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Abstract

Autonomy is a key enabling factor in the advancement of
robotics for remote exploration. As the level of resources
devoted to this effort continues to increase, it has become
equally important to provide simulation tools and envi-
ronments to scientists in which to test the autonomy al-
gorithms. While industrial robotics benefits from a vari-
ety of high quality simulation tools, researchers develop-
ing autonomy software are still dependent primarily on
block-world simulations. The Mission Simulation Facil-
ity (MSF) project addresses this shortcoming by provid-
ing a simulation toolkit that will enable developers of
autonomous control systems to test their systems’ per-
formance against integrated, standardized simulations of
NASA mission scenarios. The MSF provides a distributed
architecture that connects the autonomous system to a set
of simulated components replacing the robot hardware
and its environment.

1 Introduction

The exploration of remote environments using robotic
systems is a very challenging task. The physical robot not
only has to withstand the hostile elements of the environ-
ment, it also needs to demonstrate high levels of auton-
omy to accomplish its tasks without continuous human
control or intervention.

The typical human-robot interaction scenario for an ex-
ploration rover on Mars is strongly affected by commu-
nication issues: scientists on earth can only communicate
with the Martian rover once a day, with a limited band-
width and for a period of only several hours. Commu-
nication becomes an even greater issue for planets far-
ther away from Earth such as Europa. On Earth, the ex-
ploration of remote sites (for example the ocean under
the Arctic ice) faces similar problems. Therefore, be-
sides the development of ground tools to help scientists
plan, test and visualize remote science experiments, the
rover needs autonomy to perform tasks without direct hu-
man control. To accomplish critical science missions, the
rover needs to be able to explore an unstructured world
and make decisions based on on-board sensors. In addi-
tion, the rover needs to be capable of adapting its mission
to unanticipated events in order to maximize the science
return and ensure rover safety [10].

Research in autonomy for robotic platforms used in re-
mote exploration is therefore critical for mission suc-
cess. However, this research area faces several challenges
when it comes to testing new autonomy concepts:

• Custom simulators usually provide testbeds for in-
dividual algorithms without the context of an inte-
grated robotic mission.

• Access to hardware is either very costly or not avail-
able at all. Even when hardware is available, time
and resource constraints often limit test scenarios to
just a few environments. In addition, it can be diffi-
cult to control the parameters of the test, making the
experiments hard to repeat.

To address these shortcomings the Mission Simulation
Facility (MSF) project was initiated in early 2001 to sup-
port autonomy research for robotic systems.

1.1 MSF Goals

The goal of the MSF is to develop a simulation frame-
work and suite of simulation tools to support research in
autonomy for remote exploration. Such a system will al-
low developers of autonomy software to test their mod-
els in a high-fidelity simulation and evaluate their sys-
tem’s performance against a set of integrated, standard-
ized simulations. There is currently a large gap between
autonomy software at the research level and software that
is ready for mission insertion. It is our vision that the
MSF will bridge this gap by providing researchers with
high-fidelity simulations of mission scenarios to test their
software in realistic, complex environments.

The research community in autonomous systems can not
rely on commercial tools for simulation because these are
not applicable to robots with various instruments evolv-
ing in unstructured environments. Thus too often, each
research lab has to develop its own simulator. Such sim-
ulators are usually oriented towards “block-world” mod-
els (answering most needs while keeping simplicity). For
example, the simulator embedded in the Saphira archi-
tecture [4] is useful to experimenting with robotic au-
tonomy, but is not suitable for planetary missions due to
its 2D world model and limited available sensors. On
the other hand, high quality simulators are developed for
specific problems such as robot dynamics [8, 7, 11] or
instrument and environment modeling [6, 3, 9]. These



tools offer highly accurate models but are oriented to-
wards engineering design or mission-ready simulation.
Consequently, even though many high fidelity models ex-
ist, they are difficult to combine into an integrated simu-
lation. Typically these tools are tied to a specific oper-
ating system or computer language and are not designed
for applications outside of their nominal scope. The MSF
is designed to connect these models through the Mission
Simulation Toolkit (MST), a software package compris-
ing 1) a framework for connecting and synchronizing dis-
tributed software models, 2) generic interfaces abstracted
from the transport layer, and 3) a set of basic components
required for a simulation.

