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Today’s air traffic management system is not expected to scale to the projected increase in 

traffic over the next two decades. Enhancing collaboration between the controllers and the 
users of the airspace could lessen the impact of the resulting air traffic flow problems. We 
summarize a new concept that has been proposed for collaborative air traffic flow 
management, the problems it is meant to address, and our approach to evaluating the 
concept. We present our initial simulation design and experimental results, using several 
simple route selection strategies and traffic flow management approaches. Though our model 
is still in an early stage of development, these results have revealed interesting properties of 
the proposed concept that will guide our continued development, refinement of the model, 
and possibly influence other studies of traffic management elsewhere. Finally, we conclude 
with the challenges of validating the proposed concept through simulation and future work. 

 
Keywords: agent-based modeling and simulation, air traffic flow management, 
collaboration, competition 

Introduction 
Air traffic in the United States of America (U.S.A.) is forecasted to double or triple by the 

year 2025 (Pearce, 2006). Recent simulations (Mukherjee, Grabbe, & Sridhar, 2008) of this 
increase in demand using current air traffic management techniques yielded an increase in 
average delay per flight from four minutes to over five hours – a clearly unacceptable 
situation. Accordingly, the National Aeronautics and Space Administration (NASA) is 
currently exploring several new concepts that may reduce or alleviate air traffic problems. 
One such concept is Collaborative Air Traffic Flow Management (CATFM), which seeks to 
lessen the impact on airspace user operations rather than eliminate the problem. Today in the 
U.S.A., the Federal Aviation Administration (FAA) makes the bulk of Air Traffic Flow 
Management (ATFM) decisions with only limited consultation with the airlines. In CATFM, 
the airspace users are given more opportunities to express their preferences, choose among 
options, and take proactive actions. It is presumed that this will result in decreased workload 
for the FAA, increased airline satisfaction, and more efficient traffic flow management 
(Odoni, 1987). 

Several questions arise when evaluating if the CATFM concept will work in the future 
environment. Will the airlines take advantage of new opportunities for action, or will they be 
passive and let the FAA continue to solve traffic problems independently? Will increasing 
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airline involvement decrease the FAA’s workload? Will the options available to the airlines 
enable them to substantially increase the efficiency of their operations, in particular when 
many factors still remain out of their control? Will the uncoordinated actions of individual 
airlines increase the efficiency of the system as a whole, even though each airline is only 
concerned with their own operations (Waslander, Raffard, & Tomlin, 2008)? Might potential 
efficiency gains be offset by the actions of rogue operators, who purposely seek to interfere 
with the operations of a competitor (Hardin, 1968)? 

Given that the CATFM concept involves many independent entities with their own beliefs 
and desires, we feel that the first step to answering some of these questions is through agent-
based modeling and simulation. Our goal is to build a simulation of CATFM so that its 
strengths and weaknesses can be evaluated long before more costly human–in-the-loop 
simulations or limited field deployments are attempted (Wambsganss, 1996). Our simulation 
is in an early stage of development, but we have already found several interesting and 
important properties of CATFM (presented in our conclusions). 

Though our study is certainly most relevant to air traffic, certain aspects are relevant to 
other forms of traffic as well. Our methodology can be applied to any concept of operations 
in these domains. Many of the basic concepts (e.g., choosing routes, traffic congestion, 
independent and uncoordinated agent actions) are the same and the overall structure is 
similar. Nonetheless, there are important differences. An aircraft’s airborne speed must 
remain in a narrow range: significant speed increases are usually unachievable; slower speeds 
can produce stalls; and halting is impossible. This greatly constrains the actions that are 
available, and is further limited by the amount of fuel onboard (which is minimized to reduce 
operating costs).  

ATFM generally has more centralized control than other forms of traffic management: In 
contrast, CATFM increases information sharing and distributes some elements of decision 
making. Finally, a significant portion of air traffic is comprised of fleets (i.e., airlines) – 
essentially allied pilots who are interested in cooperating for the common good of the 
company. 

When viewed abstractly, systems developed and evaluated for CATFM could be 
generalized to other agent-based systems, particularly those that model people. Like many 
other real-word systems, the air traffic system involves a competition for limited and shared 
resources. The participants of this system are neither wholly cooperative (which is rarely 
realistic given self-interest), nor entirely competitive (which can lead to less efficient overall 
performance). Rather, there are two types of participants: a controlling entity, which seeks to 
maximize some global property such as system performance; and participating operators, 
which seek to maximize their own utility. The challenge is to design a robust system of 
constraints so that the actions of the participants work towards maximizing the desired global 
property. The utility functions of the participants are self-determined, may include 
antagonistic elements, and are generally unknowable, complicating matters. Yet, this 
situation occurs often not only in government-controlled systems, but also in any system with 
central authority, such as companies, organizational bodies, and games of many types. 

We begin with a description of ATFM and related work. We describe the main features of 
the CATFM concept of operations and the observed operational problems it is meant to 
address. Our approach to developing a simulation of this concept of operations is presented, 
and we describe our simulation of the flight routing phase. We discuss the comparative 
results of different CATFM approaches and different airspace user strategies. We conclude 
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with an analysis of these experiments, and present our goals for future development of the 
simulation. 

