone, 2001; Roberts et al., 2002)
using matrix manipulations of the component, failure, and func-
tionality data. The overall goal of our work is to address the
failure modes early in conceptual design: to achieve this goal,
functions are mapped to failure modes that are experienced by
a component that performs the particular functions (Tumer and
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Stone, 2001; Roberts et al., 2002).
In the current paper, we present a means of decomposing

large design problems for failure analysis and prevention pur-
poses. In the case of complex engineering systems, the number
of components and their interactions with each other, as well as
their interactions with the operating environment, can be over-
whelmingly large. Working from the original component-failure,
component-function, and failure-function matrices can be espe-
cially difficult when predictions need to be made to determine
safety, performance, and the associated risks. To address this
problem, in this paper, we present an insightful approach to de-
compose the initial matrices and derive a low-dimensional rep-
resentation of the large space of components, failure modes,
and functions of relevance. Specifically, this paper proposes
a decomposition method which reduces the dimensionality of
the function-component-failure space by means of an orthogo-
nal transformation. The focus is on components and their failure
modes, where each component is related to the potential failure
modes. (The component function space will be addressed later.)
The orthogonal decomposition provides a method of determin-
ing the failure modes that have the most impact, as well as the
failure modes that are redundant in the information that they pro-
vide. During the early design stages, the failure modes with more
potential may be concentrated on in order to reduce risk, as well
as reduce design time and cost. Using such a decomposition ap-
proach, the designer can focus on the failure modes that have
the potential of becoming a risk factor during the lifecycle of the
complex system under investigation.

Failure Prevention and Reliability in Design
Reliability, maintainability, and effectiveness of machines

and systems depend heavily upon the understanding, recognition,
and prevention or elimination of mechanical failures (Collins and
Hagan, 1976). The quality of a particular design depends heavily
on the ability of the product to function in the given lifecycle, as
defined by the customer or user of the product (Ruff and Paasch,
1993). As products become more complex, prevention of failure
modes through analysis in the early stages of design becomes
very complex and cumbersome.

For applications such as aircraft, the risks associated with
missed failures is very high: not only is safety a major issue due
to high probability of fatalities (Harris et al., 2000), but the costs
involved in repairs and downtimes can become a major burden.
A study by Boeing Company showed that, for a fleet of 100 air-
craft, the costs generated from delays due to aircraft failure is
about $2M per year. (This accounts for revenue loss, increased
handling of passengers and cargo, and extra crew wages.) The
cost of maintenance alone adds another $4M per year (Stander,
1982; Ruff and Paasch, 1993). In order to eliminate or reduce
the possibility of failure, designers and manufacturing engineers
need to be aware of all of the potentially significant failure modes

in the systems being designed.
There are several techniques of identifying failure modes,

commonly used during conceptual design. Some examples of
these techniques are checklists, FMEA (failure modes and ef-
fects analysis) and FMECAs (failure modes effects and critical-
ity analysis), and FTAs (fault tree analysis) (Carter, 1997; Hen-
ley and Kumamoto, 1992). The details of these methods are ex-
plained in (Tumer and Stone, 2001) for reference. In this work,
we propose to make use of the information gathered for such
techniques, and combine it with information from NTSB and
NASA accident reports, maintenance guides, and engineering
specifications. This information is then presented to the designer
in a form that is easy to analyze and use during the early stages
of design. The methods developed in this work are meant to
augment the information derived from the more traditional ap-
proaches (Tumer and Stone, 2001; Roberts et al., 2002).

Theoretical Foundations: Eigenvector Decomposition
The orthogonal decomposition method proposed in this

work is based on previous work reported by Tumer et al. (Tumer
et al., 2000) to extract high-variance modes from product sur-
face profiles. This method is extended here to isolate the failure
modes with the highest variance, to determine tradeoffs during
component development and provide a low-dimensional repre-
sentation of the significant failure modes for potential classifica-
tion and prediction purposes (Tumer and Stone, 2001).

Consider an m�n input matrix X, whose columns consist of
the variables under study, and whose rows correspond to each ob-
servation. The n�n covariance matrix is computed by first com-
puting the 1�n mean vector X, removing the mean vector from
each of the m observations, and computing ΣX =X0

T X0=(m�1)
(m� 1 is the rank of the n� n symmetric covariance matrix if
m < n, losing one additional degree of freedom due to the re-
moval of the mean vector) (Fukunaga, 1990).

