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Abstract

Automated fault detection is an increasingly important problem
in aircraft maintenance and operation. Standard methods of fault
detection assume the availability of either data produced during
all possible faulty operation modes or a clearly-defined means to
determine whether the data provide a reasonable match to known
examples of proper operation. In the domain of fault detection in
aircraft, the first assumption is unreasonable and the second is dif-
ficult to determine. We envision a system for online fault detection
in aircraft, one part of which is a classifier that predicts the ma-
neuver being performed by the aircraft as a function of vibration
data and other available data. To develop such a system, we use
flight data collected under a controlled test environment, subject to
various sources of variability. We explain where this classifier fits
into the envisioned fault detection system as well as experiments
showing the promise of this classification subsystem.

1 Introduction

A critical aspect of the operation and maintenance of aircraft is detecting problems
in their operation when they occur in flight. This allows maintenance and flight
crews to fix problems before they become severe and lead to significant aircraft
damage or even a crash. Fault detection systems designed for this purpose are
becoming a standard requirement in most aircraft [2, 7]. However, most systems
produce too many false alarms, mainly due to an inability to match modeled behav-
ior with real signatures, making their reliability questionable in practice [6]. Other
systems require a clearly-defined means to determine whether the data provide a
reasonable match to known examples of proper operation or assume the availability
of data produced during all possible faulty operation modes [2, 3, 7]. Because of the
highly safety-critical nature of the aircraft domain application, most fault detection



systems are faced with the task of functioning for systems for which fault data are
non-existent. Models are typically used to predict the effect of damage and failures
on otherwise healthy (baseline) data [4, 6]. However, while models are a necessary
first start, the modeled system response often does not take the operational vari-
ability into account, resulting in the high rates of false alarms. Novelty detection is
one approach to overcoming this problem, addressing the problem of modeling the
proper operation of a system and detecting when its operation deviates significantly
from normal operation [3, 5].

In this paper, we present an approach to novelty detection based on in-flight air-
craft data. The data were collected as part of a research effort to understand the
sources of variability present in the actual flight environment, with the purpose of
eliminating the high rates of false alarms [4, 8]. The fundamental idea is the use
of multiple sources of information to predict aspects of system state, such as the
maneuver being performed, and predicting faults when the system state predictions
are incompatible. In this paper, we present several maneuver classifiers. These clas-
sifiers take vibration data from various accelerometers and/or other available data
as input and predict the maneuver being performed. Multiple classifiers that pre-
dict the maneuver may be present in the fault detection system. Models of aircraft
operation that generate predictions of vibration signatures may also be included in
this system. The end goal of this work is to develop a fault detection system which
compares the maneuver predictions from the various subsystems and uses other
appropriate data to diagnose whether a fault is present based on these predictions.
For example, if a vibration data-based classifier predicts that the helicopter is flying
forward at high speed, but other data and/or subsystems indicate that the aircraft
is on the ground, then the probability that a fault is present is high.

In the following, Section 2 discusses the aircraft under study and the data generated
from them. We discuss the machine learning methods that we used and the data
preparation that we performed in order to use these methods in Section 3. We
discuss the experimental results in Section 4. We summarize the results of this
paper and discuss ongoing and future work in Section 5.

2 Aircraft Data

Data used in this work were collected from two helicopters: an AH1 Cobra and
OH58c Kiowa [4]. The data were collected by having two pilots each fly two desig-
nated sequences of steady-state maneuvers according to a predetermined test matrix
[4]. The test matrix used a modified Latin-square design to counterbalance changes
in wind conditions, ambient temperature, and fuel depletion. Each of the four
flights consisted of an initial period on the ground with the helicopter blades at flat
pitch, a low hover, a sequence of maneuvers drawn from the 12 primary maneuvers,
a low hover, and finally a return to ground. Each maneuver was scheduled to last
34 seconds in order to allow a sufficient number of cycles of the main rotor and
planetary gear assembly to apply the signal decomposition techniques used in the
previous studies.

