
Constraint-based Attribute and Interval Planning

Jeremy Frank (frank@email.arc.nasa.gov)
and Ari Jónsson ∗ (jonsson@email.arc.nasa.gov)
NASA Ames Research Center

Mail Stop N269-3

Moffett Field, CA 94035-1000

Abstract. In this paper we describe Constraint-based Attribute and Interval Plan-
ning (CAIP), a paradigm for representing and reasoning about plans. The paradigm
enables the description of planning domains with time, resources, concurrent ac-
tivities, mutual exclusions among sets of activities, disjunctive preconditions and
conditional effects. We provide a theoretical foundation for the paradigm, based
on temporal intervals and attributes. We then show how the plans are naturally
expressed by networks of constraints, and show that the process of planning maps
directly to dynamic constraint reasoning. In addition, we define compatibilities, a
compact mechanism for describing planning domains. We describe how this frame-
work can incorporate the use of constraint reasoning technology to improve planning.
Finally, we describe EUROPA, an implementation of the CAIP framework.

1. What Should a Planner Do?

In recent years, planning has been applied to complex domains, in-
cluding the sequencing of commands for spacecraft both on the ground
and on-board (Jónsson et al., 2000). The domain of spacecraft opera-
tions requires controlling systems that are composed of many different
primitive components. Each component may perform one and only
one activity at a time, and many components have restrictions on the
allowed sequences of activities. Each activity may have both absolute
and relative constraints on its start time, end time, and duration. Fur-
thermore, activities executing on different components or subsystems
may be mutually constrained in a variety of ways. Finally, resources
such as memory and power are often in limited supply on spacecraft,
imposing further restrictions on activity sequences.

Until quite recently, researchers studied problems in planning repre-
sented in propositional formalisms such as STRIPS (Fikes and Nilsson,
1971) or Planning Domain Definition Language (PDDL) (McDermott,
2000). In STRIPS, the world state is represented by a set of propo-
sitions, and operators change the truth values of these propositions.
While these formalisms are powerful and have led to numerous con-
tributions in planning, it is difficult to represent problems involving

∗ Research Institute for Advanced Computer Science

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.1

2

time, resources, mutual exclusion, and concurrency using propositions.
In order to represent time, propositions must reflect not only what is
true, but when it is true. In order to represent resources, propositions
reflecting each possible state of the resource must be introduced into
the domain theory. In order to enforce mutual exclusions, each operator
must have as preconditions an assertion that each mutually excluded
state does not hold. These factors invariably lead to large numbers of
propositions and domain axioms. Since propositions include no inherent
notion of time, it is difficult to decide what actions in a plan take place
simultaneously, even when using a Partial-Order Causal-Link (POCL)
planner. Finally, it is difficult to express and meet maintenance goals
in a propositional framework.

The restrictive representation of STRIPS operators creates other
problems. STRIPS operators alone cannot be used to check for illegal
initial states. For example, consider the Blocks World Move operator,
which repositions a block. A precondition of this operator is that the
intended destination block b be available, represented by the predicate
Clear(b). The initial state On(x,table), On(y,x), On(z,x) is ille-
gal, because the intent of the operators is that only one block may
be stacked on any other block. However, the operators Move(z,table)
and Move(w,x) can be applied sequentially; Move(z,table) asserts
Clear(x) as a consequence, even though On(y,x) is still true 1. In ad-
dition, STRIPS operators hide the sources of disjunctive preconditions,
as they must be represented in separate axioms, and it is impossi-
ble to express conditional effects in STRIPS. Extensions of the basic
STRIPS formalism have provided convenient notations for disjunctive
preconditions and conditional effects, but those are invariably handled
by splitting the operator descriptions, which makes for hard-to-read
models.

Constraint-based representations offer solutions to many of the prob-
lems that arise in frameworks such as STRIPS. The use of variables and
constraints provides representational flexibility and reasoning power.
For example, variables can represent the start and end times of an
activity, and these variables can be constrained in arbitrary ways. The
ability to model activities this way is a key component of represent-
ing and reasoning about concurrent plans with absolute and relative
temporal constraints. More generally, constraints can also be used to
represent mutual exclusions, disjunctive preconditions, and conditional
effects of actions. Finally, constraints can be used to represent and
reason about many different types of resources.

1 PDDL handles this by explicitly introducing domain axioms.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.2

3

An additional advantage of a constraint-based representation is that
a wide range of constraint reasoning techniques and results can be
brought to bear on planning problems. For example, techniques like
consistency enforcement (Joslin, 1996; Jónsson et al., 2000), no-good
reasoning during planning (Do and Khambhampati, 2000), satisfiability
techniques (Kautz and Selman, 1996), domain independent heuristics
(Ghallab and Laruelle, 1994; Haslum and Geffner, 2000) and the use
of constraint reasoning systems employing linear programming (Pen-
berthy, 1993) have been used in different planners. By using a constraint-
based representation, we continue the trend set with these earlier ef-
forts.

In this paper, we describe Constraint-based Attribute and Interval
Planning (CAIP), a planning paradigm that explicitly supports time,
concurrency, resources, and mutual exclusion. CAIP is built on the
notions of attributes, which describe concurrent threads of activity, and
intervals, which describe temporally extended activities and states. Our
goal in this paper is to describe a paradigm that makes it easier to
both specify complex planning domains and create planners that take
advantage of constraint reasoning technology.

Our paradigm builds on prior approaches to planning with time and
attributes, the Remote Agent Planner (RAP) (Jónsson et al., 2000)
and IxTeT (Laborie and Ghallab, 1995; Ghallab and Laruelle, 1994).
RAP is derived from an earlier planning system, HSTS (Muscettola,
1994). Both were developed to work on real-world problems involv-
ing space operations. Both are attribute-centric, in that plans consist
of attributes that take on changing values over time. IxTeT uses a
point-based representation of time while RAP uses an interval-based
representation; the latter are similar to the Temporally Qualified As-
sertions (TQAs) first introduced by Penberthy (Penberthy, 1993) and
later used by Joslin (Joslin, 1996). IxTeT has sophisticated resource
representation and reasoning capabilities built into the planner in-
frastructure (Ghallab and Laruelle, 1994). Mutual exclusion on IxTeT
attributes is handled via a threat mechanism similar to that used in
POCL planning, while in RAP attributes require distinct intervals on
the same attribute to be totally ordered. Both RAP and IxTeT require
that every time instant maps to some interval. Finally, RAP supports
disjunctive relationships between activities, while IxTeT does not. The
Constraint-based Attribute and Interval framework provides the nec-
essary link between representations like these and more traditional
propositional representations of planning domains.

The paper is organized as follows. In §2 we formally define attributes
and intervals, which are the fundamental concepts of our framework.
We define the grounded logic of domain constraints and plans in terms

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.3

4

of attributes and intervals, which provides a theoretical foundation for
the constraint-based approach. In §3 we define the constraint-based
approach to planning over intervals and attributes, show that CAIP
plans are naturally expressed by networks of constraints, and show how
planning maps directly to dynamic constraint reasoning. We present
a compact mechanism for describing CAIP planning domains using
constraint templates called compatibilities. We also show that the re-
sulting framework is both correct and complete. In §4 we then discuss
how various advanced constraint reasoning techniques can be used to
take advantage of the CAIP representation. In §5 we briefly describe
EUROPA, an implementation of the CAIP framework. In §6 we discuss
previous work, and in §7 we conclude and discuss future work.

2. The Attribute and Interval Planning Framework

The motivation for our planning framework comes from the design
of complex concurrent systems, such as spacecraft. The system and
its interfaces are divided into components and subsystems, which we
refer to as attributes. Each attribute represents a concurrent thread,
describing its history over time as a sequence of states and activities.
An interval describes a state or an activity with temporal extent. The
rules governing how subsystems act and interact form the basis of the
planning domain constraints. A plan consists of a sequence of intervals
for each attribute, such that the planning domain constraints are sat-
isfied. The process of planning is based on reasoning about temporal
intervals that make up the sequence of values of attributes. In the
remainder of this section, we formally define these key concepts and
the basic semantics used in the framework.