1.2 Scope and Applications

The MSF architecture is designed to support multiple
mission platforms (e.g. planetary robots, spacecraft, un-
derwater vehicles), with the initial focus on supporting
planetary rovers. The components needed for a rover sim-
ulation would include a terrain model, site information
(such as coloration and mineral composition), an environ-
ment model (sun position, lighting, temperature, etc), a
rover including a kinematic model and on-board sensors,
and several scientific instruments. It is up to the user to
decide what granularity of models best suits the purpose
of his simulation. For example, a user who is concerned
primarily with collecting scientific data may not require
a sophisticated rover model because he may not care how
the rover gets from one point of interest to another. On the
other hand, a user who is developing a trajectory genera-
tor may want to control the individual wheels of a rover.
For this reason the MSF provides both high and low level
interfaces to a number of standard models. This dual level
interface is also needed to support a variety of robot ar-
chitectures. Since very different approaches currently ex-
ist (see [1] for references), the MSF has to provide an
interface generic enough to equally support hierarchical,
behavioral or hybrid robot architectures. Figure 1 shows
the concepts of the MSF distributed simulation relying on
a common communication framework to connect models
and autonomy software.

2 Proposed Framework

The realization of the goals mentioned in the previous
section requires the construction of the following compo-
nents:

A distributed architecture that implements a commu-
nication layer.

A set of models allowing the simulation of robots, envi-
ronment and science instruments.

Scenario representation through the description of
robot systems and their environment.

Databasesused both as a source of data for the model
and as storage for the result of the simulation.
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Figure 1: Overview of the Mission Simulation Facility.

These components (except databases which are not yet
treated by the MSF team) are described in the following
sections.

2.1 Distributed Architecture

The MSF architecture is derived from two main require-
ments: to support distributed simulation on multiple plat-
forms and to ensure extensibility through an open archi-
tecture.

Multiple Platform Support. Users of the MSF (auton-
omy developers) typically develop their tools in a variety
of environments, for example, a LISP program under So-
laris on a Sun workstation or a C++ program under Linux
on an Intel PC. Target systems for the autonomy software
(the rover control software) may also be developed on dif-
ferent operating systems and hardware platforms. Such
software could for instance rely on a particular flavor of
Linux running on a PC-104 Pentium board, or could be a
dedicated embedded system running VxWorks. The MSF
project does not intend to develop all the simulation com-
ponents but rather will take advantage of existing tools.
To minimize the adaptation requirements, each particular
software component should be usable by the MSF on the
original platform for which it was developed.

Open architecture. The MSF is a general purpose
testbed for mission simulation rather than a specific simu-
lator, which implies that different sets of components will
be used for different scenarios or different domains. For
instance, one might use a kinematics model for a rover
and a fluid dynamics model for an underwater vehicle.
In addition, a component should be usable in multiple
scenarios, which means that the same rover kinematics
model could be used for various rovers with particular
payloads operating in different environments. Finally, it
should be possible to replace a component of a specific
type with another that performs the same function but at a
different level of fidelity. A simple kinematics rover sim-
ulator could be adequate to test high level autonomy con-
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Figure 2: MSF simulation with several components communicating through common interfaces.

cepts such as path planning, while a dynamics rover sim-
ulator including accurate soil-wheel interactions may be
required to test an autonomous control system for the mo-
bility of the rover1. It is therefore essential that the MSF
define clear interfaces between the components to facil-
itate the exchange of components included in the MSF
toolkit with those developed at other research institutions.

A way to satisfy the above requirements is to have a
distributed architecture where components communicate
with each other using a common transport layer. The
MSF is built on top of the standardized High Level Ar-
chitecture (HLA)2 [5] which is an architecture for simula-
tion reuse and inter-operability developed by the Defense
Modeling and Simulation Office (DMSO). The MSF cur-
rently uses the Runtime Infrastructure (RTI), a software
implementation of HLA, freely distributed by DMSO.
The HLA/RTI provides the MSF the following services:

• Multi-platform support: IRIX, Solaris, Linux,
Win32 and VxWorks

• C++ and Java bindings
• Choice of transport protocol: TCP (reliable) or UDP

(fast)
• Publish/Subscribe scheme
• Communication through objects or messages
• Various time management schemes for simulation

synchronization

To facilitate the integration of components in an MSF-
based simulation, an abstraction layer has been developed
on top of the HLA, the Federate ToolKit (FTK). FTK is

1This latter case is however not directly addressed by the MSF in its
first phase

2The HLA was approved as an open standard through the IEEE
Standard 1516 in September 2000. See Defense Modeling and Sim-
ulation Office website: http://www.dmso.mil/public/transition/hla.

responsible for the integration of communication entities
with the Runtime Infrastructure. The communication ob-
jects and messages defining the MSF interface are easily
designed using the Unified Modeling Language (UML).
All the necessary C++ code to use these communication
entities is generated automatically.