Summary matrices were created from the raw data by averaging the data produced
during each revolution of the planetary gear. The summarized data consists of 31168
revolutions of data for the AH1 and 34144 revolutions of data for the OH58¢. Each
row, representing one revolution, indicates the maneuver being performed during
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that revolution as well as the following 30 quantities: Revolutions per minute of
the planetary gear, torque (mean, standard deviation, skew, and kurtosis), vibra-
tion data from six accelerometers (root-mean-square, skew, kurtosis, and a binary
variable indicating whether signal clipping occurred), pilot (binary variable). For
the AH1, the mean and standard deviation values were available for the following
additional data from a 1553 bus: altitude, speed, rate of climb, heading, bank angle,
pitch, slip.

3 Methods

Sample data from one maneuver separated by pilot and by flights are shown in
Figures 1 and 2, respectively. The highly-variable nature of the data, as well as
differences due to different pilots and different days when the aircraft were flown,
are clearly visible and make this a challenging classification problem. To perform
the necessary mapping for this problem, we chose multilayer perceptrons (MLPs)
with one hidden layer and radial basis function (RBF) networks as base classifiers.
Furthermore, we constructed ensembles of each type of classifier, as well as ensem-
bles consisting of half MLPs and half RBF networks, because ensembles have been
shown to improve upon the performance of their constituent or base classifiers, par-
ticularly when the correlation among those base classifiers can be kept low [1, 11].

We used data sets consisting of all the available features as inputs (44 for the AH1,
30 for the OH58) and one output for each maneuver (14 possible maneuvers in both
cases) gathered from the 176 summary matrices.! This resulted in 31168 patterns
(revolutions) for the AH1 and 34144 for the OH58. Both types of classifiers were
trained using a randomly-selected two-thirds of the data (21000 examples for the
AH1, 23000 for the OH58) and were tested on the remainder for the first set of
experiments.

For both data sets and both types of classifiers, we determined the number of
hidden units/kernels experimentally. For MLPs, we explored hidden layer sizes
ranging from 5 to 100 in increments of 5, and settled on 25 hidden units for the
AH1 and 65 units for the OH58. We used a learning rate and momentum term

'We linearly transformed all the input features to be in the [—2, 2] range.



Table 1: Sample confusion matrix for OH58 (MLP).
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of 0.2, and trained for 100 epochs. The performance of both types of classifiers
was fairly insensitive to the number of hidden units and kernels and the learning
parameters. We created 280 MLPs for each helicopter, and we report results as
averages over these 280 runs. These 280 MLPs were given different random initial
weights before training, but were trained using the same training sets.

For the RBF networks, we used 100 centers for the OH58 data and determined each
kernel’s center and width using the nearest 300 patterns.? For the AH1 data, we
used 55 kernels with the centers and widths determined by the nearest 500 patterns.
For each helicopter, we created 100 RBF networks, each of which had a different
set of centers, and report results as averages over these 100 runs.?

For both data sets and classifiers, we used simple averaging ensembles. Though
simple to apply, such ensembles perform remarkably well on a variety of data
sets [1, 9, 10]. We experimented with ensembles consisting of 2 to 100 base classifiers
for MLP and MLP/RBF ensembles, and 2 to 50 base classifiers for RBF ensembles,
although performance improvements after 10 base classifiers were marginal. These
ensembles consisted of random samples drawn from the 280 MLPs and 100 RBF
networks that we created for the single-network experiments. For each size of en-
semble, we drew 20 random samples and report the results as averages over these
runs.

In addition, we calculated the confusion matriz of every classifier we created. Entry
(i,7) of the confusion matriz of a classifier states the number of times that an
example of class i is classified as class j. In examining the confusion matrices of
the classifiers (see Table 1 for an example of a confusion matrix—entry (1,1) is
in the upper left corner), we noticed that particular maneuvers were continually
being confused with one another. In particular, the three hover maneuvers (8-
Hover, 9-Hover Turn Left, and 10-Hover Turn Right) were frequently confused with
one another and the two coordinated turns (11-Coordinated Turn Left and 12-
Coordinated Turn Right) were also frequently confused (the counts associated with
these errors are shown in bold in Table 1.) These sets of maneuvers are similar
enough to one another that misclassifications within these groups are unlikely to

2That is, for each center, the 300 training cases closest to it in Euclidian distance were
used to determine its radius. Therefore, the radius increases with the number of points.

