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Abstract. Orion is NASA's new crew exploration vehicle.  The Orion 
Project will be using a state-of-the art model-based software develop-
ment process. This model-based software development process is new 
for the human space program, and implies both new opportunities and 
risks for NASA. Opportunities include gaining early insight into de-
signs in the form of executable models, and formulation of requirement 
verification conditions directly at the model level. Risks include auto-
generated code. This paper describes intelligent software engineering 
tools being developed by NASA. The tools interface directly to the mo-
del-based software development process, and provide the following ca-
pabilities: early analysis to find defects when they are inexpensive to 
fix, automated testing and test suite generation, and innovative methods 
for verifying auto-generated code. 

1 Prologue 

Following the termination of the Apollo program, the human space program has for 
decades remained confined to low-earth orbit even as robotic vehicles explored the 
other planets and moons of our solar system. After the disaster of the space shuttle 
Columbia breaking up over North America, the United States reassessed its human 
space program. Instead of retreating after the Columbia disaster, NASA was directed 
to reach again beyond the confines of Earth and to acquire the capability for human 
exploration of our solar system – and beyond. The first step is to replace the space 
shuttle with a crew exploration vehicle that is suitable for travel beyond low-earth or-
bit. This is the objective of the Orion project.  

The space shuttle, originally conceived of as a space ferry, was an engineering 
marvel for the 1970s when it was designed and developed. The avionics alone set 
many precedents, including digital fly-by-wire and the use of fault-tolerant configura-
tions of general-purpose computers. The core software combined a real-time operat-
ing system tightly coupled to cross-checking of computations in a configuration of 
four computers running identical software and a backup system running dissimilar 
software to provide real-time computing fault tolerance. This was needed to ensure 
two-fault tolerance required for digital fly-by-wire.  

However, the operation of the space shuttle has never achieved its goal of routine, 
cost-effective, airline-style operation. In addition, a crew vehicle with a large cargo 
capacity requires significant expense to meet human-rating requirements as compared 



to a simpler and smaller crew-only vehicle augmented with separate cargo vehicles. In 
retrospect, the space shuttle is also more dangerous than originally thought. 

NASA plans to replace the space shuttle with Orion, a capsule that has been lik-
ened to ‘Apollo on Steroids’. It is suited for travel beyond low-earth orbit, while 
avoiding dangerous design aspects of the space shuttle. Since it is much smaller and 
less massive than the shuttle, while carrying a comparable crew, it will be signifi-
cantly less expensive to launch and operate.  NASA selected Lockheed as the prime 
contractor, in part because of an innovative model-based software development proc-
ess. The proposed core of this process are auto-coders that translate from Unified 
Modeling Language (UML) and related modeling languages to code, and also ex-
pected reuse of portions of the Boeing 787 software.  

NASA has limited experience in the human spaceflight program with these meth-
ods of software development. However, NASA research centers have over the past 
decade been developing intelligent software verification and validation technologies. 
These technologies are now being interfaced to the software development process for 
Orion. This paper first overviews the expected software development process for the 
Orion project, and then describes the software verification and validation technologies 
developed by NASA research centers. Cited papers provide more technical detail than 
is possible in this paper. The paper also describes how these technologies are being 
adapted to Orion’s software development process, in order to provide NASA better 
capabilities for oversight.  

2 Orion Software Development 

Lockheed has chosen an innovative software development process for Orion with a 
high degree of tool support from requirements development through auto-generation 
of code. The current software development plan calls for a model-driven architecture 
(MDA), where the design is developed primarily with a UML (Unified Modeling 
Language) tool, with secondary support from Mathworks’ modeling languages. The 
Mathworks languages include Matlab, Simulink, Stateflow, and a variety of tool-
boxes; these will be collectively called Matlab in this paper. The implementation in 
C++ will be generated automatically through an adapted version of a commercial 
auto-coder for UML, in combination with a Matlab compiler. The commercial UML 
auto-coder is designed to be modified by a development organization in order to tar-
get a specific operating platform. For the Orion project, the operating platform is a 
real-time operating system that is compliant with ARINC 653 standards for Integrated 
Modular Avionics. Integrated Modular Avionics provides the capability for different 
partitions to execute on the same computer, as if they were executing on separate 
computers; thus providing a level of safety that would otherwise require the power, 
weight, and costs associated with multiple computers. 