Background 

Introduction to ATFM 
Air traffic control (ATC), a superset of ATFM, provides safe, orderly, and efficient flow 

of aircraft operating within a given airspace (Nolan, 2003). Generally, an Air Traffic Service 
Provider (ATSP) is the authority responsible for providing air traffic management; the FAA 
is the ATSP for the U.S.A.’s National Airspace System (NAS). The FAA has four major 
types of facilities that participate in ATC. ATC towers manage the aircraft arriving, 
departing, and taxiing on the ground. Terminal radar approach control facilities control 
airspace within approximately thirty miles of a major airport. Air Route Traffic Control 
Centers (ARTCCs) are responsible for the remainder of controlled airspace in the NAS. 
There are twenty such ARTCCs in the continental United States, and each ARTCC is further 
subdivided into sectors. Finally, the Air Traffic Control System Command Center 
(ATCSCC) develops nation-wide strategic plans for traffic flow management throughout the 
NAS. It has final approval of all national flight restrictions and is responsible for resolving 
inter-facility issues. Our research has focused on ATFM at the ARTCC level, which consists 
mostly of “en route” traffic flying on instrument flight rules (meaning they rely on 
instrumentation and FAA guidance). The FAA usually assigns traffic to predefined air routes 
(essentially “sky highways”) in order to increase the predictability of the traffic flow. 

ATFM is a system-level function to manage the traffic flow based on capacity and 
demand. ATFM is the responsibility of a Traffic Management Unit (TMU) within each 
ARTCC and the ATCSCC for regional and national problems, respectively. The ATCSCC 
TMU develops strategic plans to ensure balanced flow throughout the NAS over a planning 
horizon of two to eight hours. The ARTCC TMUs develop tactical plans to manage air traffic 
within their local airspace over a planning horizon of up to two hours that are consistent with 
any relevant ATCSCC restrictions. The TMUs constantly monitor for potential conditions 
that could reduce airspace capacity such as adverse weather, and for excessive traffic demand 
that could overload a sector controller’s ability to safely handle traffic (Adams, Kolitz, 
Milner, & Odoni, 1996). For example, a TMU may identify a Flow Constrained Area (an 
airspace region with a capacity-demand imbalance) due to anticipated severe convective 
weather. The TMU would then analyze which type of restriction should be invoked to 
alleviate the traffic imbalance. Since restrictions may affect adjacent centers, either directly 
or through ripple effects, ATCSCC approval is needed before invoking such a restriction. 
ATFM issues are reported during a bi-hourly planning teleconference, involving 
representatives from the ATCSCC, each ARTCC, and airspace users.  

A variety of restrictions are available to the FAA, depending on the nature of the traffic 
flow problem (Sridhar, Chatterji, Grabbe, & Sheth, 2002); we describe some commonly used 
restrictions. A re-route procedure assigns a new route to an aircraft to avoid a problem area, 
such as a severe thunderstorm or congested airspace. (This is the only restriction we have 
implemented in our current simulation.) A Ground Delay Program (GDP) is used to delay 
aircraft at departure airports in order to manage the demand at an arrival airport. Flights are 
assigned delayed controlled departure times, thus changing their expected arrival time at the 
impacted airport. GDPs are implemented when capacity at an arrival airport has been reduced 
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for a sustained period, due to weather or excessive demand. Miles-in-Trail (MIT) restrictions 
enforce an increased spatial separation between aircraft transiting through some point in the 
airspace, but may shift traffic problems upstream. Time-based metering provides dynamic 
sequence and schedule advisories to controllers to reduce delays for arrival aircraft 
approaching capacity-constrained airports. 

Airlines manage their fleet of aircraft in an Airline Operations Center (AOC). Each AOC 
has a coordinator that monitors the restrictions and participates in the planning teleconference 
to make their concerns known to the FAA. A major thrust of the CATFM concept is to 
increase the role of the AOCs in ATFM. 

Agent-based ATFM Simulations 
The Airspace Concept Evaluation System (ACES) (Sweet, Manikonda, Aronson, Roth, & 

Blake, 2002) is a distributed agent-based simulation of the entire NAS, including but not 
restricted to ATFM (Couluris, Hunter, Blake, Roth, Sweet, & Stassart, 2003). ACES uses a 
layered architecture to support several simulations at various levels of fidelity. Airspace 
participants, ranging from individuals to larger entities, are represented as agents. Given its 
broad coverage, ACES is able to perform cost-benefit evaluations on new concepts whose 
effects go beyond that of a particular element. 

IMPACT (Intelligent agent-based Model for Policy Analysis of Collaborative Traffic flow 
management) is a swarm-based agent model of FAA agents and airline agents, used to 
evaluate three possible responses to capacity reductions: no advanced planning, GDPs 
without information sharing, and GDPs with shared airline schedules (Campbell, Cooper, 
Greenbaum, & Wojcik, 2000). In each scenario, the FAA agents decide whether or not to 
impose GDPs, based on predefined policies. The airline agents choose actions that minimize 
the estimated cost to their operations. As expected, their simulation measured the best 
performance when schedule information was shared, but found that GDPs without shared 
information (as occurs in today’s operations) resulted in a greater average cost per flight than 
when no advanced planning occurred. 

STEAM (Tambe, 1997) has been used to evaluate a collaborative system for real-time 
traffic synchronization (Nguyen-Duc, Briot, Drogoul, & Duong, 2003). Real-time traffic 
synchronization is the work of the individual sector controllers as they manage flights that 
run through multiple sectors. The airspace user agents do not participate in the collaboration: 
Only the sector controller agents and a few higher-level coordinating entities coordinate their 
problem-solving actions.  

The Man-Machine Integrated Design and Analysis System (MIDAS) is an agent-based 
model of human performance when coupled with machine interfaces. MIDAS has been 
applied to ATFM (Corker, 1999), and emphasizes the capabilities and limitations of human 
cognitive ability instead of complex decision making. 

Issues and Problems 

Characterizing Operations and Issues through Field Observations 
To characterize current problems in air traffic flow management, field observations were 

conducted at several operational centers (Idris, Evans, Vivona, Krozel, & Bilimoria, 2006). A 
diverse set of facilities was included to provide a wide scope of operational characteristics 
and corresponding issues, including five ARTCCs, five AOCs, and the ATCSCC. The 
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ARTCCs managed areas of varied geographical size with assorted weather characteristics 
and differing traffic patterns. The AOCs included both large and small carriers, with different 
operational models and customers. Finally, the ATCSCC provided a unique perspective of 
national air traffic flow management.  