2.1. Intervals and Attributes

In order to plan concurrent activities and states with temporal ex-
tents, we need to represent the fact that an activity or a state extends
over some period of time. We use a basic notion of a state or activ-
ity that is similar to that used by STRIPS and other formalisms for
planning, in that each state or activity is an atomic predicate in a
finite universe. Each predicate is defined by a unique predicate name
and set of typed arguments for the predicate. Temporal intervals are
a natural representation for a plan of activities and states that change
over time. An interval specifies that a certain predicate atom holds
over a certain period of time. An interval can, for example, state that
Going(rock,lander) holds between time 10 and time 20.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.4

5

In order to facilitate reasoning about real systems, we reason explic-
itly about attributes and their states. Associated with each attribute
is the set of values it can possibly take on, which are described using
intervals. As an example, consider a simple domain for a planetary rover
with a robot arm. Suppose we only care where the rover is, and whether
or not the rover is collecting samples with the arm. We model this with
a Location attribute, which can take on values like At(lander) and
Going(lander,hill), and an Arm-State attribute, which can take on
values such as Collect-Sample(hill), Idle(), and Off().

Based on this, we formally define an attribute as a mapping from
time to a set of possible values, each of which is an interval. Sequences of
non-overlapping intervals are a convenient representation of this map-
ping. Problem instances can contain multiple instances of attributes, so
intervals also specify the attribute instances whose value they describe.
We will represent the attribute instance with an additional parameter.
Formally, an interval consists of a predicate logic statement, i.e. a pred-
icate head and a list of applicable parameters, a start time, an end time,
and the attribute instance to which it applies. To continue our simple
rover example, the above-mentioned interval, which can be written as
holds(Location-Instance-1, 10, 20, Going(rock,lander)) spec-
ifies that instance Location-Instance-1 of attribute Location takes
on the value Going(rock,lander) at time 10, and this value holds
until time 20.

As we have already mentioned, each attribute can only take on
one value at any one time. This corresponds to mutual exclusion rules
between intervals that apply to the same attribute. More formally, let
holds(A, n, m, P) be an interval that specifies that the attribute
A has the value P from time n to time m. Let holds(A, t, s, Q) be
another interval for the same attribute. Either the time intervals [n,m]
and [t,s] are disjoint, or P and Q are the same atom.

2.2. Domain Constraints and Configuration Rules

The basic structure of a plan is a mapping of each attribute instance to
a sequence of intervals. In order to constitute a valid plan, it must also
satisfy domain constraints that limit the interactions between activities.

In STRIPS, the domain constraints are specified in terms of operator
descriptions and implicit frame axioms. For each operator (action), the
description specifies what must hold immediately before the action is
executed and what must hold immediately after the execution. For
each fluent (state), the operator descriptions, combined with the frame
axioms, specify what must happen for the fluent to become true and
what can make the fluent false. Simple STRIPS extensions are not

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.5

6

sufficient to describe concurrent domains, for example delayed or tran-
sient effects. STRIPS also does not handle disjunctions elegantly. For
these reasons, we need a more sophisticated way of expressing domain
constraints.

A domain constraint must describe the necessary conditions under
which an interval can hold on an attribute in a valid plan. For a
simple example, consider our rover. Suppose that the grounded interval
holds(Location, 10, 20, Going(rock,lander)) is part of the plan.
Suppose further that the arm is fragile, and thus must be turned off
while the rover is traveling from one place to another. This means that
there must be an appropriate interval on the Arm-State attribute that
ensures the arm is Off while the rover is Going. An interval such as
holds(Arm-State, 10,20, Off()), satisfies this constraint. However,
the interval holds(Arm-State, 9,21, Off()) would also suffice, as
would a possibly infinite number of such intervals.

We define for each possible interval I a set of configurations Oi in
which I legally can appear in a valid plan. Each configuration defines
a conjunction of other intervals, Jik, all of which must exist in a valid
plan containing the interval I. We refer to a disjunction of possible
configurations as a configuration rule. Logically, a configuration rule is
an implication I ⇒ O1 ∨ O2 ∨ ...Oi. Notice that this formalism easily
provides support for disjunctive preconditions and conditional effects.

We can now formally define a planning domain:

DEFINITION 2.1. A planning domain D is a tuple (I,A,R), where
I is a set of intervals, A is a set of attributes, and R is a set of
configuration rules.

2.3. Planning Problems

In order to complete the framework, we must define planning problem
instances and their solutions. In STRIPS, the problem instance defi-
nition is limited to a complete specification of the initial values of all
fluents and a set of goals to be achieved at the end of the plan. This is
much too limiting for reasoning about interactive, concurrent activities
over time. For example, specific activity goals may be part of the overall
planning problem, activities may be ongoing at the start or end of the
plan, and there may be temporal components to the overall goal of the
plan. It is more natural to require that a planning problem instance
be an incomplete plan, and the problem is to turn an incomplete plan
candidate into a valid and complete plan. Unsequenced intervals can be
part of an incomplete plan; these are assertions that some activity take

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.6

7

place, without a commitment of how or in what order the activities
occur. We formalize these definitions below:

DEFINITION 2.2. A candidate plan for a planning domain D is a
mapping from attributes to sequences of intervals and a set of non-
sequenced intervals. Given a candidate plan PC , a plan extension is a
plan P such that there is a mapping from the intervals in PC to a subset
of the intervals in P , and the mapping maps each interval in PC to an
identical interval. A valid plan is a candidate plan such that for each
interval I, and for each configuration rule R that matches I, there is a
configuration O in R for which all of the intervals in O are also part
of the plan.

The job of a planner is to find an extension of the initial plan such
that all of the configuration rules in the domain are satisfied for all
intervals. This notion permits a wide variety of goals, including main-
tenance and achievement goals. It is also possible to use this framework
for generating explanations by not specifying the initial state of one or
more attributes. With this notion we can now complete the framework
by defining a planning problem instance:

DEFINITION 2.3. A planning problem instance is a tuple (D, PC),
where D is a planning domain and PC is a planning problem instance.
A solution to the instance is a plan P that is a valid extension of PC .

3. Constraint-based Interval and Attribute Planning

We have now formally defined a planning framework in terms of pred-
icate instantiations, interval instances for attributes, and grounded
configuration rules. While this provides a solid foundation for a plan-
ning framework that is significantly more expressive than traditional
STRIPS, the number of grounded intervals and configurations in con-
figuration rules may be very large. Thus, it is not a practical framework
for solving planning problems. In this section, we turn the formal
framework into a practical approach to planning.

3.1. Representing Candidate Plans

We will represent candidate plans as a network of constraints. The core
idea of our constraint-based representation is to generalize the notion
of an interval to allow variables in place of grounded values in the
parameters, times, and attributes, and then use constraints on those

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.7

8

variables to represent domain constraints. As in traditional definitions
of constraint networks, a variable has a domain that specifies the set of
possible values. A constraint has a scope that specifies a set of variables,
and a specification defining the set of valid combinations of values
assigned to the variables in the scope.

In order to employ a constraint-based representation, we generalize
the notion of an interval to allow predicate atoms with variables and the
use of variables to describe the times and attribute. We will use italics
to denote variables, and typewriter to denote constants and predicate
names. An interval now becomes a tuple of the form holds(a, ts, te, P),
where a is a variable with the set of possible attribute instances as its
domain, and ts and te have the possible time values as their domains.
Predicate atoms P take the form p(x1, ..., xk), where p is some predicate
name and each xi is a variable whose domain is the set of possible values
defined by the type of the predicate parameter.

We introduce two extra constants hs, he, to represent the horizon
of the plan. The obvious requirement that actions in the plan occur
between the horizons has an added complication, discussed in detail in
§3.3.