The semi-positive definite symmetric covariance matrix will
result in k nonnegative eigenvalues, where k is the rank of the
matrix, determined by the number of independent rows. In this
case, if m < n, and losing one degree of freedom by removing
the mean vector, the rank k of the covariance matrix equals m�
1. The eigenvalues and eigenvectors of the covariance matrix
are computed using the characteristic equation of the ΣX matrix,
namely jΣX �λIj= 0, with the eigenvectors corresponding to two
different eigenvalues λi and λ j being orthogonal. This equation
can be rewritten in matrix form as ΣX �V = V�D, subject to
the orthornormality constraint VT �V = I, with the following
eigenvalue (diagonal) and eigenvector matrices:

D =

2
4

λ1 0
:::

0 λn

3
5 ; V = [V1V2:::Vn]:
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The eigenvector V can be used as the transformation matrix to
transform the n-dimensional X0 to another vector Y using the
orthogonal transformation Y = VT �X0, where the covariance
matrix of Y is D (from ΣY = VT �ΣX �V = D).

This final observation leads to several important conclu-
sions: 1) The orthogonal transformation may be broken down to
r separate equations yi = V T

i �X; 2) Y represents X in the new
coordinate system spanned by V1; :::;Vn, and hence is a coordi-
nate transformation; 3) The transformation matrix is the eigen-
vector matrix of ΣX . Since the eigenvectors are the ones that
maximize the distance function d2

X(X), we are in effect select-
ing the principal components of the distribution as the new co-
ordinate axes; 4) The eigenvalues are the variances of the trans-
formed variables yi; 5) Since the transformation is orthogonal,
Euclidian distances are preserved, i.e., kYk2 = kXk2. When the
eigenvalues are listed in ascending order, the resulting eigen-
vectors correspond to the principal components starting with the
highest variance, indicated by the amplitude of the correspond-
ing eigenvalues. The input matrix can be then represented in
this new coordinate system using the orthogonal transformation
(Fukunaga, 1990).

BASICS: PCA-BASED DECOMPOSITION METHOD
To explain the derivation of the eigenvectors, eigenvalues,

and corresponding weights, a simple example problem using a
rotating machinery simulator model is used next.

Test Rig Example
The simple example hypothesizes that the design of a rotat-

ing machinery test rig goes through detailed analysis by design
engineers to assure failure and risk-free performance (Tumer and
Stone, 2001). The test rig design includes a shaft attached to a
motor by means of a coupling, supported by two sets of ball bear-
ings, which drives a gear box via two belts, which in turn drives
a load, shown in Figure 1. This system is located at NASA Ames
Research Center, whose purpose is to simulate vibrational fault
situations (Tumer and Huff, 2002). The same example was used
in demonstrating the mechanics of the function-failure similar-
ity method developed by Tumer and Stone in (Tumer and Stone,
2001). Some duplication of the explanation of initial matrices is
allowed in this paper for clarity.

Initial Matrices
Three components considered in this example are: the shaft,

gears, and bearings (Tumer and Stone, 2001). Let C be an m�1
vector of subsystems and/or components for the application do-
main under study (e.g., rotorcraft, aircraft, space spation, mars
rover, mars polar lander, etc.) Let F be an n�1 vector of failures
commonly found in that application domain. Selecting a subset
from elementary failure modes, these components are assumed to

Figure 1. A Desktop Rotating Machinery Testrig.

Table 1. Component-Failure Matrix CF.

1 1 0 1 1
1 0 1 1 0
0 1 0 0 1

be subject to wear, fatigue, corrosion, fretting, and impact failure
modes (Collins and Hagan, 1976). The m component vectors are
aggregated together to form CF, the m� n component-failure
matrix, where n is the total number of failure modes occuring
across all m components. The matrix has n failure modes in its
columns (representing the variables), and m components in its
rows (representing the various observations). Table 1 presents
the aggregated component-failure matrix, with 1’s representing
an occurrence of a failure for a given component, and 0’s repre-
senting non-occurrence. Note that the columns correspond to the
failure modes (F1 is wear, F2 is fatigue, F3 is corrosion, F4 is
fretting, and F5 is impact), and the rows correspond to the com-
ponents under study (C1 is a gear, C2 is a bearing, and C3 is the
shaft.)