These field observations supported the development of the CATFM concept of operations 
in three ways. First, they made it possible to characterize the operational situations that result 
in air traffic flow constraints. These operational situations typically stem from two immediate 
causes: either from a decrease in airspace capacity (e.g., due to weather or airspace 
restrictions); or through an increase in demand (e.g., from pop-up traffic, overscheduling, or 
from traffic rerouted from another area). Second, once the flow constraint situations and their 
immediate causes were identified, the underlying operational issues that often lead to 
inefficient handling of these situations were identified. Finally, these observations provide a 
valuable record of work practice. By analyzing how the work is done, potential solutions 
were developed, and a corresponding agent-based model of ATFM operations was built. 

Identified ATFM Issues 
The primary finding from the field observations was that the current ATFM system limited 

the potential for collaborative problem solving. Primarily two factors cause these issues. 
First, the sharing of information between the FAA and airlines is limited. Thus, planning 
must be conducted without accurate information about the other entity’s view of the current 
state, priorities and plans. These three elements correspond to the belief, desire and intention 
agent framework (Bratman, 1999). Second, the bulk of the problem solving activities falls 
upon the FAA, but their workload limits the solutions they can realistically pursue. We 
present a summary of these findings; the complete list can be found in (Idris, Vivona, Penny, 
Krozel, & Bilimoria, 2005). 

Inaccurate Problem Assessment 
Efficient management of traffic flow issues begins with an assessment of the problem. 

Incorrect assessments of either the demand or the capacity can lead to inaccurate problem 
assessments, including over- or underestimating the problem severity, missing a problem or 
incorrectly raising a non-existent problem. Factors that lead to inaccurate demand 
assessments include erroneous prediction of pop-up traffic, changes in departure times, flight 
plans or cancellations, and displacement of traffic from flow constraints elsewhere. Factors 
that lead to inaccurate capacity assessments include incorrect weather and airspace restriction 
predictions. These inaccuracies may lead to divergent assessments between the FAA and 
AOCs, resulting in inconsistent plans. 

Differing Evaluations of Identified Problem 
Once the traffic flow problem is identified, the FAA and the airlines regard the problem 

differently, for after safety, their concerns diverge. The FAA will seek to minimize the effect 
of the problem on the NAS and limit controller workload. The airlines are only concerned 
with the affect on their own flights and not the flights of competing airlines. Each airline 
seeks solutions that adhere to their business model, often with a goal of minimizing costs 
while limiting the negative effect on their customers. Moreover, different carriers will have 
different business models, therefore addressing cost, reliability and on-time service 
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differently. Thus, even with a consensus on the traffic flow problem, different entities will 
often prefer different solutions. 

Limited Mitigations 
The ARTCC and ATCSCC TMUs have a limited set of restrictions available when 

choosing mitigations to a traffic flow management issue. These restrictions are typically 
coarse-grained and are applied uniformly to all airspace users. Often, the mitigations are 
overly restrictive, and because they are not selective, may disproportionately impact some 
airspace users. 

High TMU Workload 
Two factors contribute to a high TMU workload when the disruptions to the NAS grow 

severe. First, the reliance on direct synchronous communications such as teleconferences and 
phone calls increases the cost of communication, decreasing both the time available for such 
communications and for other activities. Secondly, actions targeting individual flights (such 
as rerouting) greatly increase the quantity of tasks that must be performed by the TMU. As a 
result, TMU workload becomes a limiting factor for the possible solutions. 

Limited Coordination between FAA and Airlines 
Due to the problems with communication and TMU workload, coordination between the 

FAA and the airspace users decreases as problems become more severe. Unfortunately, this 
means there is little or no coordination exactly at the times when it is needed most. The FAA 
and the AOC assess, evaluate and plan independently from one another outside of the 
planning teleconferences run by the ATCSCC. This is exacerbated by the relative 
unpredictability of both parties, potentially leading to a double penalty for either: The TMU 
may choose unnecessary mitigations and be unprepared for the actual problem, while the 
AOC may independently avoid one restriction only to be impacted by another, unanticipated 
restriction. Moreover, due to the decrease in communication caused by a high workload, the 
FAA may be late in notifying all interested parties that a restriction has been removed, 
resulting in some parties needlessly avoiding a problem that no longer exists. 

Solutions and Recommendations  

CATFM Concept of Operations 
The CATFM concept of operations recommends several changes to address these issues. 

Most changes fall under the following three categories, listed by order of increasing 
emphasis. First, automation must be used to reduce the workload of TMU personnel, 
reducing the need for the TMU planners to perform mundane tasks and lessening the cost of 
communication. Second, more information should be shared between the FAA and airspace 
users. By doing so, assessments can be made with more complete information, common 
assessments are possible, and actions are more predictable. Finally, and most importantly, 
when possible, the AOCs should be more involved in the traffic flow management process. 

We summarize the four phases of the ATFM process in the CATFM Concept of 
Operations below; a more complete description can be found in (Idris, Vivona, Penny, 
Krozel, & Bilimoria, 2005). 
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Common Problem Identification 
As described previously, ATFM problems are caused by situations where the demand for 

an airspace exceeds its capacity. Demand is best predicted by the airspace users who create 
it, whereas capacity is determined by the FAA, as it is an assessment of the FAA’s ability to 
manage traffic in the affected area. This leads naturally to a collaborative situation where 
information is shared to produce a more accurate problem assessment, and to minimize the 
divergence of problem assessments. 