Figure 2 gives an example of a MSF-based simulation
with several interconnected components. Two separate
rover autonomy software executions are participating in
the simulation: Rover A software is provided by a lab
having a complete rover architecture (and probably a real
rover) from the high level control down to the hardware
control; Rover B software comes from a lab working only
on high level autonomous algorithms and without hard-
ware control. When Rover A software sends commands
to its actuators (e.g.motor1.start(speed, du-
ration) ), the commands are routed to the simulator
rather than to real hardware. The Kinematics Simulator
accepts such commands and computes the behavior of the
rover on the terrain regarding these inputs. When Rover B
issues a high level command to its base controller
(e.g. roverB.moveto(position, obstacle-
avoidance=on) ), the Generic Rover model catches
this message and produces motor commands for a sim-
ple model of a rover causing it to move from one location
to another while avoiding obstacles. These motor com-
mands can be processed by the same Kinematics Simula-
tor that is used for controlling Rover A. The same type of
scheme is used when controlling instruments, generalized
as sensors in Figure 2 (the figure does not show the full
path of information flow). In addition to the Kinematics
and Instruments models, a Power Resource model is par-
ticipating in the simulation. It monitors the load of each
actuator as well as the power generated by solar panels



and computes the power remaining in the rover’s batter-
ies. The power output of the solar panels depends on the
orientation of the solar panels relative to the sun. The po-
sition of the panels is provided by the kinematics model
and the sun’s position is delivered by another component
computing the Ephemerides. This example shows how
different components are reusable for different scenarios,
and how the definitions of the networked MSF interfaces
removes all the dependencies between the components.

2.2 Simulation Models

The MSF makes it possible to replace robotics hardware
and environments with simulated components, which im-
plies having a library of models of the robots themselves
and of various environments representative of future mis-
sions. The interaction of a rover model with its envi-
ronment involves several elements. For example, when
the robot moves to a new location, the motors drive the
wheels, which in turn move over the terrain according to
the forces of gravity and shape of the terrain. The robot
obtains engineering data through its sensors, while on-
board science instruments collect data from the virtual
environment. Robotic instruments such as a rock grinder
may also be used to interact with the environment.

The models for a simulation can be developed at very dif-
ferent levels of sophistication. For instance, the model of
a rover driving over a terrain could work with the assump-
tion of a flat surface and perfect motion, or could involve
a full dynamic system including wheel slippage. The fol-
lowing paragraph briefly presents different approaches.

Level of simulation. The purpose of the science
robotic system is to explore its surroundings by actively
taking measurements. Figure 3 depicts a number of mod-
ules composing a rover software architecture with flows
of two types of information: actuation (output) and sens-
ing (input). In this simplified example, the Goal De-
composer on the Rover Autonomy side hands tasks to
a Path Planner, which in turn interacts with a Locomo-
tion Controller. The latter communicates with the rover
hardware, sending commands to actuators and obtaining
proprioceptive sensor data. On the side of the figure la-
beled “Science Autonomy”, the world is sensed using a
camera controlled by a Vision System that feeds an Im-
age Interpreter module. The latter supplies information
to high level World Analysis algorithms. In actual au-
tonomous systems, the flow of commands and sensory
inputs are closely connected. For example, the obstacle
avoidance algorithm takes actions based on the informa-
tion provided by the obstacle detection algorithm. While
there is a fair amount of cross-over of information be-
tween the science and rover autonomy, generally more
sensory input data is directed to the science autonomy
side and much of the output is concerned with the func-
tioning of the Rover Autonomy. The simulator could be
attached at any of these levels of the rover architecture on

each side, and not necessarily at the same level for each
area of specialization.