As noted above, a candidate plan is a mapping of attributes to
sequences of intervals, a set of non-sequenced intervals, and a set of
constraints among the variables representing the intervals. The gener-
alization to intervals with variables is straightforward, but it is worth
noting that the sequence of intervals for a given attribute gives rise to
a set of constraints on the temporal variables of each interval. To be
more exact, the end time of one interval is constrained to be less than
or equal to the start time of the following interval.

Figure 1 shows a fragment of a plan and its CSP representation.

3.2. Compatibilities

Having generalized the representation of candidate plans, we find that
constraints can be used to significantly compress the specification of
configuration rules. Consider the example of our rover, where the arm
is restricted to be off whenever the rover is moving. We noted that
this gives rise to a large number of configurations that satisfy this
restriction. Using constraints and variables, however, we can reduce this
set to a single, compact expression. In essence, the rule will say that for
any interval of the form holds(Location, s, e, Going(x, y)), there exists
another interval holds(ArmState, s′, e′, off()), such that s′ ≤ s and
e ≤ e′. This notion of specifying constraint rules is generalized to a
construct called a compatibility.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.8

9

Off ()

containedBy

g_d= travelTime(hill,rock)

Arm−State−1

Location−1 Going(hill,rock)

g_s g_e

o_eo_s

<=

<=

<=

travel
Time

addeq g_d

g_l=rock

g_i=hill

Figure 1. A plan fragment and its representation as a CSP.

3.2.1. Compatibility Syntax
The basic structure of compatibilities is similar to that of configura-
tion rules, as they specify that certain intervals must exist in order
for a given interval to appear in a valid plan. Configuration rules
specify both constraints on how attributes may evolve, as well as cross-
attribute constraints. For example, suppose that a rover travels from
the rock location to the hill location. The model must ensure that
the rover’s location is constrained to be the location hill as soon as
the traversal is complete. This can easily be turned into a constraint
on any interval of the form holds(Location, s, e, Going(rock, hill)),
by requiring that it immediately be followed by an interval of the
form holds(Location, s′, e′, At(hill)). This is accomplished by assert-
ing that e = s′. The limitations on cross-attribute restrictions are easily
encoded in the same manner. Our previous example asserted that while
the rover was travelling, the robotic arm has to be turned off; this
example involves an interval on the Location attribute asserting that
an interval must hold on the ArmState attribute.

Compatibilities can also be used to limit the set of intervals that is al-
lowed to be in the plan, by using constraints on the parameters of the in-
tervals. For example, suppose going from the rock location to the hill
location takes 40 time units. This can be represented by a constraint

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.9

10

on any interval of the form holds(Location, s, e, Going(rock, hill)),
simply by requiring that e− s = 40.

Finally, compatibilities can employ guards to limit the set of intervals
that the compatibility applies to. For example, suppose the constraint
that the robot arm must be turned off while the rover is travelling
only applies when travelling to the location rock. We can use a guard
that indicates that the compatibility applies to predicates of the form
Going(loc-1,hill).

Based on these observations, a compatibility has to specify the set
of intervals to which it applies, the constraints on valid variable combi-
nations, and the set of valid configurations. A simple compatibility is
structured as follows:

Head Interval: holds(a, t1, t2, I(x1, . . . , xk))
Guards: list-of vi ∈ Gi

Parameter Constraints: list-of Cj(Yj)
Disjunction of Configurations: list-of

Configuration rule: list-of

Configuration Interval: holds(b, t3, t4, Jkr(z1, . . . , zn))
Configuration Constraints: list-of Km(Wm)

As previously described in §2.2, compatibilities can be understood as
implications; abusing notation slightly, the semantics of compatibilities
are:

(holds(I) ∧G1... ∧Gi) ⇒

(C1... ∧ Cj ∧ (O1... ∨Ok))

where
Os ≡ (holds(Js1) ∧Ks11

... ∧Ks1m
)

... ∧ (holds(Jsr) ∧Ksr1
... ∧Ksrn

)

Again, we utilize variables and constraints to make the represen-
tation more compact. Each of the guards specifies a domain Gi for a
head interval variable, i.e. a variable in the set {a, t1, t2, x1 . . . xk}. The
head and the guards specify the set of grounded intervals to which
the compatibility applies. Each Cj is a constraint on the head interval
variables, restricting the value combinations to those permitted by the
attribute definition. Each configuration rule defines a list of possible
configurations. Each configuration, in turn consists of a set of interval
templates, described by the interval specification, constrained with re-
spect to I by the general constraints Km, each of which has a scope Wm

that combines variables from the parameters of I and the parameters of

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.10

11

the interval for J , that is, the set {a, b, t1, t2, t3, t4, x1 . . . xk, z1 . . . zn}.
We will formally define the semantics of compatibilities in §3.2.2.

There are two reasons to separate the specification of the constraints
restricted to the head interval I from those relating the parameters of
I and Jkr. The first is that it is a natural separation. The parameter
constraints Cj are limited to the parameters of the predicate atom;
these constraints restrict the evolution of the attribute instance. The
remaining constraints Km enforce how intervals on different attributes
are mutually constrained. The second reason is more technical. It is
possible that the conjunction within a configuration rule is empty,
indicating that interval I can appear in any configuration. In such
cases, using configuration constraints to constrain the parameters in
I would require adding unnecessary configuration rule entries.

3.2.2. Semantics of Compatibilities
Any configuration rule can be expressed as a compatibility with a
grounded head and a disjunction of grounded interval sets, which means
that compatibilities and configuration rules are equally expressive. How-
ever, the use of compatibilities will invariably lead to an exponentially
smaller encoding of the domain constraints.

The semantics of a compatibility are as follows:

DEFINITION 3.1. Given a planning domain D and attribute A ∈ D.
If A takes on the value I(X), and all of the guard constraints vi ∈ Gi

of a compatibility M are satisfied, then the following must hold:

− All of the parameter constraints Ci(Yi) ∈ M must be satisfied.

− There is a configuration rule Ok ∈ M such that, for each con-
figuration interval Jkr(A) ∈ Ok, there must exist a corresponding
interval J ′(A′) in the plan, such that:

• The predicates of Jkr(A) and J ′(A′) match.

• The configuration constraints Kkr(Wkr) of the configuration
interval hold on the domains of the variables in the set A′.

It should be noted that multiple compatibilities may be applicable
to a given interval; should that be true, all the compatibilities must
hold simultaneously.

Judicious use of guards allow us to create compatibilities that en-
force conditional constraints and configuration rules. We will see an
example of this in §3.2.5. This is an important extension to the more
traditional non-conditional STRIPS rules, as conditional constraints
appear frequently in real-world domains. In fact, the compatibility

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.11

12

mechanism is powerful enough to express a variety of complex plan
constraints including conditional effects, disjunctive preconditions, and
arbitrary parameter relations.

3.2.3. Example: A Simple Compatibility
To ground this notion, let us again consider the rover domain exam-
ple, in particular the Going interval. Recall that we have a number
of restrictions on Going: The rover must be at the location it begins
the Going action, and must end up at the location it terminates the
Going action. The travel time depends on the departure point and the
destination; let us assume this time is specified by a function named
travelTime. Lastly, while the rover is traveling, the arm must be Off.

The compatibility for Going is then specified as follows:

Head: holds(Location-1,sg, eg,Going(x, y))
Parameter Constraints: sg + travelT ime(x, y) = eg

Disjunction:
Configuration Rule:

Configuration Interval: met by holds(Location-2,sa1, ea1,At(a)),
a = x, Location-1 = Location-2
Configuration Interval: meets holds(Location-2,sa2, ea2,At(b)),
b = y, Location-1 = Location-2
Configuration Interval: contains holds(ArmState,so, eo,Off)

Figure 2 shows this pictorially.

Going (x,y)At(a) At(b)

Off()

met−by meets

containedBy

s + travelTime(x,y)=e

Arm−State

Location

a=x y=b

Figure 2. A graphical diagram of a simple compatibility for Going(x,y). The param-
eter constraint is shown beneath the Going interval. We omit the constraints on the
Location parameters for simplicity.