3Due to the large computation time needed to obtain the centers and widths of the
kernels on such large data sets, we only used 100 RBFs as opposed to 280 MLPs.



Table 2: OH58c and AH1 Single Revolution Test Set Results.

OHb58 Results AHIT Results

Base N Single Single Rev Single Single Rev
Type Rev Consolidated Rev Consolidated
1 80.533 £ 0.110 [ 93.098 £ 0.073 | 96.161 £ 0.138 | 98.643 + 0.094
MLP 4 83.114 + 0.063 | 94.307 &+ 0.038 | 97.747 £ 0.071 | 99.583 + 0.064
10 | 83.578 &+ 0.047 | 94.470 + 0.025 | 98.089 + 0.042 | 99.737 + 0.041
100 | 83.960 £ 0.018 | 94.683 + 0.010 | 98.225 + 0.008 | 99.818 + 0.003
1 77.650 £ 0.142 | 90.860 £ 0.104 | 95.811 £ 0.098 | 99.106 £ 0.060
RBF 4 78.408 + 0.089 | 91.384 £ 0.052 | 96.272 + 0.032 | 99.390 + 0.035
10 | 78.550 4+ 0.039 | 91.607 + 0.027 | 96.441 4+ 0.021 | 99.472 + 0.013
50 | 78.729 + 0.018 | 91.638 £ 0.011 | 96.438 + 0.009 | 99.493 + 0.005
2 81.851 £ 0.087 | 93.548 £ 0.053 | 97.392 £ 0.069 | 99.515 £+ 0.053
MLP/ 4 82.724 £ 0.084 | 94.097 &+ 0.047 | 97.715 £ 0.063 | 99.646 + 0.056
RBF 10 | 83.308 &+ 0.041 | 94.346 + 0.031 | 97.899 4+ 0.019 | 99.764 + 0.011
100 | 83.798 £ 0.023 | 94.548 + 0.014 | 97.989 £ 0.007 | 99.791 + 0.003

imply the presence of faults. Therefore, for the second set of experiments, we
recalculated the classification accuracies after consolidating these maneuvers (i.e.,
all three hovers into one maneuver and both left and right turns into one maneuver.)

Finally, we used the knowledge that a helicopter needs some time to change ma-
neuvers. That is, two sequentially close patterns are unlikely to come from different
maneuvers. To obtain results that use this “prior” knowledge, we tested on se-
quences of revolutions by averaging the classifiers’ outputs on a window of examples
surrounding the current one. In one set of experiments, we averaged over windows
of size 17 (8 revolutions before the current one, the current one, and 8 revolutions
after the current one) which corresponds to about three seconds. Because the ini-
tial training and test sets were randomly chosen from this sequence, this averaging
could not be performed on the test set alone. Instead it was performed on the full
data set for both helicopters. To allow meaningful comparisons of these results, we
also computed the errors of the single-revolution classifiers on this full dataset and
present them in Tables 3 and 4.

4 Results

In this section we describe the experimental results that we have obtained so far.
We first discuss results on the OH58 helicopter. In Table 2, the column marked
“Single Rev” under “OH58 Results” shows the results of running individual net-
works and ensembles of various sizes on the summary matrices randomly split into
training and test sets. We only present results for some of the ensembles we con-
structed due to space limitations and because the ensembles exhibited relatively
small gains beyond N = 10 base models. MLPs and ensembles of MLPs outper-
form RBFs and ensembles of RBFs consistently. The ensembles of MLPs improve
upon single MLPs to a greater extent than ensembles of RBF networks do upon
single networks, indicating that the MLPs are more diverse than the RBF networks.

“We performed this windowed averaging as though the entire data were collected over
a single flight. However, it was in fact collected in stages, meaning that there are no
transitions between maneuvers. We show these results to demonstrate the applicability
of this method to sequential data obtained in actual flight after training the network on
“static” single revolution patterns.



Table 3: OH58¢ Single Revolution and Windowing Results on Full Data Set.