 Shared Impact Assessment 
Various restrictions could address a given ATFM issue, each with a different impact on 

airline and FAA operations. By establishing a shared impact assessment, options can be 
evaluated more accurately and better contingency plans can be developed. Moreover, if early 
indications of probable TMU actions are provided, the AOCs may be able to adjust their 
plans to coincide with such actions, potentially reducing or eliminating the need for the 
proposed TMU action. 

Traffic Flow Planning with AOC Input 
Once a possible set of ATFM actions have been identified, along with their impact, a 

specific ATFM plan is instantiated to address the traffic flow problem. Instead of a planning 
decision being made unilaterally by the TMU (as occurs today), the AOCs can provide 
preferred solutions. These become additional inputs to the TMU’s planning process, allowing 
for the accommodation of airspace user preferences when they do not violate other 
constraints. In addition, when the TMU workload allows it, the AOCs can suggest alternative 
plans that may result in an overall better solution. 

Joint Plan Implementation 
Once an ATFM plan with a set of actions has been chosen, it must be instantiated at the 

level of individual flights. In some cases, particularly with reroutes, choices must be made, 
such as which flights should be given the new route. When possible, the airlines should 
choose which of their flights are impacted by the ATFM action, according to their individual 
business plan. This reduces the workload of the TMU by shifting the burden of 
implementation to the AOC, and allows the airline to maximize their own benefit by directly 
choosing the most acceptable options. 

Approach 
We have built an initial agent-based simulation of CTFM with Brahms (Clancey, Sierhuis, 

Kaskiris, & Hoof, 2003). Brahms is a modeling and simulation environment for developing 
intelligent software agents, particularly to analyze work practice in organizations. Brahms 
can run in different simulation and runtime modes on distributed platforms, enabling flexible 
integration of people, hardware-software systems, and other simulations. Brahms was 
originally conceived as a business process modeling and simulation tool that incorporates the 
social systems of work, illuminating how formal process flow descriptions relate to people’s 
actual situated activities in the workplace (Clancey, Sachs, Sierhuis, & Hoof, 1998). To 
simulate human behavior at the work practice level, one must model how people work 
together as individuals in organizations, performing both individual and teamwork activities. 
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The Brahms language is unique in that it models not only individual agent and group 
behavior, but also systems and artifact behavior, as well as the interactions of people, 
systems, objects, and the environment. Most other multi-agent languages leave out artifacts 
and the interaction with the environment, making it difficult to develop a holistic model of 
real-world situations (Wooldridge & Jennings, 1995). Brahms is an agent language that 
operationalizes a theory for modeling work practice, allowing a researcher to develop models 
of human activity behavior that corresponds with how people actually behave in the real 
world (Sierhuis, 2001). 

A methodology for designing and simulating future work systems has been developed and 
used with Brahms (Clancey, Sierhuis, Seah, Buckley, Reynolds, Hall, & Scott, 2007). The 
process begins with detailed observations of work practice, which is used to build a model of 
current operations. After model validation, a new concept of operations is developed, and a 
simulation of the future work system is created using validated components of the model of 
current operations whenever possible. After testing the concept in implementation, the 
process repeats. We have adapted this methodology to our circumstances, taking advantage 
of the pre-existing CATFM concept of operations and work practice observations. We are 
developing the model iteratively, building successively more accurate models from 
increasingly detailed sources of information. At every stage, we evaluate the concept of 
operations based on the findings of our simulation, modify the concept accordingly, and then 
increase model fidelity in the next stage. 

So far we have built a rudimentary model of ATFM using second-hand sources of 
information such as the work practice observations described previously, other ATFM 
literature, and the concept of operations itself. In the next stage, we will interview subject 
matter experts and incorporate their conception of work practice into the model. This will 
allow us to fill in details not discernable from the recorded observations of work practice. To 
validate the model at this stage, historical situations will be simulated and the results will be 
compared with the historical outcomes. Likewise, historical data may also be used to infer 
behavior, either by intuition or through data mining techniques. In the third stage, we will 
perform new observations of work practice, enabling us to build a detailed model at the level 
of individual (rather than organizational) participants in the ATFM process. The model at this 
stage can also be validated by comparing the simulated behavior to the behavior observed in 
the actual system. Subsequent evaluation of the concept will require human subjects to 
participate in the CATFM process, with humans and agent proxies participating in a human-
in-the-loop simulation. 

Initial ATFM Simulation Design 
We have created a simplified model of a subset of ATFM, including only the Joint Plan 

Implementation phase (see earlier section of same name) when flights are assigned routes. In 
order to simplify this selection process, we have redefined capacity to be a property of a 
route, rather than a sector, and assumed that the routes are independent. Route capacity, flight 
schedules and agent strategies are static throughout the simulation. In contrast, route demand 
changes dynamically throughout the simulation as the agents choose routes. We do not model 
runway constraints or temporal ordering, treating all flights as if they have the same 
departure time. Our simulation only deals with pre-flight planning and does not simulate the 
flights themselves. 
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Figure 1 provides an overview of our current agent architecture. We have built our initial 
model at the organizational level, with each organization (i.e., TMUs and AOCs) modeled as 
single agents. Each agent (TMU or AOC) has different responsibilities, with route selection 
performed by either the TMU agent or the AOC agents (see below). The AOC agents provide 
the TMU with their flight schedules and the value of each flight. The TMU agent informs the 
AOC agents of the current status of the airspace by aggregating the current demand on a 
given route, comparing this with the capacity, and broadcasting the route status (under 
capacity, at capacity, or oversubscribed) to the AOC agents. In the initial simulation, the 
TMU does not reroute flights or choose among AOC requests: It approves them all when the 
route is at or below capacity, and denies all requests when demand exceeds capacity (thus 
leaving the route unused). To be consistent with U.S.A. law against anti-competitive 
practices, no communication occurs between AOC agents in order to prevent coalitions or 
other AOC-AOC negotiations. We do not model communication issues, treating them as 
reliable, instantaneous, and clear. 