Principal Axes of Variation for Design
Let ΣCF = CFT �CF=(m� 1) be the covariance matrix of

the component-failure matrix CF, an n� n symmetric matrix (n
is the number of elemental failure modes). In this work, Prin-
cipal Components Analysis (PCA) is used to compute the trans-
formed variables, eigenvectors, and eigenvalues, described in the
previous section. In the following, the PC matrix corresponds
to the eigenvector matrix V, the SC matrix corresponds to the
transformed vector Y, and the LAT vector contains the diagonal
elements of the eigenvalue matrix D, which represent the eigen-
values of the covariance matrix of the input data.

The input matrix CF, with m = 3 and n = 5, is defined in
Table 1. Using the centered input vector CF0 = CF�CF, the
PCA script in Matlab results in the principal components, scores,
and latent values, shown in Tables 2, 3, 4.

The PC matrix provides the eigenvectors of the 5� 5 co-
variance matrix, providing the coefficients of the new coordi-
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Table 2. PC Matrix for CF.

0.3943 -0.5869 0.0425 0.7058 0.0000
-0.4792 -0.3220 -0.5750 0.0347 -0.5787
0.4792 0.3220 -0.7877 0.0475 0.2095
0.3943 -0.5869 -0.0425 -0.7058 -0.0000

-0.4792 -0.3220 -0.2128 0.0128 0.7882

Table 3. SC Matrix for CF.

-0.2163 -0.7133 -0.0000 0.0000 -0.0000
1.2214 0.2527 -0.0000 -0.0000 0.0000

-1.0050 0.4606 -0.0000 -0.0000 -0.0000

Table 4. LAT Vector (Eigenvalues) for CF.

1.2743
0.3924
0.0000

F2

a

F1

F3

b

PC1 = a F1+ b F2 + c F3

c

Figure 2. Coordinate Transformation Using PCA.

nate system described by the principal axes, with respect to the
old coordinate system described by the variables F1, F2, etc.
The columns of this matrix correspond to each of the principal
components, and the values in each row represent the coordinate
based on the original variables Fi. The principal axes correspond
to the directions with maximum variability, and provide a simpler
and more parsimonious (low-dimensional) description of the co-
variance structure (Johnson and Wichern, 1992). The coordinate
transformation is shown schematically in Figure 2 for a case with
three variables F1, F2, and F3 only.

As an example, the first principal component can be used
to describe the original variables in the transformed coordinate
system as a linear combination of all five failure modes as fol-
lows: pc1 = 0:3943F1� 0:4792F2+ 0:4792F3+ 0:3943F4�
0:4792F5: Using this relationship, the designer can deduce that
F2, F3 and F5 have a higher effect than F1 and F4, and that
F2 & F3 have an equal but contrasting effect on the first prin-
cipal component, and so on. The eigenvalues of the covariance

matrix are represented in the LAT vector, shown in Table 4. Note
that with an eigenvalue of 1.27, the first principal component ac-
counts for 76:46% of the total variance in the data, and hence is
sufficient to represent the failure information in a simpler (more
parsimonious) manner, and can be considered as a model of the
sample data. The second principal component has an eigenvalue
of 0.39, and accounts for the remaining 23:54% of the variance.
(There are only two eigenvalues in this case since the rank of
the covariance matrix is m� 1 = 2. The rest of the eigenvalues
belong to the null space.)

The scores in the SC matrix provide the relative weight for
the eigenvectors on each of the observations (components), and
are computed as CF0 �PC. The scores are then interpreted as
corresponding to the pattern of the variation for each eigenvec-
tor over the different machinery components (Ci) under study.
The first column of the SC matrix corresponds to the first princi-
pal component, with each row corresponding to each component
C1, C2, and C3 (observations). The second column corresponds
to the second principal component. (The remaining columns be-
long to the null space, since the rank of the covariance matrix in
this case was m�1 = 2.) The variance of the scores for the first
principal component (first column of SC) equals the first eigen-
value (λ1 = 1:27), and the variance of the scores for the second
principal component equals the second eigenvalue (λ2 = 0:39).
Using this example, for the first component C1 (gear), the first
principal mode has a weight of �0:21, whereas for the second
component C2 (bearing), the same principal mode has a weight
of 1:22, hence indicating a stronger influence on this component.