3.2.4. Example: A Disjunctive Compatibility
Let us now consider an example of a compatibility specifying optional
configurations for an interval. To see how this works, assume we have a
more sophisticated rover model, in which turning the rover is modeled
explicitly. Now, Going can be preceeded or followed by At or Turning.
This requires deciding whether or not to turn before traveling to the

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.12

13

next location. The following compatibility shows the set of possible
configurations for Going, indicating that this action can be preceeded
by At or Turning, and similarly can be followed by At or Turning.
Note, however, that the robot arm must always be off; this part of the
compatibility is repeated in every configuration.

Head: holds(Location-1,sg, eg,Going(x, y))
Parameter Constraints: sg + travelT ime(x, y) = eg

Disjunction:
Configuration Rule:

Configuration Interval: contains holds(ArmState,so, eo,Off)
Configuration Interval: met by holds(Location-2,sa, ea,At(q)),
Location-1 = Location-2

Configuration Rule:
Configuration Interval: contains holds(ArmState,so, eo,Off)
Configuration Interval: met by holds(Location-2,sa, ea,Turning(q)),
Location-1 = Location-2

Configuration Rule:
Configuration Interval: contains holds(ArmState,so, eo,Off)
Configuration Interval: meets holds(Location-2,sa, ea,At(q)),
Location-1 = Location-2

Configuration Rule:
Configuration Interval: contains holds(ArmState,so, eo,Off)
Configuration Interval: meets holds(Location-2,sa, ea,Turning(q)),
Location-1 = Location-2

3.2.5. Example: Using Guards for Disjunctive Compatibilities
In the previous example, we retained the explicit disjunction syntax
from configuration rules. However, we can represent disjunctions by
using explicit variables and guards. We introduce new parameters to
the predicates whose domain is the set of disjunctive choices 2. A set of
guarded compatibilities on the same interval can specify the disjunction
of plan configurations. The Going predicate is augmented with variables
representing the decisions about whether Turning or At precedes and
follows the Going. These variables are used in compatibility guards
to specify which configuration rules apply. By choosing the guards so
that only one compatibility can possibly be satisfied at a time, only
one configuration can apply. Furthermore, we eliminate the repetitive
specification of the limitations on the Off state by specifying the com-
patibilty with no guard, so it applies to every Going interval. The
compatibilities are shown here below, and Figure 3 shows the structure

2 This is notational convenience only; the disjunctive variables can be defined
anywhere in the scope of the compatibility.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.13

14

of the compatibilities graphically. Note that the compatibility syntax
is simplified, because we have omitted the disjunctions and replaced
them with variables.

Head: holds(Location-1,sg, eg,Going(x, y, p, f))
Parameter Constraints: sg + travelT ime(x, y) = eg

Configuration Rule:
Configuration Interval: contains holds(ArmState,so, eo,Off)

Head: holds(Location-1,sg, eg,Going(x, y, p, f))
Guards: p =at-bef-go

Configuration Rule:
Configuration Interval: met by holds(Location-2,sa, ea,At(q)),
q = x, Location-1 = Location-2

Head: holds(Location-1,sg, eg,Going(x, y, p, f))
Guards: p =turn-bef-go

Configuration Rule:
Configuration Interval: met by holds(Location-2,st, et,Turning(q)),
q = x, Location-1 = Location-2

Head: holds(Location-1,sg, eg,Going(x, y, p, f))
Guard: f =at-aft-go

Configuration Rule:
Configuration Interval: meets holds(Location-2,sa, ea,At(q)),
q = y, Location-1 = Location-2

Head: holds(Location-1,sg, eg,Going(x, y, p, f))
Guards: f =turn-aft-go

Configuration Rule:
Configuration Interval: meets holds(Location-2,st, et,Turning(q)),
q = x, Location-1 = Location-2

The advantage of using conditional compatibilities rather then ex-
plicit disjunctions is twofold. First, the explicit use of variables to
specify choices is a more natural and more effective representation in
constraint-based reasoning. The variables in the guards can be con-
strained in the same manner as all other variables, and we can now
propagate to and from the variables in the guards, possibly limiting
the legal configurations by reducing the legal variable domains of these
variables. Secondly, the application and semantics of compatibilities are
simplified.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.14

15

Going
(x,y,p,f)

At(a) At(b)

Off()

p=at−bef−go :
met−by

f=at−aft−go :
meets

containedBy

s+travelTime(x,y)=e

Arm−State

Location

Turning(a) Turning(b)

p=turn−bef−go :
met−by

f=turn=aft−go :
meets

x=a

x=a

y=b

y=b

Figure 3. A graphical diagram of a disjunctive compatibility for Going(x, y). The
constraints are shown beneath the Going interval. The conditional configuration
rules are shown by placing the guards and temporal relations on the arcs linking the
intervals that exist in the plan if the guard is satisfied. Attribute equivalences are
omitted.

3.3. Building Plans

Recall that in our constraint-based representation, actions and states
are described using intervals where timepoints, parameters and other
information is represented by constrained variables. We now extend the
definition of candidate plans given in §2.3: a candidate plan consists of a
mapping of attributes to sequences of intervals, a set of non-sequenced
intervals, and a set of additional constraints on variables in the given
intervals. The notions of valid plan and plan extension are extended in
an analogous manner. This is a very expressive approach to specifying
planning problems, as it allows us to compactly specify sets of possible
interval instantiations.

We now turn our attention to the basis of the planning process, by
describing how such candidate plans can be modified to turn them into
valid plans. First, we show how to modify plans in order to search the
space of possible plans. Next, we extend the notion of complete plans
to sufficient plans. Finally, we discuss how compatibilities are satisfied
in the planning process.

3.3.1. Modifying Plans
We now define the operations that modify plans, and can be used
to search for a valid complete plan. The first group of modifications
either adds new decisions to the plan or reduces the number of options

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.15

16

remaining for existing decisions, and thus potentially reduce the set of
valid plan extensions, and so are called restrictions:

− Satisfying a compatibility interval requirement. First, the existence
of the interval must be satisfied. This can be accomplished in two
different ways:

• A new interval can be inserted between two intervals on an
attribute, along with the implied ordering constraints that
relate the start and end times of the intervals involved. Notice
that if there is insufficient time to insert the new interval, the
temporal constraints enforcing the total ordering of distinct
intervals on the attribute will be violated.

• Constraints are added to force an existing interval to satisfy
the compatibility element in question. Note that this requires
that the existing interval matches the interval specified and
that the constraints added do not cause inconsistency.

The required parameter constraints and configuration constraints
linking the two intervals are then added to the plan.

− An unsequenced interval can be inserted on an attribute. The
choices are defined by the domain of the attribute variable, and
the intervals already in place on the compatible attributes.

− The domain of a variable can be restricted. The obvious choices
are to assign a value to unassigned variables, but it is also possible
to reduce the set of possible values.

The inverses of these operations are relaxations.
In terms of constraint-based reasoning, the restriction and relaxation

operations map directly into the notions of strengthening and weaken-
ing of constraint networks, as those notions are defined for dynamic
constraint problems. As we will see here below, this is one of the key
strengths of this approach, as there are many well-known techniques
available to reason effectively about dynamic constraint networks.

3.3.2. Sufficient Plans
The traditional definition of a complete valid plan requires that all of
the constraints are satisfied, all intervals have been sequenced, and that
the plan has been fully specified to the end of time. However, this is an
unnecessarily restrictive definition. In many applications of planning,
the entity executing a plan can “fill in” unspecified parts of the plan. A
common example of this is the plan horizon, mentioned in §3.1. When

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.16

17

building a plan for execution, the goal is typically to build the plan up to
a certain timepoint, the plan horizon. This allows the planner to ignore
activities that fall outside the horizon. As another example, the Remote
Agent (Jónsson et al., 2000), was capable of instantiating unbound
temporal variables during execution. Thus, the planner did not fully
ground every temporal variable. To allow for such flexibility, we will
refer to plans that satisfy a given set of completeness requirements as
sufficient plans.