 
 

Figure 1. Agent architecture. 
For each origin-destination airport pair, we created three routes arbitrarily: a direct route 

and two alternate routes, 1.25 and 1.5 times the length of the direct route. The capacities of 
these routes vary, with typically the direct route having insufficient capacity for all scheduled 
traffic. Our fundamental question is: how will the CATFM concept perform in this simplified 
model? In order to answer this question, we created four ATFM approaches: 

• Blue Sky: All capacities are infinite, so every flight takes the direct route. This is not a 
realistic approach but provides an upper bound on performance that we use as a 
baseline. 

• Current Operations: The TMU agent makes the route selection, putting flights on the 
best available routes (i.e., under capacity routes) in a random order without inspecting 
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the flight value. This approach is closest to the current operations where the FAA 
makes route assignments with little input from the airlines. 

• Global Optimum: The TMU agent makes the route selection as in the Current 
Operations approach, but does so in order of greatest flight value. This greedy 
algorithm produces the best overall system performance, according to our metrics, but 
may give preferential route assignments to one airline over another due to differences in 
flight value distribution. 

• Airline Planning: The AOC agents make the route selections, with each agent initially 
requesting the best route for every flight regardless of the strategy used. After the TMU 
agent broadcasts the status of all routes, the AOC agent may independently choose a 
new route for each flight. The process repeats iteratively (six iterations unless where 
noted otherwise) until the time for planning is exhausted. Within a simulation run, a 
given AOC agent will use the same strategy on each iteration (i.e., no changes in 
strategy during a run). We used the following simplified strategies: 
o Aggressive: An AOC agent with the Aggressive strategy will always request the 

best route for every flight at each iteration, regardless of the situation. 
o Moderate: An AOC agent with the Moderate strategy will request the next best 

route for some of its flights when faced with an overcapacity situation, repeating the 
prior request for the other flights. 

o Conservative: An AOC agent with the Conservative strategy will request the worst 
route for some of its flights when faced with an overcapacity situation, repeating the 
prior request for the other flights. The assumption is that the worst route is the least 
likely to fill up, so the conservative AOC agent attempts to forgo a chance at a 
better route assignment in exchange for a greater likelihood of finding an available 
route. 

All approaches except Current Operations are deterministic. 
 

 
Figure 2. Local traffic scenario involving seven airports.  
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Experiment on a Local Traffic Scenario 
We created a local traffic scenario (see Figure 2) that corresponds to traffic generated by 

three major carriers among several airports in the southwest of the U.S.A. The schedules and 
aircraft types were chosen based on our observations of the flight schedules of these carriers. 
Information on connecting crew, passengers, and route capacities were not available, 
however, so we used our best judgment based on nominal conditions, expected passenger 
behavior and operational patterns. In all cases, sufficient aggregate capacity was available 
among the three routes such that every flight could have some route assignment.  
 
For a specific flight F, we define the following quantities: 

 
pc = passengers with connecting flights 
pu = passengers without connecting flights 
cc = onboard crew members with a connecting flight 
ta, = the actual flight time of F, in minutes 
to, = the optimal flight time of F (from the Blue Sky simulation), in minutes 
 
Each flight is assigned a flight value, which is a heuristic measure of the importance of the 

flight to the airline. We define vF, the flight value of F, as 
 

 vF = pu + 3pc + 5cc (1) 
 
When F is assigned a route, we calculate dF, the delay for flight F, as follows: 
 
 dF = ta - to (2) 
 
When F is not assigned a route, we assume a standard sixty minutes of delay in a later stage 
that we do not simulate. Traffic demand naturally rises and falls throughout the day, so we 
assume that the level of demand falls significantly after our simulation ends. Other factors 
may also cause delays in practice but are not part of our model. 

Finally, we seek to measure in our experiments the total passenger delay incurred by flight 
F, either through an immediate delay or through missed connections. We assume that when a 
passenger with a connecting flight is delayed, on average, that passenger will experience an 
additional two-hour delay. When connecting crew members are delayed, their personal delay 
is not counted (since they are not considered passengers in our simulation), but they are 
likely to delay the departure of their connecting flight, which in turn impacts many 
passengers. Therefore, we assume on average, any delay of a connecting crew member 
results in a total of five hours of passenger delay. Combining this with the above formulae, 
we calculate the total incurred passenger delay incurred by flight F, dT, in minutes, as 

 
 dT = (pu * dF) + (pc * dF) + 120pc + 300cc when dF > 0 
 dT = 0 when dF = 0 (3) 

 
We ran the experiments once for each deterministic approach and fifty times for the 

randomized Current Operations approach, yielding some surprising results (Wolfe, Jarvis, 
Enomoto, & Sierhuis, 2007). The Airline Planning approach is highly sensitive to the 
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strategies employed by the AOC agents and often performs poorly. Figure 3 shows an 
example with several strategies, where the light shaded bars indicate delay incurred by 
selecting a longer route, and the dark shaded bars indicate delay from failing to get an 
approved route assignment. Further examination of specific trials showed that the Aggressive 
strategy is disruptive to the system as a whole by pushing demand beyond capacity on the 
best routes. However, the best performing combination of airline strategies outperformed the 
Current Operations approach (see Figure 4), indicating the potential for improvement under 
the CATFM concept. The number of planning cycles can also affect solution quality in the 
Airline Planning approach, as shown in Figure 5. 

 

 
Figure 3. Comparing ATFM approaches on the local scenario. 