This software development process is new to NASA human space exploration. For 
flight software design and development the model-driven architecture approach is ex-
pected to decrease the dependency on target hardware, programming language and ar-
chitecture. Since Orion is expected to be a core component of NASA’s fleet for dec-
ades, it is important to plan ahead for future upgrades to the avionics. The intent of 
the MDA is to enable redirecting the software to another target platform by changing 



the auto-coder and then re-generating the flight software from the models for the new 
platform. For this to be effective, the intent is for all software (except a fixed reuse 
core) to be generated ‘pristinely’: no hand modification after auto-coding. This redi-
rection through changing the auto-coder will also enable the same models to be used 
for simulation and training software. Compared to previous baselines this approach is 
also expected to decrease cost and schedule, reduce coding defects, simplify integra-
tion issues, and support rapid development through model simulation and debugging.  

NASA research centers are developing intelligent analysis tools that can be used 
for NASA oversight, and are adapting them to this innovative software development 
process. One objective is to verify that the software works correctly over a wide range 
of both nominal and off-nominal scenarios. Doing this analysis at the model level has 
advantages in both finding defects early and in scaling the analysis to the large soft-
ware systems expected for Orion. There are two related objectives to this model 
analysis. The first is to thoroughly exercise the different execution paths through the 
software. This objective has been extended to white-box testing: automating the gen-
eration of suites of test cases that provide coverage for exercising the execution paths 
through the software.  The second related objective extends this to black-box testing 
technology: clustering the behavior of the system under simulation according to 
nominal and off-nominal behavior, and automatically testing the system over a wide 
range of mission parameters in order to determine governing factors between nominal 
and off-nominal behavior. The final objective described in this paper is to independ-
ently verify the output of the auto-coder for compliance with safety policies, and to 
generate documentation suitable for humans doing technical reviews.  

In order to explain the expected use of these tools, the following sub-sections pro-
vide a synopsis of the UML/MDA software development approach. A key observa-
tion is that this approach naturally results in system software structured as a set of in-
teracting finite state machines. This structuring facilitates the scaling and use of 
model-checking technology for model analysis. A second observation is that the 
adaptable auto-coding approach itself provides a means for interfacing between UML 
models and model-checking technology: the auto-coder is adapted to the model-
checking platform. The core model-checking platform is based on a virtual machine 
technology that further facilitates this adaptation.  

2.1 Model-Driven Architecture 

The Object Modeling Group (OMG) defines model-driven architecture as the separa-
tion of system application logic from the underlying platform technology. This en-
ables platform-independent models of a system’s function and behavior, built using 
UML, to be implemented on many different target platforms. The platform-
independent models represent the function and behavior of a software system inde-
pendent of the avionics platform (encompassing hardware, operating system, pro-
gramming language, etc.) used to implement it. Platform dependence has been a per-
ennial challenge for long-lived aerospace systems, such as the International Space 
Station (ISS). For example, the upgrade from Ada 83 to Ada 95 for the ISS required a 
substantial re-engineering effort. Orion is expected to be used through the Lunar Sor-



tie and Lunar Habitat phases of NASA’s exploration program, and likely into Martian 
exploration.  

2.2 Software Development with UML 

This subsection simplifies the relevant aspects of UML-based software development 
from the viewpoint of the NASA analysis tools. The interested reader can find more 
details in the extensive literature on UML and object-oriented design including the 
UML variant chosen by the Orion project – executable UML (xUML) [1].  

The UML software development process begins by grouping concepts into semi-
independent domains that are largely self-cohesive. A domain reflects subject matter 
expertise, for example Guidance, Navigation, and Control (GN&C). Within each do-
main, the classes of objects and their static relationships are then defined in a class 
diagram. Each object class then has attributes defined, for example in GN&C a vehi-
cle class would have attributes attitude and velocity. The static relationships between 
object classes are also defined, for example spacecraft are a specialization of vehicle.  