We now elaborate on the definition of the extension of a candidate
plan. Given a candidate plan PC , an extension of PC is a plan P such
that:

− There is a mapping from the intervals in PC to a subset of the
intervals in P that maps each interval I in PC to an interval J

in P that has the same predicate and such that the domain of
a variable in J is a subset of the domain of the corresponding
variable in I.

− P satisfies all the constraints given in PC .

Clearly, the set of plan extensions may be empty, which indicates
that the candidate plan is invalid. In general, it is intractable to identify
invalid candidate plans, but it is easy to see that if any constraint is
violated by a candidate plan, the candidate is invalid. We can now
refine the solution of a planning problem instance to be a sufficient
and valid extension of the initial plan candidate PC .

Three things distinguish candidate plans from solutions. One is that
there may be unbound variables, which represent choices in the exact
specification of intervals. Another is that there may be unsequenced
intervals in the candidate plan, which have to be scheduled onto the
appropriate attribute. The third and last is that some applicable com-
patibilities may not yet satisfied, in the sense that there are intervals
that are required to be in the plan by some compatibility, but are not
yet sequenced. Recall that these distinctions only apply to variables
and intervals that the sufficiency condition does not otherwise exclude.

For variables, the choices to be made are straightforward. If multiple
values remain in the domain of a variable, one must be selected as
the value assigned to the variable. Obviously, the value chosen must
satisfy all constraints in the plan. For unscheduled intervals, the set
of possible decisions is also clear, with one slight wrinkle. In addition
to being placed before or after other intervals, unsequenced intervals
can be equated with intervals that have the same predicate. This corre-
sponds to satisfying a goal in traditional planning by using an existing
state in the plan. The variables of the merged interval are equated,

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.17

18

and must satisfy all configuration and parameter constraints related to
both intervals. It remains only to describe how the compatibilities are
satisfied.

3.3.3. Satisfying Compatibilities
Handling unsatisfied compatibilities is the trickiest part of building
plans. There are two main reasons for this. The first is that satisfying a
compatibility may involve multiple decisions. In the CAIP framework,
this is handled by conceptually splitting the compatibility enforcement
into a set of separate decisions. The second issue is that the decisions
enforcing the satisfaction of a compatibility must continue to hold as
planning proceeds.

Before we describe our approach to handling unsatisfied compati-
bilities, let us look at the analogous issue in classical POCL planning.
In concurrent plans, the preconditions required by any given action
must be achieved by a set of earlier actions, such that no other actions
can delete a preconditions before the action requiring it begins. The
second issue here above, then, becomes a question of how to ensure
that achieved preconditions remain enforced until the action is ready
to execute. In POCL planning, this is done by explicitly adding the
safety conditions and causal links as part of the decision-making process
(McAllester and Rosenblitt, 1991).

Turning our attention back to the CAIP framework, recall that each
compatibility defines a set of parameter constraints and a set of config-
uration rules. Since the framework is based on an underlying constraint
network, enforcing the parameter constraints is straightforward; they
are simply added to the constraint network when the interval is created.
When the compatibility is no longer applicable, the constraints are
removed. The handling of the configuration rules is somewhat more
involved, but also builds on the constraint-based representation used
in CAIP.

Let us consider enforcing a configuration rule on an interval I that is
part of a plan. Suppose the configuration rule on I requires the existence
of an interval J , along with some constraints Ki. The constraints Ki

are created along with J , and are added to the constraint network.
Consequently, any future decisions made during planning must satisfy
these constraints along with the other constraints in the plan. The
planner can satisfy the need for the interval J by either equating J with
some existing interval, or by sequencing J between a pair of ordered
intervals. In both cases, new constraints are added to the plan, and
again, any future decisions made during planning must satisfy these
constraints. This posting of constraints is a natural extension of the
notion of causal links and ordering constraints in POCL planning.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.18

19

3.4. Planning Framework Correctness and Completeness

Before we can formalize our correctness criterion, we note that it is not
possible to build an arbitrary sufficient and valid extension of a given
candidate plan, using only the operations we defined here above. Con-
sider a domain with one attribute I, for which there are two intervals A

and B. Now consider a candidate plan with one fully grounded interval
A. Assume further that the sufficiency criteria eliminates all intervals
and variables that would otherwise be required by the compatibilities
for A. This candidate plan is a sufficient and valid plan. However, a plan
where another interval, B, has been added after the original interval
is also sufficient and valid, but cannot be generated only by adding
intervals required by compatibilities and not excluded by the sufficiency
criteria.

Our correctness and completeness proof must take this issue into
account. This is done by requiring only that the plan modification
operations be able to construct an “intermediate” extension that can
be further modified by adding the necessary intervals and constraints
to construct any sufficient valid extension of the initial plan.

THEOREM 3.1. Let D be a domain, and let PC be a finite length plan
candidate. Let Q be any finite length sufficient and valid extension of
PC . Then PC can be transformed into a sufficient and valid extension
P of PC by a sequence of plan modifications as described in §3.3.1, such
that P can be transformed into Q by adding a (possibly empty) set of
intervals and constraints to P .

We will outline the formal proof here, by showing that there exists
a sequence of plan modifications that transforms PC into a valid and
sufficient plan P , such that applicable compatibilities are satisfied in
the same way as in Q, and necessary variable assignments and interval
sequencing decisions are made the same way as in Q. We initialize
P = PC and apply the following operations repeatedly:

− if some applicable compatibility is not enforced for an interval

• find a set of intervals in Q that satisfy the compatibility in
question

• if matching intervals already exist in P , add any constraints
in Q that are not in P

• otherwise, add a new interval to P , sequencing it in the same
way it appears on attributes in Q

− if an unsequenced interval in P is sequenced in Q, then sequence
it in the same way as in Q

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.19

20

− if an interval in P has a variable whose value is a superset of the
assignment in Q, make the variable assignment

Halt this process when P is valid and sufficient.
It is relatively straightforward to see that the process halts with a

valid and sufficient plan P . First, we note that the set of compatibilities
that must be satisfied in Q is finite, since Q has a finite number of
intervals, and each interval only gives rise to a finite set of applicable
compatibilities. Second, we note that during the process of transforming
PC into P , the set of compatibilities is monotonically increasing, while
being bounded by the set of compatibilities applicable to Q. This is
because the only intervals added to P are those that appear in Q.
Finally, we note that the set of variables to be bound, and the set of
unsequenced intervals to be sequenced, are also finite. Since each step
in the process addresses a compatibility, an unbound variable, or an
unsequenced interval, only a finite number of steps can be taken. The
validity and sufficiency of Q guarantees that the process can halt with
a valid and sufficient plan.

4. Constraint reasoning

We have already noted that each candidate plan gives rise to a con-
straint network, and that the operations to restrict and relax plans
map directly to strengthening and weakening operations for constraint
networks. This makes it possible to bring results from the wide liter-
ature on CSPs to bear on the constraint networks. In this section, we
focus on constraint reasoning, deferring discussion of the application of
constraint satisfaction heuristics and planning to later work.