 

 
 

 

Figure 4. Best airline planning combination compared with Current Operations approach. 
 

    Assigned 
    Unassigned 

    Assigned 
    Unassigned 
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Figure 5. Effect of additional planning cycles with Airline Planning approach. 

Single Origin-Destination Experiment 
In our previous experiment, a given AOC agent would use the same strategy on all origin-

destination pairs, regardless of the situation. In reality, an airline is likely to use several 
strategies, matching them to the situation at hand. Since we aggregated the results over the 
origin-destination pairs, we could see how a strategy performed overall but could not isolate 
the specific situations where it performed well or poorly. We also wanted to evaluate new 
approaches that could address concerns that arose from our previous set of experiments, 
leading to the following additions: 

• Mixed: This combines the Airline Planning and Optimal approaches. The airlines 
schedule their flights as before in the Airline Planning approach. Once the planning 
phase is over, however, the TMU agent will assign any unassigned flights using the 
Optimal approach. This ensures that any unused capacity will be utilized by flights for 
which the AOC agents failed to choose an acceptable route. 

• Equitable: This is a variant of the Optimal approach. Each AOC agent gives a ranking 
of their flights but does not supply flight values. The TMU agent gives top priority to 
first-ranked flights, followed by second-ranked flights, and so on. This gives each 
airline an equal share of each route’s capacity, regardless of the value of their flights. 

We created three scenarios with the same origin-destination, with one primary route and 
two alternates as defined previously. In all three scenarios we had three AOC agents, each 
with four flights to schedule. The scenarios varied in the amount of capacity available:  

• Demand<Capacity: each route can accommodate five flights. 
• Demand=Capacity: each route can accommodate four flights. 
• Demand>Capacity: each route can accommodate only three flights.  

Therefore, all flights could be assigned a route on the Demand<Capacity and the 
Demand=Capacity scenarios, but this was not possible in the Demand>Capacity scenario. 

We ran each scenario with all combinations of the three strategies for the three AOC 
agents, using both the Airline Planning and Mixed approaches, resulting in twenty-seven runs 
for each. Figure 6 and Figure 7 show the average performance (across all agents and 
competitor strategy combinations) for each strategy. Table 1 and Table 2 compare strategy 
alternatives by measuring whether an agent would do as well or better with a different 
strategy in the given situation, while keeping the competitor strategies constant. For instance, 
in the Demand<Capacity scenario under the Mixed approach (Table 2), an agent using the 
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Aggressive (A) strategy would have performed as well or better with the Moderate (M) 
strategy in only 4% of the simulated situations– indicating that the Aggressive strategy was 
the better choice. 

Several patterns emerge from this analysis. The Aggressive strategy is a poor choice when 
using the Airline Planning approach, consistent with earlier findings, because its insistence 
on the best route makes that route unusable, potentially leaving its flights unassigned. In 
contrast, the Aggressive strategy is a good choice when using the Mixed approach with 
adequate overall capacity. In such cases, the Aggressive strategy will either succeed in 
putting all of its flights onto the best route, or it will prevent all other airlines from using the 
best route. In the latter case, none of the Aggressive airline’s flights will be scheduled, and 
the best route will be completely available when the TMU assigns the remaining flights, 
leading to a greater share of the best route. However, when there is not sufficient capacity, 
this strategy performs poorly because not all of its flights will be assigned. 

 

  
Figure 6. Strategy performance averaged over all agents with Airline Planning approach. 

 

 
Figure 7. Strategy performance averaged over all agents with Mixed approach. 
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Table 1. Airline Planning approach: Cases equal or improved with alternate strategy. 
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Table 2. Mixed approach: Cases equal or improved with alternate strategy. 

 
 Airline 1 Airline 2 Airline 3 Total 

Current Operations 3552 4332 2939 10823 
Optimal 3314 2806 3300 9420 

Equitable 2969 3407 3073 9449 

Table 3. Total Incurred Passenger Delay for three airlines with forty flights each. 
As shown by the rows of Table 1 and Table 2, the best strategy cannot be determined only 

by the scenario and approach (with the sole exception of the Aggressive strategy in the 
Demand<Capacity scenario with the Mixed Approach). This is because the performance of a 
strategy is affected by the competitors’ strategies: in particular, each strategy performed 
worse when a competitor used the same strategy. Therefore it was often preferable to use a 
unique but generally less attractive strategy than one used by a competitor. 

Finally, we created a larger scenario with primary and secondary routes defined as before, 
but each with a capacity of forty flights, and three airlines with forty flights each. Table 3 
shows the results of experiments on this scenario in terms of the total incurred passenger 
delay metric. In this case, the Equitable approach performed nearly as well as the Optimal 
approach; it is worth noting that the distributions of flight values were comparable among the 
three airlines. 

 
Conclusion 

We have described the design and methodology of a multi-agent simulation of ATFM, as 
well as experimental findings. At this time, our simulation is a coarse-grained model of 
operations, with agents corresponding to participating entities (i.e., TMUs and AOCs) rather 
than persons. Since we simplified other components that were not essential to the problem, 
actual performance in implementation may differ, but should produce similar conclusions 
under identical conditions, strategies and policy. 
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We evaluated several approaches to ATFM, and for the Airline Planning and Mixed 
approaches, also evaluated several simple route selection strategies. Of these, the Moderate 
strategy is intuitively the most appealing, and had the best overall performance in our 
experiments. In contrast, the Conservative strategy did not perform as well, but was usually 
preferable when it was different than all competitors’ strategies. This theme was repeated 
throughout our experimental results; in nearly every case, the best strategy could not be 
chosen independently, as it was dependent on the strategies used by the other AOC agents. 
Finally, the Aggressive strategy worked very well with the Mixed approach when there was 
adequate capacity, casting doubt on the suitability of the Mixed approach. The Aggressive 
strategy also did well when the other AOC agents removed their flights from the best route, 
thus accommodating the aggressive AOC. 