Once the static class diagrams are defined, then the dynamic aspects of the domain 
are defined, such as operations, which are procedures that operate on objects and re-
lated objects. Of particular interest are statecharts that define the transition of an ob-
ject through a succession of states. For example, an Orion capsule could be modeled 
as an object of class spacecraft that has states including pre-launch, launch, various 
phases of ascent, orbit insertion, docking with the space station, etc. Most objects 
transition through their states through interaction with other objects; such as the 
launch pad infrastructure signaling Orion that the countdown has reached zero, and 
Orion in turn signaling the rocket booster to ignite. These interactions are modeled 
through formal definitions of signals between state machines. UML allows a rich va-
riety of actions that can be taken when signals are sent and received, and the objects 
enter, remain in, and exit states. Some variants of UML allow these actions to be de-
fined in a conventional programming language. The xUML variant chosen by Lock-
heed defines these actions through an Action Semantics Language (ASL), which is 
then auto-coded to a programming language. 

Verification of interacting state machines against logical and temporal properties is 
done through model-checking. For Orion software, the operations and actions that de-
fine the behavior of the xUML state machines will be auto-coded to an object-
oriented programming language. Thus the model-checker needs to handle object-
oriented software in a manner that permits scaling to large software systems. 

3 NASA Analysis Tools and their Interface to the 
Orion Software Development Process 

NASA’s intelligent analysis tools for model-based software development draw upon 
core intelligent system methods including automated symbolic reasoning, constraint 
solving, intelligent search, automated theorem proving, and automated data analysis.  
The tools interface directly to Orion’s model-based software development process 
(MDA/UML development process), providing the following capabilities:  



• Early analysis at the model level to find defects when they are inexpensive to fix. 
The model-based analysis does a sophisticated graph search through the state space of 
a software system formulated in UML to automatically find defects against required 
properties. 
• Automated testing and test suite generation that ensures coverage. This includes 
verification testing based upon white-box coverage criteria of paths through the soft-
ware, and validation testing for black-box determination of the robustness of the sys-
tem under varying mission parameters. The white-box testing relies on symbolic rea-
soning and constraint solving, while the black-box testing relies on intelligent search 
and machine data analysis. 
• Innovative methods for verifying auto-generated code. The auto-code verification 
independently checks the C++ code against safety policies, and also develops detailed 
documentation that can be used during a code review. This mitigates the trust that 
needs to be put into the auto-coder. 

On the left of figure 1 below is a fragment in the middle of Lockheed’s Orion tool 
chain: an auto-coder that maps from UML models and Matlab models to C++ flight 
software. This fragment is preceded by requirements and design steps, and succeeded 
by compilation to partitions in the target ARINC 653 platform, and many stages of 
testing. The later stages of testing on the target hardware with a simulated mock-up of 
the Orion environment are expensive and require unique facilities, so it is important 
that defects are found as early as possible in the process to avoid costly rework down-
stream. All of the steps in the tool chain are embedded in a configuration management 
system. On the right of figure 1 are the NASA intelligent analysis tools, described 
next in the following sub-sections. 

3.1 Model Analysis 

Model Analysis compares the UML and Matlab models against properties specify-
ing verification conditions and then generates design error reports in the form of 
counterexamples. The models are translated to the model-checking target environ-
ment through an alternative auto-coder in the same family of commercial auto-coders 
that are adapted to generate the flight, training, and simulation software. The model-
checking target environment is Java Pathfinder [2,3]: a Java virtual machine that is 
optimized for state-space exploration through dynamic execution of software encoded 
as Java byte code instructions. Java Pathfinder dynamically checks a software system 
against both generic properties (such as consistency and completeness of transitions) 
and specified verification properties. The verification properties are derived from re-
quirements and design specifications.  
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Fig. 1. On the left, a portion of Lockheed’s Orion software development proc-
ess. On the right, NASA’s intelligent software analysis tools.  