The transformed representation of the failure information in
terms of a principal mode can be used by designers to decide on
tradeoffs in terms of failures. For example, failure modes F2,
F3 and F5 have a more significant effect on the overall perfor-
mance and quality of the product than failure modes F1 and F4,
as indicated by the first column of the PC matrix. Based on this
information, the designer might want to pay closer attention to
the first three modes, and not be as concerned with the last two
modes. For example, in this case, the bearing component C2 de-
pends more heavily on these three modes, as indicated by the first
column of the SC matrix.

FAILURE-FREE DESIGN OF COMPLEX SYSTEMS
To assure a failure and risk-free product, designers make use

of any information and previous knowledge about potential fail-
ure modes that might occur during a system’s lifecycle. In this
work, we propose to reduce the load on the designer by concen-
trating on a linear transformation of failure and component data
gathered from real accident reports, eliminating the need to sort
through large amounts of data. A feasibility study is presented in
this section using a rotorcraft system as an example, first used in
(Roberts et al., 2002).
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Table 5. Components from Helicopter Accident Reports (C).

Element Description
C1 air discharge tubes
C2 bearing
C3 bleed valve
C4 bolt
C5 compressor case
C6 compressor mount
C7 compressor wheel
C8 coupling
C9 diffuser scroll
C10 exhaust collector
C11 fire wall
C12 front diffuser
C13 front support
C14 governor
C15 housing
C16 impeller
C17 mount
C18 nozzle
C19 nozzle shield
C20 O ring
C21 P3 line
C22 plasting lining
C23 pressure control line
C24 pylon isolator mount
C25 rear diffuser
C26 rotor
C27 shaft
C28 spur adapter gearshaft
C29 turbine wheel

Application: Rotorcraft Failures and Functions

The application is a Bell 206 helicopter whose army coun-
terpart, an OH58 helicopter, is located at NASA Ames for flight
research purposes (Huff et al., 2002). Helicopter accident re-
ports published by the National Transportation and Safety Board
and NASA were carefully studied to determine the common fail-
ure modes and the components and subsystems affected by these
failures (Harris et al., 2000; NTSB, 2001; Roberts et al., 2002).
Maintenance guides, engineering schematics, and design spec-
ifications for this type of rotorcraft were studied thoroughly to
determine the components and subsystems of relevance (Shafer,
1980).

The engine and power train subsystems were identified as
the primary systems where failures occurred. As an example, a
schematic of the turbine system contained inside the engine of a
Bell 206 helicopter is shown in Figure 3, along with a detailed de-
scription of the components contained in the assembly (Roberts
et al., 2002). 29 components and subsystems were identified as
potentially causing failures. These components had a total of
10 failure modes reported in the accident reports. There were
1000 accident reports involving the Bell 206 helicopters, and 69
of these corresponded to component failures for the engine and
power train. Tables 5 and 6 present the components and failure
modes extracted from the reports (Roberts et al., 2002).

Table 6. Failure Modes from Helicopter Accident Reports (F).

Element Description
F1 bond failure
F2 corrosion
F3 fatigue
F4 fracture
F5 fretting
F6 galling and seizure
F7 human
F8 stress rupture
F9 thermal shock
F10 wear

PCA-Based Decomposition
Using the vectors from Tables 5 and 6, the input matrix CF,

with m = 29 and n = 10, is defined as in Table 7. With the mean
vector removed, the PCA decomposition results in the principal
components, scores, and latent values shown in Table 8.

Table 7. CF matrix from helicopter failure and component data.

0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 1 2 0
0 0 2 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 2 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 1 0
0 0 5 0 0 0 0 0 0 0
0 0 4 0 0 0 0 1 5 0

From the PC matrix in Table 8, the first principal compo-
nent can be used to describe the original variables in the new
(transformed) coordinate system as a linear combination of all
10 potential failure modes as follows:

pc1 = �0:0079F1�0:0438F2+0:8786F3+0:0134F4

+ 0:0132F5+0:0467F6�0:0131F7+0:1023F8

+ 0:4604F9+0:0308F10: (1)
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Figure 3. Turbine Subsystem for an OH58 Helicopter.