In our evaluation of the CATFM concept, we observed that nearly all the approaches that 
utilized our flight value metric (Equation 3) yielded better results than the Current Operations 
approach. This supports the claim that utilizing airspace user preferences in ATFM should 
lead to better solutions. However, this was not the case in all of our experimental results; 
certain combinations of strategies with the Airline Planning approach produced unacceptably 
poor results. Moreover, based on current experiments, we did not observe any indication that 
increasing AOC involvement would reduce FAA workload. In the Optimal and Equitable 
approaches, the TMU agent continued to perform route selection, and with additional criteria, 
so this represents an increase in workload. In the Airline Planning approach, the TMU did 
not perform route selection but the results were often unacceptable; in the Mixed approach, 
the results were good, but often the TMU would still make many route selections and 
inadvertently rewarded aggressive behavior. Therefore, automation is most likely the key to 
reducing FAA workload. Finally, the AOC agents usually found better solutions when more 
planning cycles were available. This puts an emphasis on the earlier stages of the CATFM 
process, which we did not simulate – the earlier situational information is available, the better 
the likely solution. 

In the end, the challenge of refining the CATFM concept will not be designing effective 
AOC agent strategies, as they will be determined by the airlines rather than the system 
designers. Each airline is likely to have a somewhat different strategy, geared towards their 
private business model and influenced by the people executing it. Nor is it reasonable to 
assume that these strategies would necessarily be optimal in all cases. Rather, the challenge is 
to design a system that rewards behavior yielding desirable system performance. In game-
theoretical terms, this amounts to redesigning the game itself, rather than the player 
strategies. In our experiments, the Airline Planning approach was vulnerable to aggressive 
AOC agents; likewise, the Mixed approach often rewarded the Aggressive strategy. The 
Optimal approach is unlikely to be deployable in practice, as it would be difficult to create a 
single objective utility function (flight value in our experiments) over all airlines. Based on 
our experiments, the Equitable approach is the most promising, as it produced results on par 
with the Optimal approach (when airlines had comparable flights), but did so without relying 
on a universal flight evaluation. 

Future Research Directions 
We have completed the initial stage of development and will continue to expand the 

CATFM model. We have begun work on the next stage, expanding our model to capture the 
breadth of the CATFM concept of operations, covering all phases. Our current study 
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simulated the instantiation of the ATFM plan (namely the selection of routes), which was 
necessary to evaluate the result of the process; however, as earlier phases produce inputs to 
later phases, it may be that the earlier phases have the greatest operational impact. 

In addition to broader scope, a higher degree of fidelity would support stronger claims 
about the CATFM concept of operations. A more sophisticated flight model would eliminate 
many simplifying assumptions, such as simplified schedules, and route capacities in lieu of 
sector capacities. Modeling organizational roles and concentrating on interactions at the level 
of individual people would reveal the complexity of the proposed work practice and lead to 
more accurate characterizations of workload. Interviews with subject matter experts, case 
studies, and additional observations of work practice will yield insight as to how these 
processes work today. 

The results from our initial experiments can be used to guide refinements to the concept of 
operations and develop policies that are more likely to be successful. Further experimentation 
with the Equitable approach in a wider array of situations is needed to evaluate its suitability. 
Additionally, more complex ATFM approaches and airline strategies may yield better overall 
solutions. Identifying likely airline strategies is of great importance, but difficult, due to their 
proprietary nature. Since the situations we are simulating are characteristic of future 
operations, rather than today’s operations, airlines may not have developed appropriate 
strategies, and if they have, they may not be willing to share them. 

Building a model of future operations is difficult at any stage of development. Our 
approach has been to build and validate a model of current operations, and then to modify 
that model to fit the future concept. Even validating the current model is a challenge, given 
the complexity of operations. Modifying a model of current operations to yield a model of 
future operations introduces uncertainty. We have dealt with this by simulating a variety of 
possible actions, essentially modeling several possibilities. Game theory can be utilized to 
develop likely strategies and to analyze properties of the system as a whole. Approaches to 
traffic management problems in other domains may translate to ATFM, and vice versa. 
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Additional Reading 
The Brahms simulation environment has its own language (Hoof & Sierhuis, 2007), which 

is similar but distinct from other belief, desire, and intent frameworks (Sierhuis, 2007). This 
representation has been developed to support the simulation of work practice (Sierhuis & 
Clancey, 2002), a major application of Brahms technology. The theoretical basis of Brahms is 
related to that of situated cognition (Clancey, 2002). The Brahms tool set, simulation 
environment and additional information are publicly available from the Brahms website 
(Agent iSolutions). 

Agent based modeling and simulation and agent-based techniques have been applied to 
various aspects of AOC operations. A simulation of the United Airlines AOC has been 
developed (Pujet, Feron, & Rakhit, 1998), where each AOC employee is modeled as a multi-
class queueing server. This model was used to track task execution information, namely 
which entities performed which task at any given point in time, with the goal of supporting 
timely decision making. Castro and Oliveira have developed a multi-agent system to handle 
disruptions in operations by reallocating crew (Castro & Oliveira, 2007). Various agents 
compete using different methods problem-solving methods to find the best solution; in 
simulation, this approach produced better solutions than current human operators. 