Base N Single Single Rev Window Window of
Type Rev Consolidated of 17 17 Consolidated
1 82.724 £ 0.121 | 94.067 £ 0.049 || 89.813 £ 0.191 | 96.799 £ 0.142
MLP 4 | 85.466 + 0.073 | 95.020 &+ 0.034 || 91.287 + 0.130 | 96.956 + 0.043
10 | 86.035 &+ 0.050 | 95.243 + 0.034 || 91.550 + 0.081 | 97.006 + 0.044
100 | 86.414 + 0.015 | 95.420 &+ 0.007 || 91.621 &+ 0.022 | 97.067 £ 0.008
1 | 79.484 £0.053 | 91.313 £ 0.099 || 84.670 £ 0.212 | 95.008 £ 0.115
RBF 4 | 79.127 £ 0.094 | 91.786 + 0.045 || 84.739 + 0.131 | 95.026 £ 0.058
10 | 79.297 £ 0.047 | 91.975 £ 0.020 || 84.977 £ 0.070 | 95.232 % 0.045
50 | 79.460 £ 0.014 | 92.014 + 0.008 || 85.086 £ 0.021 | 95.103 & 0.017
2 | 83.740 £ 0.093 | 94.212 £ 0.063 || 89.935 £ 0.163 | 96.508 £ 0.084
MLP/ | 4 | 84.710 + 0.075 | 94.748 + 0.048 || 90.493 + 0.125 | 96.779 + 0.069
RBF | 10 | 85.280 £ 0.038 | 95.012 £ 0.030 || 90.755 £ 0.068 | 96.869 % 0.043
100 | 85.681 + 0.017 | 95.147 &+ 0.012 || 90.838 &+ 0.029 | 96.822 + 0.014

Mixed ensembles have performances superior to the pure-MLP ensembles for small
numbers of base models, but have worse performances for larger numbers of mod-
els. Mixed ensembles perform better than pure-RBF ensembles for all numbers of
base models. In the smaller ensembles, the diversity provided by including RBF
networks helped relative to pure-MLP ensembles. However, in the larger ensembles,
replacing half the MLPs with RBFs degrades performance—the RBFs are different
from the MLPs but not different enough from each other to warrant having such
a large number of them. The column marked “Single Rev Consolidated” under
“OH58 Results” shows the single revolution results after allowing for confusions
among the hover maneuvers and among the coordinated turns, consolidating them
into single classes (hover and coordinated turns). As expected, the performances
improved dramatically.

Table 3 shows the results of performing the windowed averaging described in the
previous section in the column marked “Window of 17.” The column “Window
of 17 Consolidated” gives the results allowing for the confusions mentioned earlier.
The columns marked “Single Rev” and “Single Rev Consolidated” are the full set
errors of the single-revolution classifiers. We can clearly see the benefits of windowed
averaging, which serves to smooth out some of the noise in the data.

Table 4: AH1 Single Revolution and Windowing Results on Full Data Set.

Base N Single Single Rev Window ‘Window of
Type Rev Consolidated of 17 17 Consolidated
1 96.567 £ 0.115 | 98.789 &+ 0.081 [[ 97.821 &+ 0.111 | 98.744 £ 0.086
MLP 4 98.007 £ 0.064 | 99.561 & 0.060 || 98.933 & 0.080 | 99.374 + 0.082
10 | 98.313 + 0.041 | 99.769 + 0.042 || 99.179 £ 0.040 | 99.621 + 0.039
100 | 98.438 4+ 0.006 | 99.852 + 0.003 || 99.268 + 0.004 | 99.700 + 0.002
1 96.023 £ 0.093 | 99.209 &+ 0.051 || 97.120 £ 0.114 | 98.931 & 0.064
RBF 4 96.480 £ 0.031 | 99.469 + 0.029 || 97.495 4+ 0.044 | 99.141 + 0.023
10 | 96.638 + 0.015 | 99.535 4+ 0.011 || 97.636 & 0.019 | 99.194 4+ 0.011
50 | 96.649 + 0.008 | 99.558 &+ 0.005 || 97.624 £ 0.005 | 99.187 + 0.003
2 97.664 £ 0.059 | 99.611 &+ 0.045 || 98.564 + 0.062 | 99.327 £ 0.053
MLP/ 4 97.957 £ 0.052 | 99.699 + 0.046 || 98.725 &+ 0.056 | 99.390 + 0.055
RBF 10 | 98.092 + 0.017 | 99.796 + 0.010 || 98.818 4 0.021 | 99.516 + 0.012
100 | 98.144 £+ 0.014 | 99.810 £ 0.008 || 98.852 + 0.006 | 99.546 + 0.003