There are many constraint reasoning techniques that can be used
to make the planning effort more effective. The only requirement we
impose is that the constraint reasoning methods must preserve the set
of valid plan extensions. Any constraint reasoning technique that only
performs sound reasoning, i.e. only eliminates values or value combina-
tions that provably cannot participate in a solution, preserves the set of
valid plans. Examples of sound reasoning include temporal constraint
propagation (Dechter et al., 1991), arc consistency maintenance, higher-
level consistency enforcement such as k-consistency, and the correct
procedure application as described in (Jónsson and Frank, 2000). In
the following sections we discuss some aspects of constraint reasoning
when planning with the CAIP framework.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.20

21

4.1. Domain dependent constraints

When modeling real systems, often constraints will not be expressed
as relations, but as functions. In many cases, complex machinery will
be required to compute these functions. One way to handle these con-
straints is to use a procedural constraints framework (Jónsson, 1997;
Jónsson and Frank, 2000). In this framework, each constraint is embod-
ied as a procedure. This allows arbitrary functions to be encapsulated
as relations among the variables of the function. An additional benefit
of this is an efficient and compact representation of the constraints, as
each procedure can take advantage of the most efficient techniques. The
framework is extensible, as new constraints can be easily added. The
framework requires each procedure to provide a definitive answer when
all variables in its scope are assigned singleton values. However, pro-
cedures can do much more, such as enforce arc consistency or bounds
consistency.

4.2. Reasoning about Collections of Constraints

Several methods exist to handle a homogeneous set of constraints using
efficient techniques. For examples, cliques of equivalence constraints
can be enforced much more efficiently than enforcing them piecemeal
in a general reasoning framework; this approach is used by the ZENO
system (Penberthy, 1993). The set of all simple temporal constraints
can also be made arc-consistency efficiently by using the algorithms
described in (Dechter et al., 1991). However, this is not the only way
to handle temporal constraints; they can also be treated as arithmetic
constraints and handled by Gaussian elimination, as is done by ZENO
(Penberthy, 1993).

4.3. Constraints on Attributes

Attributes turn out to be a useful framework for discussing constraint
reasoning techniques. Attributes can be viewed as unit-capacity re-
sources, and therefore techniques such as edge-finding (Nuijten, 1994)
can be employed among the intervals on a single attribute instance.
However, since intervals may be equated, edge-finding would have to
account for this possibility when computing its bounds. Similarly, edge-
finding would only be allowed to reason about intervals that are known
to take place on a particular attribute instance. In order to make full
use of edge finding, it would have to be fully incremental to reduce the
cost of recomputation.

Some domains employ attributes to represent multi-capacity re-
sources by employing a combination of parameter choices and arith-

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.21

22

metic constraints. For example, we can model a renewable resource
using two intervals: Has takes one parameter a and asserts that a
resource has amount a resource remaining. Change takes 3 parameters:
i, the initial amount of the resource, d the change in the resource,
and f the final amount of the resource. We then use the following
compatibilities to model the evolution of the resource due to Change:

Head: holds(Resource-Amount-1,sg, eg,Change(i, d, f))
Parameter Constraints: f = i− d

Configuration Rule:
met by holds(Resource-Amount-2,sa, ea,Has(x)),
i = x,Resource-Amount-2 = Resource-Amount-1
meets holds(Resource-Amount-3,sb, eb,Has(y)),
f = y,Resource-Amount-3 = Resource-Amount-1

Head: holds(Resource-Amount-1,sg, eg,Has(x))
Parameter Constraints: f = i− d

Configuration Rule:
met by holds(Resource-Amount-2,sa, ea,Change(a, b, c)),
c = x,Resource-Amount-2 = Resource-Amount-1
meets holds(Resource-Amount-3,sb, eb,Change(d, e, f)),
d = x,Resource-Amount-3 = Resource-Amount-1

Currently, these compatibilities may be mixed with others that im-
pact the same interval. Isolating these compatibilities would permit the
use of techniques such as the balance constraint (Laborie, 2001) to both
determine the state of resource consumption, and add other constraints
to the plan to ensure that adequate resources are available.

Finally, constraint reasoning can be used to efficiently detect tem-
poral inconsistencies related to inserting unsequenced intervals into the
plan, by exploiting the structure of attributes. Consider the following
example, as shown in Figure 4.3. Let P be a free (unsequenced) interval
that was added to satisfy a “before” compatibility for interval Q. Let
S be another interval, added to satisfy a “before” compatibility for
interval R, which is temporally ordered after Q. Inserting P on or after
S results in a directed cycle of temporal constraints that makes the
candidate plan invalid.

While this constraint violation would be caught by the Simple Tem-
poral Network (STN) algorithm of (Dechter et al., 1991), it may be
found faster by using a special-purpose method for detecting cycles
between attributes. There are some subtleties involving the possible
combinations of temporal constraints that can lead to such cycles.
However, the complexity of these checks depends only on the number
of intervals on the attributes, and is simpler than the cycle detection

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.22

23

done in full STN algorithms. Suppose there are m intervals on the same
attribute as Q and further that each of these is related by compatibilities
to at most j other intervals. Then the complexity3 of checking for
temporal cycles is O(mj). In many useful cases, this is considerably
smaller than the complexity of enforcing consistency on the full STN.

Free
Interval PFree

Interval P Candidate
Interval S

Subsequent
Interval R

Master
Interval Q

before

before
before

before

Figure 4. Identifying inconsistent orderings for intervals by analyzing pairs of at-
tribute instances. Note that in this figure, a directed edge exists between the interval
timepoints labeled with the temporal relation which induces that constraint.

4.4. No-Good Reasoning

No-good reasoning has proven to be a powerful method in reasoning
about CSPs, and has been used previously in addressing planning prob-
lems (Do and Khambhampati, 2000). No-good reasoning may improve
the performance of search algorithms designed to employ the CAIP rep-
resentation. However, because dynamic constraint reasoning is required
to support CAIP, variables (and values, depending on the represen-
tation) can disappear. No-goods mentioning variables that have been
eliminated no longer apply, and can be removed from the no-good store.
While performance improvement is possible using no-goods, the fact
that no-goods must be eliminated means that care must be taken to
avoid inefficiency due to no-good maintenance.

5. EUROPA: A CAIP Implementation

We have implemented a system called EUROPA using the CAIP frame-
work. In this section, we describe some of the design features and
implementation decisions embodied in EUROPA. We will focus on two

3 The number of intervals m is actually the number of total intervals, not the
number of interval equivalence classes formed by equating pairs of intervals. The
number of compatibility-based interval relations can be inferred from the model.
Careful management of data structures may reduce m and j by accounting for
equivalences.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.23

24

aspects of EUROPA; constraint-reasoning techniques employed in the
implementation, and how compatibilities are enforced during planning.

EUROPA has been designed and implemented as a software module
that maintains a representation of a candidate plan. The module pro-
vides interfaces that allow a client to modify the plan, and query the
plan concerning its validity, consistency status, open decisions, and so
on. The EUROPA systems has been applied to several domains, includ-
ing multiple satellite scheduling, planetary rover operations, automated
flight planning, and DS-1.

5.1. Constraint and Attribute Reasoning

The EUROPA system uses several different constraint reasoning meth-
ods. The procedural constraint reasoning framework of (Jónsson and
Frank, 2000), the simple temporal network propagation algorithms of
(Dechter et al., 1991) and maintenance and propagation of equivalence
classes form the principal reasoning mechanism. Constraints in the
procedural framework enforce either arc-consistency or, in the case of
arithmetic constraints, bounds consistency. The temporal relations are
simplified and made explicit in EUROPA compatibilities by limiting
the configuration constraints Km(Wm) to one of Allen’s interval al-
gebra(Allen and Koomen, 1983), with metric interval distance bounds.
The reason for this is that the resulting constraints form an STN, which
can be efficiently reasoned about, as mentioned previously. Configu-
ration constraints may also include equivalence constraints between
parameters of the head interval and parameters of the configuration
interval; the syntax supports this by allowing the same variable name
in the head interval and configuration interval specifications. Finally,
configuration constraints include unary constraints on the domains of
the configuration intervals. The syntax of a EUROPA compatibility is

Head Interval: holds(a, t1, t2, P (x1, . . . , xk))
Guards: list-of vi ∈ Gi

Parameter Constraints: list-of Cj(Yj)
Configuration rule: list-of

Configuration Interval: τ holds(b, t3, t4, Q(z1, . . . , zn))

where z1, . . . , zn is either a variable in the set x1, . . . , xk or a domain
specification, and where τ is a temporal constraint4.