The first principal component is a transformed version of the
original failure modes, with the coefficients indicating the rel-
ative significance of each failure mode. As observed, failure
modes F3, F8, and F9 have the highest contribution to the first
principal component. The variance of the scores for the first
principal component (first column of SC) equals the first eigen-
value in the LAT vector (λ1 = 2:40, 67:3%), and the variance of
the scores for the second principal component equals the second
eigenvalue (λ2=0:73, 18:86%). Using the SC matrix in Table 8,
a plot of the first score vector is shown in Figure 4, which shows
the distribution of the first principal component over the 29 com-
ponents in the subsystems being studied. In this example, com-
ponents C2 (bearing), C7 (compressor wheel), C28 (spur adapter
for gear shaft), and C29 (turbine wheel) have the highest weight-
ing for the first principal component.

Potential Uses and Benefits
In this work, we are proposing the decomposition provided

by the PCA transformation as a tool to analyze and predict the
effect of potential failure modes on the system being designed.
In the helicopter case study above, the first principal component,
which is a linear combination of all 10 failure modes obtained

from the accident reports, explained 67:3% of the total variance
in the CF data, followed by the second principal component
which explained 18:8% of the total variance, adding up to over
85% of the total variance in the data. The scores correspond-
ing to these two principal components determine the weight of
each of the 29 components under study. The principal compo-
nents with the highest variance and their relative effects on the
design components can be studied using the scores, as shown in
Figure 4, eliminating the need to go through every component
and failure combination. When starting from large component-
failure matrices (CF) for complex systems, the decomposition
provided by this method will enable a study of the most criti-
cal failure modes in an efficient way. Using a large database of
components, systems, and potential failure modes, the few dom-
inant principal components (high-variance eigenvectors) result-
ing from the PCA decomposition can be used as a “model” of
the component-failure information in the system. Any new com-
ponent or set of components can be compared with this model to
predict the severity of the potential failures.

Consider, for example, a large component-failure matrix CF
for a complex engineering system, decomposed using the PCA-
based approach presented here, and reduced to three principal
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Table 8. The resulting PC, SC, and LAT for CF (helicopter data.)

PC =

-0.0079 0.0658 -0.0297 -0.3337 0.0298 -0.0044 -0.0206 -0.0548 -0.5405 -0.7661
-0.0438 0.1611 -0.1372 -0.9087 0.0196 -0.0204 -0.0431 0.0734 0.2579 0.2302
0.8786 -0.4253 -0.1795 -0.0876 -0.0297 -0.0058 -0.0415 0.0641 -0.0222 0.0106
0.0134 -0.0512 0.0366 -0.0254 -0.1267 -0.7826 -0.0617 -0.5976 0.0757 -0.0044
0.0132 -0.0695 -0.0129 0.0113 0.9766 -0.0001 -0.0060 -0.1939 0.0585 0.0002
0.0467 -0.0531 0.0253 -0.0495 -0.1501 0.5310 0.3261 -0.6415 0.3558 -0.2073

-0.0131 -0.0074 0.0769 0.0134 -0.0531 0.2683 -0.9280 -0.2390 0.0077 0.0237
0.1023 0.1862 0.0299 0.1200 0.0316 -0.1796 -0.1427 0.3186 0.6968 -0.5468
0.4604 0.8142 0.2587 0.0663 0.0405 0.0262 0.0459 -0.1126 -0.1383 0.1321
0.0308 -0.2844 0.9339 -0.1818 0.0128 -0.0116 0.0468 0.1002 0.0200 -0.0037

SC =

-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
3.1525 -1.0837 0.2512 -0.2732 -0.2713 0.5369 0.2948 -0.4120 0.1238 -0.0508

-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
0.0229 -0.6386 0.4928 -0.0158 0.9040 -0.0029 0.0414 -0.0442 0.0313 -0.0071