The last two columns of Table 2 show results on the AH1 summary matrices ran-




Table 5: AH1 Bus and Non-Bus Results

Inputs Single Single Rev Window Window of
Rev Consolidated of 17 17 Consolidated
Bus 90.380 + 0.110 | 95.871 £ 0.091 || 91.209 + 0.126 | 96.027 &+ 0.086
Non-Bus | 87.884 £ 0.228 | 93.731 £ 0.I71 || 92.913 £ 0.355 | 96.110 £ 0.236
Plagree) | 79.523 £ 0.247 | 90.063 £+ 0.202 || 85.609 + 0.320 | 93.393 + 0.247

domly split into training and test sets. Table 4 has the single-revolution classifier
and windowed averaging results on the full AH1 dataset. These results are sub-
stantially better than the OH58 results. We expected this because the AH1 is a
heavier helicopter, so it is less affected by conditions that tend to introduce noise
such as wind changes. Just as with the OH58, the mixed ensembles outperform
the pure ensembles for small numbers of base models but perform worse than the
MLP ensembles for larger numbers of base models. Once again, we can see that
ensembles of MLPs outperform single MLPs to a greater extent than ensembles of
RBF's outperform single RBFs, so the RBF's are not as different from one another.
Because of this, it does not help to add large numbers of RBF networks to an
MLP ensemble. On the AH1, the hover maneuvers were frequently confused just as
they were on the OH58, but the coordinated turns were not confused. Taking this
confusion into account boosted performance significantly. The windowed averaging
approach did not always yield improvement when allowing for the maneuver con-
fusions, but helped when classifying across the full set of maneuvers. However, in
all cases when windowed averaging did not help, the classifier performance was at
least 98.93%, so there was very little room for improvement.

5 Discussion

In this paper, we presented an approach to fault detection that contains a subsys-
tem to classify an operating aircraft into one of several states. More specifically,
the proposed subsystem determines the maneuver being performed by an aircraft
as a function of vibration data and any other available data. Through experiments
with two helicopters, we demonstrated that the subsystem is able to determine the
maneuver being performed with good reliability (at least 95% when allowing for con-
fusions among very similar aircraft states and smoothing by combining predictions
from short sequences of data). The initial results show great promise in classifying
the correct maneuver with high certainty. Future work will involve applying this
approach to “free-flight data”, where the maneuvers are not static or steady-state,
and transitions between maneuvers exist.

The results presented in this paper address the maneuver classification portion
of the online fault detection system envisioned in this research. To address the
overall detection problem, future work will involve experiments to determine the
probabilities of agreement between different classifiers, to detect possible faults when
there is a mismatch. For example, for the AH1 helicopter, just the data from a 1553
bus (as described in Section 2) were used to train some classifiers and compared to
other classifiers using all except the bus data. Table 5 shows the results of training
20 single MLPs on these data using the same network topology as for the other
MLPs trained on all the AH1 data. They performed much worse than the single



MLPs trained with all the inputs presented at once. The last line in the table
indicates the percentage of maneuvers for which the two types of classifiers agreed.

Recall from Section 1 that we would like classifier disagreement to indicate the
presence of a fault; therefore, we would like these agreement probabilities to be much
higher. However, we hypothesize that we can use the bus data in a much simpler
way. For example, if a vibration data-based classifier predicts that the aircraft is
performing a forward flight, but the bus data indicate that airspeed is near zero,
then the probability of a fault is high. We do not necessarily need a system that
returns the maneuver as a function of all the variables that constitute the bus data.
In this example, we merely need to know that a near-zero airspeed is inconsistent
with a forward flight. We plan to perform a detailed study of the collected bus data
so that we may construct simple classifiers representing knowledge of the type just
mentioned and use them to find inconsistencies such as what we just described. We
are confident that using the different types of system models, metrics, and classifiers
mentioned in this paper, we can obtain a reliable fault detector.
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