4 The EUROPA syntax permits disjunctions to be expressed using an AND-
OR tree, where the OR is associated with a parameter variable, in addition to the
guarded compatibility structure introduced in this paper.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.24

25

We treat the duration variables as “non-temporal” variables, and
link the temporal constraints to the rest of the constraint network via
the interval duration constraint e − s = d. We also post constraints
that “equate” temporal variables to non-temporal variables; these con-
straints propagate the bounding interval to the STN. Since arbitrary
constraints may lead to disjoint intervals, we use this trick to “protect”
the STN from the disjunctions.

EUROPA does not explicity represent the domain of possibilities for
interval insertion decisions. Rather, when an interval is to be inserted,
the domain is constructed by consulting the attribute. Temporal cycle
checking techniques like those described in §4.3 are used as a “forward
checking” phase when retrieving the candidates for interval insertion.
An alternative way of handling interval insertions is discussed in some
detail in (Frank et al., 2000).

5.2. Compatibility Enforcement

In the EUROPA framework, the decisions associated with satisfying the
compatibilities for an interval are mapped into decisions concerning
how to sequence unsequenced intervals. This is done by maintaining
the plan invariant that every sequenced interval is supported by the
existence of intervals that satisfy applicable constraints.

Let P be a candidate plan, and let P (X) be some sequenced in-
terval that matches the antecedent of a compatibility. Let Qi(Yi) be
the set of intervals specified by that compatibility, along with temporal
constraints τi(P (X), Qi(Yi)), relating P (X) and Qi(Yi). Let C be the
constraints on variables in X,Yi, also given by the compatibility. To
enforce the EUROPA plan invariant, all intervals Qi(Yi) and constraints
C and τi are added to the candidate plan when P (X) is added to
an attribute instance. Similarly, when P (X) is removed from an at-
tribute instance, all of its required intervals Qi(Yi) are removed from
the candidate plan, and the constraints C and τi are retracted. By
noting whether the change is a restriction (further refining the plan by
adding constraints and intervals, or by assigning values to variables),
or a relaxation, the modifications necessary can be done incrementally:

− Restriction: any configuration rules that apply to the candidate
plan, and are not already enforced, are enforced by adding the
corresponding intervals and constraints. For example, an interval
may now be in an attribute sequence, leading to applicability of
a compatibility. Another example is that a variable’s domain may
now match a compatibility guard, leading to the applicability of a
configuration rule. If, however, no new compatibilities apply, then
no intervals or constraints are added to the candidate plan.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.25

26

− Relaxation: any configuration rules that no longer apply result in
the removal of the relevant intervals and constraints. For example,
a compatibility guard that previously applied may no longer apply,
resulting in the removal of constraints and intervals from the plan.

For an example of how this is done, let us return to the complex
rover model. Suppose we have a plan with holds(Location-1, s, e,
Going(x, y, p, f)), with Location-1 = Location-Instance-1, and the
assignment p =turn-bef-go is made. Since a variable assignment was
made, we only check the guards relevant to variable p. The guard
p =turn-bef-go is satisfied, and therefore a non-sequenced interval
holds(Location-2, s′, e′, Turning(a) is added to the plan, along with
the constraints a = x,Location-1 = Location-2, and e′ = s (which
enforces Going(x, y) met by Turning(a)). Now suppose that the as-
signment p =turn-bef-go is retracted. The configuration guard is no
longer satisfied, and so the interval for Turning(a) and the attendant
constraints are removed from the plan. This process is illustrated in
Figure 5.

Going (x,y,p=turn−bef−go , f)

Turning (a)

Off()
s+travelTime(x,y)=e

Going contained_by Off
Going met_by Turning

a=x

Free Intervals Constraints

p=?p=t urn_beg_go

Going (x,y,p,f) Off()

Free Intervals Constraints

s+travelTime(x,y)=e
Going contained_by

Off

Location−Instance−1

Location−Instance−1

Figure 5. Illustration of the plan invariant at work. When the assignment
p =turn-bef-go is made, free (unsequenced) intervals and constraints are added
to the plan. When it is retracted, the configuration guard no longer holds, and the
Turning interval and its constraints are removed from the plan.

Now let us consider a slightly different example, where an inter-
val holds(Location-instance-1, s, e, Going(i, j, k, l)) has been
added to satisfy a compatibility, such that it can be equated with an ex-
isting interval holds(Location-instance-1, s, e, Going(x, y, p, f)). Sup-
pose also that we already have made the assignment p =turn-bef-go.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.26

27

When we equate the new interval with the existing interval, no addi-
tional compatibilities become applicable, so no new intervals are added
to the plan, as shown in Figure 6. Similarly, if we remove the interval,
no existing intervals are removed from the plan.

Going (x,y,p=turn−bef−go, f)

Turning(a)

Off()
s+travelTime(x,y)=e

Going contained_by Off
Going met_by Turning

a=x
i=x,j=y,k=p,l=f

Free Intervals Constraints

Off()

Free IntervalsLocation−Instance−1 Constraints

Going (x,y,p=turn−bef−go, f)
s+travelTime(x,y)=e

Going contained_by Off
Going met_by Turning

a=x
Turning(a)

Going (i, j, k, l)

Going (i, j, k, l)

Free
Going (i,j,k,l)

Insert
Going (i,j,k,l)

Location−Instance−1

Figure 6. Illustration of the plan invariant at work. In this case, the plan invariant
does not change the plan when the interval holds(Location-instance-1, s, e,

Going(i, j, k, l)) is added to or removed from the plan. The parameter equivalences
are added or removed by the plan modification itself, not the plan invariant.

The approach taken to compatibility enforcement in EUROPA al-
lows a form of least-commitment planning (Joslin, 1996) to be employed
by planners; it allows parameters of intervals to be assigned before the
intervals are sequenced. This comes at a cost; non-sequenced intervals
must be maintained and managed, even if they are outside the horizon
or end up being equated with other intervals. Enforcing the existence
of Y can be done in different ways. In temporal POCL frameworks, the
need for Y is handled by generating a decision that determines which
of existing Y ’s in the plan are to be used, or whether a new interval is
to be generated. The appropriate causal links are then inserted. This
is similar to the approach used in EUROPA.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.27

28

6. Previous work

Allen and Koomen (Allen, 1991; Allen and Koomen, 1983) developed
a sophisticated framework for representing time and temporal plans,
much of which has been adopted by later researchers (including our-
selves) as the representation for planning. However, no planners based
on this formalism were developed, and the framework developed does
not include completeness results for planning domains.

DEVISER (Vere, 1983) is a POCL planner that handles time 5. DE-
VISER domain descriptions can include absolute temporal constraints
and duration constraints; the duration of an activity can be an arbi-
trary function of any of the parameters of an activity. Goals can be
expressed using both absolute temporal constraints and relative tem-
poral constraints; for instance, it is possible to assert that A and B are
both true simultaneously. In DEVISER, all addition and deletion effects
occur at the end of the activity. Modeling techniques are described to
model activities in which a precondition need not be true throughout
the action and to model an activity in which an effect takes place
immediately. Both require adding new fluents to the representation,
and there is no easy way to introduce related activities that start or
end at times arbitrarily related to the activity in question.

ZENO (Penberthy, 1993) and Descartes (Joslin, 1996) are POCL
planners that handle time. Both are built on the notion of intervals,
called Temporally Quantified Assertions (TQAs). Descartes allows arbi-
trary constraints among the parameters of TQAs. In ZENO, continuous
variables are allowed to vary in a piecewise linear manner; this forces
the modeling of other constraints as piecewise linear. Neither ZENO nor
Descartes support mutual exclusion, and lack theoretical justification
for their extensions of STRIPS.