It is interesting to note that in general it is easier to build
a simulator that connects at the low level of the “actua-
tion flow” and at the high level of the “sensing flow”. On
the “actuation flow” side, building a simulator that sends
low level commands to the actuators is easier because:
1) access to hardware is less dependent of the rover soft-
ware architecture and 2) the simulator does not need to
replace some behaviors of the rover (e.g. obstacle avoid-
ance in the example above). In contrast, a simulator could
more easily feed the high level modules of “sensing flow
because”: 1) the simulator knows the truth model and
thus can directly provide high level information about the
scene (e.g. there is a big rock in front of the rover) and
2) an accurate instrument model that takes into account
physical laws (illumination, material texture, etc) is diffi-
cult to build.
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Figure 3: Various levels of simulation possible for a hi-
erarchical robot software architecture.

Because the MSF is being built incrementally, our initial
focus is on creating a strong infrastructure and providing
a toolkit that includes only a few simple models. Once
the infrastructure is in place, new models of higher fi-
delity or models that address different domains will be
added. Currently the MSF depends on an existing kine-
matics simulator for the rover mechanics (controlled by
low level inputs such as wheel speed) and feeds control
algorithms with high level information coming from the
truth model (e.g. “this rock contains carbonates”). Sec-
tion 3 briefly presents the components used in the current
MSF implementation. Ongoing collaborations will pro-
vide improved models for terrain generation, dynamics
simulation and science instruments.

Required Components. The MSF is a general frame-
work for connecting multiple components to build vari-
ous types of simulations. In this sense, the MSF does not



enforce the use of a particular set of simulators, and lets
the user build to meet his own needs. However, it is pos-
sible to identify the components required for a minimal
planetary simulation:

Environment Generation. An environment model is
essentially composed of a terrain surface with at-
tached properties. The data can either be generated
at runtime by a terrain server, or precomputed and
stored in a database. Ideally the data will be gener-
ated by terrain models from a set of input parame-
ters (location, resolution, type of terrain, rock den-
sity, etc.) but real terrain data can be used as well in
certain situations (the MSF currently uses data col-
lected during various Mars mission and Earth field
tests). An environment model may also include data
representing atmospheric conditions, celestial body
positions, lighting, etc.

Robot Behavior. From a high level point of view, the
most significant representation of the robot model is
the mechanical behavior, which determines the posi-
tions of the robot and its effectors. The robot model
also needs to include other resources including pro-
prioceptive sensors, power, computation and com-
munication. Depending on the level of autonomy
being tested, the model may also include generic
robot capabilities such as obstacle avoidance. Fi-
nally, it is critical for the robot simulation to repre-
sent and handle failures because they play an impor-
tant role in robot autonomy.

Instrument Models. Instrument models provide auton-
omy developers with data from the robot’s environ-
ment, feeding their algorithms. Again, depending on
the level of autonomy being tested, the data products
could be the raw data an instrument normally re-
turns (e.g. a photo-realistic image) or pre-processed
information (e.g. the response from a spectrome-
ter module: “there is carbonate in this rock”). The
MSF will provide models for generic instruments in-
cluding cameras and spectrometers. Complete in-
strument packages such as those intended to fly on
future missions may be added to the library as the
models become available.

Data Analysis. Tools for collecting and analyzing data
from simulation runs are fundamental to evaluate
autonomy software. The HLA communication layer
and the tools developed for it provide easy collection
of all information exchanged among the MSF com-
ponents. One of the first qualitative evaluation tools
used in the MSF is a 3D viewer allowing the user to
observe robot behaviors in a simulated world and to
see views from cameras. The same viewer can dis-
play abstract object parameters including the torque
on motors, the field of view angle of a camera, or the
data of an instrument.

2.3 Scenario Description

Because the MSF is a general simulation platform, it
needs to be easily configurable for different scenarios.
In general, a scenario comprises the robotic systems de-
scription, the environment description, and some simu-
lation specific parameters. The robot description defines
the kinematics (or dynamics) parameters of the robot’s
mechanical structure, the actuators, various instruments
composing the payload3 and several resource modules
(e.g. battery, memory). The environment is composed
of the following: 1) a reference to the terrain data that
will be used to compute the kinematics of the rover, 2)
the data inferred by the instruments, 3) the type of atmo-
sphere and other environmental parameters, 4) the loca-
tion of the mission (which planet, latitude and longitude)
and 5) the epoch of the simulation.