-0.9436 0.3016 -0.3859 -0.6665 -0.0361 -0.0058 -0.0008 0.0587 0.2329 0.2160
-0.0212 -0.2847 -0.4282 0.1546 -0.0854 0.0087 0.0007 0.0495 -0.0472 -0.0036
1.8805 1.1047 -0.0604 0.3196 -0.0025 -0.1243 -0.0918 0.2070 0.3508 -0.2757
0.9190 -1.2788 1.2601 -0.2965 -0.0895 -0.0203 0.0527 0.3140 -0.0294 -0.0004

-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
0.9016 -1.0456 0.3628 -0.1402 -0.2290 -0.7913 -0.0558 -0.3838 0.0263 -0.0011

-0.4085 0.6704 0.9439 0.1268 -0.0024 0.0292 0.1349 -0.0271 -0.1433 0.1142
-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
-0.0212 -0.2847 -0.4282 0.1546 -0.0854 0.0087 0.0007 0.0495 -0.0472 -0.0036
-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
-0.8820 -0.1513 0.7621 0.0739 -0.0960 0.2713 -0.8390 -0.1535 0.0027 0.0058
-0.8689 -0.1439 0.6852 0.0605 -0.0429 0.0030 0.0890 0.0855 -0.0050 -0.0179
-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
0.8706 -0.7794 -0.6206 0.0783 0.8615 0.0028 -0.0469 -0.0803 -0.0109 0.0072

-0.8381 -0.4283 1.6191 -0.1213 -0.0301 -0.0086 0.1358 0.1857 0.0150 -0.0216
-0.8998 0.1406 -0.2487 0.2422 -0.0557 0.0146 0.0422 -0.0147 -0.0250 -0.0142
-0.9436 0.3016 -0.3859 -0.6665 -0.0361 -0.0058 -0.0008 0.0587 0.2329 0.2160
-0.5349 1.3427 -0.2940 -1.8426 0.0538 -0.0045 -0.0186 -0.0352 -0.1880 -0.1878
3.4931 -1.9857 -1.1463 -0.1959 -0.2042 -0.0145 -0.1655 0.3060 -0.1359 0.0387
5.0190 2.6969 0.3568 0.3432 0.0596 -0.0573 -0.0372 -0.0024 -0.1084 0.1416

LAT =

2.4096
0.7291
0.3540
0.1972
0.0646
0.0361
0.0323
0.0229
0.0124
0.0088

components pc1 = ∑n
i αiFi, pc2 = ∑n

i βiFi, and pc3 = ∑n
i γiFi.

These three eigenvectors in the transformed domain are assumed
to contain the majority of the total variance in the original data
(see derivation above.) The three eigenvectors can be stored as
the model of the large component-failure database and used to
analyze a new set of components subject to a given failure modes.
Let X be a k�1 vector of components under study to determine
the effect of a potential failure mode Fi. The projection of the
new vector X onto the individual eigenvectors represented by
pc1, pc2, and pc3, computed as X� pc1T will provide the rel-

ative weighting of the first principal component on the compo-
nents under investigation. Such an approach will help designers
concentrate on the components that have the highest potential of
exhibiting the particular failure mode. A similar analysis can be
carried out for a single component subject to a number of fail-
ure modes contained in the original database of components and
failures.
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Figure 4. Distribution of Scores for 1st PC over the 29 Components.

CLOSURE
This work aims to provide design methodologies for fail-

ure and risk-free product design in complex engineering systems.
This paper discussed an approach to reduce the dimensionality of
overwhelmingly large component-failure information (required
for the function-failure similarity analysis published previously)
by means of a mathematical decomposition using Principal Com-
ponents Analysis. The fundamentals of the method were demon-
strated using a simple test rig example, followed by an applica-
tion of the method to a case study of failures and components
extracted from helicopter accident reports. The potential use in
design was discussed in terms of providing a low-dimensional
model of the component and failure database. The method re-
quires a large database of all possible components and failure
modes for a set of subsystems, either from maintenance manu-
als, FMEA documents, or accident reports. The purpose of the
paper was to demonstrate initial feasibility. Further analysis of
large complex systems and their failures is necessary to establish
the value of taking such a decomposition approach to failure-free
product design. A large anomaly/problem reporting database at
NASA’s Jet Propulsion Laboratory is currently being studied for
analysis using the methods discussed in this paper.
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