 
Java Pathfinder is an explicit state model checker with some similarity to SPIN [4]. 

Explicit state model checkers use an explicit representation of individual states. They 
run a backtracking search over the graph of the state space, saving state information 
for matching on subsequent nodes in the search. If a new node matches a previously 
generated node, then the search from the new node is terminated. For software, the 
transitions correspond to instruction executions, and the states correspond to the value 
of program variables across all threads and processes. Explicit state model checkers 
are particularly good for asynchronous concurrent systems and reactive embedded 
systems, where the system interacts with the environment. The environment is itself 
modeled as a finite state machine, e.g., a software simulation, operating in parallel 
with the system.   

Orion software falls into the category of a reactive embedded system with rich 
constructs (ASL) for the transition relations, and complex states corresponding to Ob-
ject-oriented (OO) software. Java Pathfinder was built from the ground up to handle 
object-oriented (OO) software; it has highly effective means of compactly represent-
ing state information for OO software executions. In addition, UML’s use of state 
machines for modeling the dynamics of a system provide an abstraction layer that has 
been modeled as an extension of the Java virtual machine at the core of Java Path-
finder; providing further computational savings in analyzing Orion software. There is 
a considerable literature on methods for handling the computational complexity of 
model-checking, many of these methods are built-in to Java Pathfinder. 

The architecture of Java Pathfinder also enables changing the operational seman-
tics of the byte-code instructions on the fly; the default semantics are the same as 
standard Java virtual machines. This flexibility enables plugging-in operational se-
mantics for other analysis tools, which is used for verification testing. 

3.2 Advanced Verification Testing – Test Suite Generation 

There are two components to advanced testing: verification testing and validation test-
ing. Verification testing is done through an alternate operational semantics with an ex-
tension of Java Pathfinder [5]. Instead of executing the byte codes on concrete inputs, 
the byte codes are executed on symbolic inputs. The result is to accumulate symbolic 
expressions denoting the value of variables at successive points in the program execu-
tion. When a conditional statement is encountered, the condition becomes a symbolic 
constraint on variables. For a simple if-then-else statement, a path condition is gener-
ated on the variables of the conditional expression for the then branch, and the nega-
tion of the path condition is generated for the else branch. The symbolic execution ac-
cumulates path conditions through nested conditionals and guarded iterative 
constructs; the constraints in the accumulated path conditions are then solved to gen-
erate test vectors. This is done for the different paths and conditions in order to ensure 
that the generated test vectors provide sufficient coverage, as described below. 

Verification testing takes as input the same translated models as model analysis, 
and in addition a specification of desired coverage criteria. Examples of coverage cri-
teria include statement coverage (execute each program statement at least once), and 
branch coverage (execute all combinations of conditional branches, taking into ac-



count nesting structure). Symbolic execution [6,7] then determines the cumulative 
path conditions for the different points in the code required for the specified coverage. 
For each such point in the code, a vector of input values are then generated that satisfy 
the constraints. The result is a set of vectors that comprise a test suite that provides the 
specified coverage criteria. This set of vectors can be optimized to eliminate duplica-
tion. The test suite can be applied at many different stages of testing from the model-
level through high-fidelity hardware testing. Verification testing as described here has 
mainly been applied to automatically generating test suites for individual units. Meth-
ods for extending it to larger portions of software are under development, including 
innovative approaches to integrating with system-level validation testing.  

3.3 Advanced Validation Testing 

The software validation testing technology performs large validation test runs (op-
tionally on computer clusters or supercomputers) of a system under simulation, fol-
lowed by automated machine analysis of the test logs to cluster the results, identify 
anomalous runs, and identify predicates on the inputs that separate nominal from off-
nominal runs. It largely automates the laborious and expensive traditional process of 
human validation testing and test-log analysis, filtering the large amount of data to 
something which is much more manageable by human engineers. It thus enables vali-
dating a simulated system over a much wider range of scenarios, defined by variations 
in mission parameters, thereby providing assurance that the system does what is 
needed and more sharply defining under what range of off-nominal parameters the 
system is no longer robust. Conceptually, it is an extension of Monte-Carlo analysis – 
where a simulated system is tested under a statistical distribution of parameters, lead-
ing to a scatter-plot of results.  