No parameters regarding robots or environment are en-
coded in any MSF component. Instead, the components
obtain their specifications from the scenario description
file when a new simulation is initiated. A component de-
fined in this manner will then produce simulated results
on the basis of an external description. The scenario de-
scription file could in fact be a set of files, each referenced
in a main file. Such a setup creates a unique parameter,
the file URL, which completely defines a specific sce-
nario in a MSF simulation. The MSF currently uses a file
description that is a proprietary extension of the Robot
File Format used by VirtualRobot [2], which contains a
subset of the capabilities listed above. The MSF plans
to use an XML scenario description with dedicated Doc-
ument Type Definition (DTD). This will provide a de-
scription of the simulation that is human readable (and
editable) with the bonus of having existing graphical edi-
tors to modify the file and the necessary tools to parse it.
In addition, tools to exchange XML files over the network
are widely available, which is important for a distributed
simulation.

To ensure coherency, all the MSF components partici-
pating in a simulation will read the same scenario de-
scription file. However, each component extracts only
the information relevant to its domain. For example, the
kinematics simulator will identify all the dimensional pa-
rameters of a rover, while the instrument model will only
need to access the rover’s name. Having a single source
for describing the scenario is critical for software con-
figuration management and testing. A seemingly simple
change to the model robot such as increasing the power
of the motors can affect multiple software components
such as the power model, dynamic simulator, abstract rea-
soning layer or the visual representation. If the scenario
description were not limited to a single file, the result-

3Proprioceptive sensors, such as the incremental counter of a DC
motor, are considered part of the actuator. Low level control between
a DC motor and its controller is not simulated at the level of accuracy
that is addressable by the MSF.



ing simulation could become unmanageable to verify and
distribute.

3 Results: a First MSF Instantiation with
Three Components

A prototype of the Mission Simulation ToolKit (MST)
has been implemented, including a tool for generating
object-oriented communication classes in C++ from a
UML description. The communication classes rely on an
abstraction layer (FTK), hiding the complexity of HLA.
The design of the communication infrastructure dramati-
cally facilitates the integration of simulation components
within the MSF architecture while satisfying all MSF per-
formance requirements for data transfer and message ex-
change between components.

We recently applied our framework to the Virtual Intel-
ligent Planetary Exploration Rover (VIPER)[2] and were
able to achieve full integration in just a few days. VIPER
is a system linking the capabilities of a high fidelity vir-
tual environment (VIZ), a kinematically accurate generic
robot simulator (VirtualRobot) and a flexible plan exe-
cution module (Conditional Executive). The integrated
system allows users to simulate and visualize the behav-
ior of the robot during the execution of task plans under
development for a planetary mission. Before our integra-
tion effort, the three components of VIPER were linked
though various proprietary socket methods. With the in-
troduction of the MSF backbone, the modules depend
on a single communication layer by exchanging common
objects and messages from a well defined API. Besides
improving the coherency and reliability of the system, the
MSF made VIPER directly extensible (new components
can be plugged in) and reusable (the existing components
can be applied to new scenarios).

4 Conclusion and Future Directions

This paper has presented the MSF simulation framework
for autonomy research that makes it possible to integrate
available models of robotics systems and environment
with autonomy software. The toolkit provides develop-
ers a facile method to create communication entities that
define the API between the components participating in a
simulation. By collaborating with researchers from both
the autonomy and rover control community, the MSF
project will define a standardized interface allowing the
components of a simulation to be easily exchanged. In
addition, the distributed architecture enables researchers
to execute their autonomy software on the intended plat-
form while allowing model developers an easy way to
connect their components in the simulation.

Currently the MSF provides an initial set of components
based on the VIPER system (Executive, Kinematics and
Visualization) permitting users rapid creation of a sim-
ulation for a particular robot scenario. This library of

components is being expanded to include multi-body dy-
namics simulation, science instrument models, environ-
ment generation and a fully capable generic rover. It is
our hope that this library will grow as more users be-
gin to use the MSF and make their models available to
other research groups. We are also hopeful that the flex-
ible design and ease of use will make the MSF attractive
to a large community of users developing autonomy for
robotic missions.
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