TGP (Smith and Weld, 1999) is a version of Graphplan that handles
a version of STRIPS with time. Activities are assumed to have duration,
and can also have absolute temporal constraints on the start and end
times. This is coupled with an extension to the semantics of STRIPS.
All preconditions are required to hold before the action begins. All
preconditions unaffected by the action are required to hold until the
action ends; preconditions affected by the action are considered unde-
fined during the action. Effects are required to hold after the action
ends. These semantics are similar to those found in DEVISER; TGP is
more limited than DEVISER in that activity durations must be part of
the model. The CAIP framework is more expressive, in that arbitrary

5 Deviser is actually based on NONLIN and NOAH, which pre-date POCL
planning

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.28

29

synchronizations between actions can be expressed. TGP also does not
support attributes or resources.

The AIPS 2002 Planning Competition featured PDDL 2.1 (Fox and
Long, 2002), a version of PDDL which includes facilities for represent-
ing temporal planning domains. PDDL 2.1 permits the spefication of
planning problems in which actions take time, and allows the speci-
fication of “temporally annotated conditions and effects”. Unlike the
CAIP framework, conditions and effects can only be asserted at the be-
ginning of an action, the end of an action, or during the action. Effects
during the action are invariants over the action’s duration. Actions are
permitted to have conditional effects.

7. Conclusions and Future Work

We have presented constraint-based attribute and interval planning
(CAIP), a planning framework that supports features common to real
planning problems. CAIP provides primitives that support modeling
domains with real time, concurrency, resources, mutual exclusion, and
disjunctions. Intervals representing a temporally extended state pro-
vide a basis for constraining the timing and concurrency of activi-
ties. Attributes enforce mutual exclusion and support the modeling
of resources. The underlying constraint-based representation permits
compact representation of these rules, supports disjunctions, and also
allows planning technology to leverage off of efficient algorithms for
constraint satisfaction problems.

The framework has already been implemented in three different sys-
tems, including one that successfully controlled a spacecraft (Jónsson
et al., 2000). The latest implementation, the EUROPA system, will
further extend the application of this technology to real-world plan-
ning domains, as well as further expand the capabilities of the CAIP
paradigm. Among these future challenges are real-time planning sys-
tems that will serve as smart execution systems, and mixed-initiative
planning tools for helping human users build and verify complex plans.

The framework leaves considerable flexibility in the choice of con-
straint reasoning techniques to employ when building planners. For
example, a wide variety of algorithms such as arc consistency or bounds
consistency can be used to quickly identify and eliminate values of
variables that can lead to invalid plans. Special reasoning algorithms
can be used for domain specific constraints. In some cases, collec-
tions of constraints may be reasoned about simultaneously; ZENO
uses an incremental Simplex algorithm to manipulate linear constraints
(Penberthy, 1993). Sophisticated resource reasoning algorithms such as

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.29

30

edge-finding (Nuijten, 1994) and balance constraints (Laborie, 2001)
can also be used. However, these require matching attributes with
resources for particular domain models.

In the CAIP framework, an interval on an attribute can force other
intervals to exist on other attributes. Another option is to constrain
the intervals that other attributes may take on. In essence, this would
permit the expression of negation constraints on attributes. HSTS per-
mitted the posting of constraints limiting the possible intervals that
could occur on an attribute within a period of time (Muscettola, 1994).
Modeling experience with the CAIP framework will indicate whether
such expressive power is needed by the framework, and how best to
incorporate it.

8. Acknowledgments

The authors would like to thank the anonymous reviewers for their
comments. This work was supported by NASA Ames Research Center
and the NASA Intelligent Systems Program.

References

Allen, J.: 1991, ‘Planning as Temporal Reasoning’. In: Proceedings of the Second

Conference on Knowledge Representation.
Allen, J. and J. Koomen: 1983, ‘Planning using a Temporal World Model’. In: Pro-

ceedings of the Eighth International Joint Conference on Artificial Intelligence.
Dechter, R., I. Meiri, and J. Pearl: 1991, ‘Temporal Constraint Networks’. Artificial

Intelligence 49, 61–94.
Do, M. B. and S. Khambhampati: 2000, ‘Solving Planning-Graph by Compiling It

Into CSP’. In: Proceedings of the Fifth International Conference on Artificial

Intelligence Planning and Scheduling. pp. 82–91.
Fikes, R. E. and N. J. Nilsson: 1971, ‘STRIPS: A new approach to the application

of theorem proving to problem solving’. Artificial Intelligence 2((3-4)).
Fox, M. and D. Long: 2002, ‘PDDL 2.1: An Extension to PDDL for Expressing

Temporal Planning Domains’. Technical Report 2/02, University of Durham
Computer Science Department.

Frank, J., A. K. Jónsson, and P. H. Morris: 2000, ‘On Reformulating Planning as
Dynamic Constraint Satisfaction’. In: B. Choueiry and T. Walsh (eds.): 4th

International Symposium on Abstraction, Reformulation and Approximation.
Ghallab, M. and H. Laruelle: 1994, ‘Representation and Control in IxTeT, a Tem-

poral Planner’. In: Proceedings of the 2d Conference on Artificial Intelligence

Planning And Scheduling. pp. 61–67.
Haslum, P. and H. Geffner: 2000, ‘Admissible Heuristics for Optimal Planning’.

In: Proceedings of the Fifth International Conference on Artificial Intelligence

Planning and Scheduling. pp. 140 –149.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.30

31

Jónsson, A.: 1997, ‘Procedural Reasoning in Constraint Satisfaction’. Ph.D. thesis,
Stanford University Computer Science Department.

Jónsson, A. and J. Frank: 2000, ‘A Framework for Dynamic Constraint Reasoning
Using Procedural Constraints’. In: Euopean Conference on Artificial Intelligence.

Jónsson, A. K., P. H. Morris, N. Muscettola, K. Rajan, and B. Smith: 2000, ‘Plan-
ning in Interplanetary Space: Theory and Practice’. In: Proceedings of the Fifth

International Conference on Artificial Intelligence Planning and Scheduling.
Joslin, D.: 1996, ‘Passive and Active Decision Postponement in Plan Generation’.

Ph.D. thesis, Carnegie Mellon University Computer Science Department.
Kautz, H. and B. Selman: 1996, ‘Pushing the Envelope: Planning, Propositional

Logic, and Stochastic Search’. In: Proceedings of the 13th National Conference

on Artificial Intelligence. pp. 1194–1200.
Laborie, P.: 2001, ‘Algorithms for Propagating Resource Constraints in AI Planning

and Scheduling: Existing Approaches and New Results’. In: Proceedings of the

6th European Conference on Planning.
Laborie, P. and M. Ghallab: 1995, ‘Planning with Sharable Resource Constraints’.

In: Proceedings of the International Joint Conference on Artificial Intelligence.
pp. 1643 – 1649.

McAllester, D. and D. Rosenblitt: 1991, ‘Systematic Non-linear Planning’. In:
Proceedings of the Ninth National Conference on Artificial Intelligence.

McDermott, D.: 2000, ‘The 1998 AI Planning Systems Competition’. AI Magazine

21(2).
Muscettola, N.: 1994, ‘HSTS: Integrated Planning and Scheduling’. In: M. Zweben

and M. Fox (eds.): Intelligent Scheduling. Morgan Kaufman, pp. 169–212.
Nuijten, W.: 1994, ‘Time and Resource Constrained Project Scheduling: A Con-

straint Satisfaction Approach’. Ph.D. thesis, Eindhoven University of Technology
Department of Mathematics and Computer Science Department.

Penberthy, S.: 1993, ‘Planning with Continuous Change’. Ph.D. thesis, University
of Washington Department of Computer Science and Engineering.

Smith, D. E. and D. S. Weld: 1999, ‘Temporal Planning with Mutual Exclusion
Reasoning’. In: IJCAI. pp. 326–337.

Vere, S.: 1983, ‘Planning in Time: Windows and Durations for Activities and Goals’.
Pattern Matching and Machine Intelligence 5, 246–267.

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.31

frank.jonsson.jconstraints.02.latest.tex; 14/06/2002; 16:58; p.32