The innovation over standard Monte-Carlo analysis is two-fold. First, combinato-
rial testing techniques are used to factor pairs or triples of parameters into varying sets 
in order to identify critical parameters. This mitigates the combinatorics of the num-
ber of tests, which then allows searching over a much larger range of statistical varia-
tion than the two or three sigma that is standard for Monte Carlo testing. The objec-
tive of this extended variation is to determine system robustness through explicit 
identification of failure boundaries. The coverage criteria for advanced validation test-
ing are specified through settings for the combinatorial and Monte-Carlo test genera-
tion. The second innovation is the automated machine analysis of test runs. Clustering 
algorithms based on expectation-maximization are generated automatically through 
AutoBayes [8] – a program synthesis system for data analysis. Treatment learning 
provides learning predicates on parameters that separate nominal from off-nominal 
behavior.  

This technology has already been applied to analysis of ascent and re-entry simula-
tions for Orion [9]. At present, several iterations with manual input are required to 
identify factors that determine off-nominal behavior – e.g., atmospheric re-entry 
points that lead to off-range landings. The manual input is to adjust test generation 
ranges and factoring.  Under development are methods to automate the adjustments 
for successive iterations based on machine data analysis. 



3.4 Autocode Verification 

Auto-coders are a critical component of Orion’s Model-Driven Architecture, enabling 
avionics platform re-targeting over the decades-long expected lifetime of Orion. 
While auto-coders have historically been used for rapid prototyping and design explo-
ration, their use in safety-critical domains is more recent. One approach in safety-
critical domains is to treat the auto-generated code as if it were manually developed 
for purposes of verification and test, however this approach provides only limited 
immediate productivity gains over manual development. Another approach is to qual-
ify the code generator, which requires the same certification standards as the produc-
tion flight code but enables analysis activities on the model-level to receive formal 
verification credit. However, code generator qualification is expensive and needs to 
be completely redone for every upgrade to the auto-coder and every adaptation and 
reconfiguration for a project.  

A third approach is to exploit information about the auto-coder to automate por-
tions of the analysis and documentation needed for certifying the generated code. This 
is the approach being taken with the NASA autocode verification tool. Certain aspects 
of the safety certification for flight-readiness are being automated, through a Hoare-
style verification of auto-generated code against safety policies, with automated gen-
eration of detailed documentation that can be used during a code review. The technol-
ogy has already been demonstrated on a number of safety policies relevant to Orion, 
including programming-language safety conditions (e.g., variable initialization before 
use, and memory access safety) to domain-specific safety conditions (e.g., correct 
handling of physical units and co-ordinate frames [10]. The documentation of con-
formance with safety policies is generated after an automated, formal proof that the 
code meets the safety requirements, and provides an understandable hyperlinked ex-
planation suitable for code reviews.  

The algorithm synopsis [11,12] is to work backwards through the generated code 
from a safety postcondition, first heuristically generating annotations that exploit in-
formation about the autocoder (such as stylized code fragments that encode co-
ordinate transformations), and then collecting verification conditions. These are then 
submitted to an automated theorem prover, which typically succeeds in discharging 
the verification conditions. The approach is fail-safe, in that the annotations are not 
trusted and if incorrect will lead to failure to prove the verification condition. The ap-
proach is loosely motivated by proof-carrying code. 

4 Summary 

NASA’s Orion project is using an MDA software development approach for NASA’s 
new crew exploration vehicle. NASA research centers have adapted intelligent soft-
ware engineering analysis technology to this model-based approach in order to pro-
vide tools for insight and oversight of Orion software development. The tools include 
model-checking to find design errors in UML and Matlab models, verification testing 
technology that automatically generates test suites providing white-box testing cover-
age for units and subsystems, validation testing to find mission parameter ranges that 
distinguish nominal versus off-nominal behavior, and autocode verification technol-



ogy that automates aspects of the safety certification of the MDA auto-generated 
code.  
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