Agent-based solutions have been proposed to solve other areas of ATFM. Tumer and 
Agogino have developed a multi-agent algorithm for ATFM (Tumer & Agogino, 2007). 
They use a Monte-Carlo simulation to estimate the congestion within the NAS, based on 
agents’ actions to speed up or slow down traffic. These agents use reinforcement learning to 
set the separation between airplanes in order to manage the congestion. OASIS is an agent-
based system developed to maximize airport arrival throughput by managing aircraft arrival 
and runway utilization (Ljunberg & Lucas, 1992). Various functions of ATC Tower 
operations are managed by agents in OASIS, and are implemented in the Procedural 
Reasoning System (Ingrand, Georgeff, & Rao, 1992). Jonker, Meyer, and Dignum have also 
advocate the use of multi-agent systems in the ATC Tower operations (Jonker, Meyer, & 
Dignum, 2005). They describe a market-based control mechanism, and analyze its usage 
from a game-theoretical perspective. 

Agent-based modeling and simulation has also been used to study the effect of increased 
volume and independent choice in other forms of traffic. A simulation of projected traffic in 
the seaport of Rotterdam estimated the effect of increased traffic in terms of delay (Ruit, 
Schuylenburg, & Ottjes, 1995). Automobile traffic has been simulated fairly extensively; of 
particular relevance to this book chapter are those focused on route selection. Klügl and 
Bazzan examined how individual drivers could learn to prefer certain routes and how 
forecasts of traffic influenced this ability (Klügl & Bazzan, 2004). Interestingly, their study 
showed that the best overall system performance was achieved when most, but not all, 
drivers had access to these traffic forecasts. Stark et al. (Stark, Helbing, Schönhof, & Holyst, 
2006) investigated how cooperative strategies could be learned in a route selection context 
without any communication between drivers. 

Several other relevant ATFM simulation environments are not agent-based. The Future 
ATM Concepts Evaluation Tool (FACET) (Bilimoria, Sridhar, Chatterji, Sheth, & Grabbe, 
2000) is a NASA-developed tool for simulating air traffic flow that has been integrated into 
Flight Explorer, a commercial product used by nearly all major U.S. airlines. FACET 
contains modules that concentrate on trajectory modeling, weather modeling, and also 
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contains a model of the airspace structure, including the ARTCC regions, sectors, and air 
routes. The Center-TRACON Automation System (CTAS) (Erzberger, 1994) is another 
NASA-developed simulation system, with a single ARTCC focus and a greater emphasis on 
human in the loop simulations. The Traffic Management Advisor, one of the CTAS suite of 
tools, is particularly relevant from an ATFM perspective, and has been extended to 
coordinate among multiple ARTCCs in the McTMA system (Hoang, 2004). The Linking 
Existing On Ground, Arrival and Departure project (LEONARDO) evaluated the feasibility 
of implementing Collaborative Decision Making (CDM) in airport processes, both through 
simulation and a limited deployments (European Commission, 2004). LEONARDO 
integrated decision support tools to promote information sharing among airport stakeholders, 
providing them with early and reliable planning updates. SKATE (Skills, Knowledge, and 
Attitudes for Teamwork), is a model for teamwork measurement developed and used in real-
time simulations to validate the use of LEONARDO for CDM (EUROCONTROL, 2004). 

The CATFM concept of operations has to the potential to enhance the Collaborative 
Decision-Making (CDM) initiative (Ball, Hoffman, Chen, & Vossen, 2000; 
Federal Aviation Administration), a joint government and industry effort was established in 
the mid-1990s to enhance the interaction and collaboration between the ATSP and the users 
of airspace. CDM deals with improvement of ATFM through better information exchange 
among the participants of the aviation community. The goal of CDM is to create solutions for 
better utilization of airspace resources through technological and procedural solutions for 
traffic management problems that are encountered in the NAS, without compromising safety. 
The CDM group consists of several sub-groups, e.g., flow evaluation, future concepts, 
ground delay program enhancements, weather evaluation, etc., which deal with various 
aspects of the air traffic flow management problem. Several automation decision support 
tools have emerged as a result of the CDM effort over the years, including the Flight 
Schedule Monitor (Metron Aviation, 2006a) for managing arrival/departure times, the 
Collaborative Convective Forecast Product 
(National Oceanic and Atmospheric Administration, 2007) for a common assessment of 
convective weather, and the Post Operations Evaluation Tool (Metron Aviation, 2006b) for 
analysis support of NAS operations. Preliminary evaluation of CDM initiatives on elements 
such as GDP is promising (Ball, Hoffman, Knorr, Wetherly, & Wambsganss, 2001). 

The Future Concepts Team is a sub-group of the CDM initiative. Over the past few years, 
the FCT group has focused their effort on future collaboration between the service provider 
and the airspace users to improve efficiency of operations in the NAS. The two main areas of 
interest are the Integrated Collaborative Routing (ICR) (Usmani, 2005) and the System 
Enhancements for Versatile Electronic Negotiation (SEVEN) (Gaertner, Klopfenstein, & 
Wilmouth, 2007). The ICR effort is geared towards better incorporation of airspace users’ 
preferences for rerouting during events that cause congestion and weather related delays. The 
SEVEN concept is a longer-term initiative which aims to enhance the collaboration among 
the participants to a much higher level than what exists today through use of electronic data 
exchange and to explore the roles and responsibilities of participants, along with 
identification of associated issues and concerns. This enhanced collaboration encompasses all 
elements of the Flow Constrained Areas (for establishing areas of impacted traffic), the 
Ground Delay Programs and Airspace Flow Programs (for managing traffic during bad 
weather conditions) and Playbook routes (for specific rerouting strategies). The premise for 
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Concept SEVEN is for the airspace users to provide prioritized flight lists and enabling them 
to update their options as the constraining events unfold.  

Other concepts of operations have elements that are similar to the CATFM concept of 
operations. The Concept of Operations for the Next Generation Air Transportation System 
(Joint Planning and Development Office, 2007) defines how the air transportation system 
shall operate in the year 2025, forming a technological baseline to help stimulate the 
development of policy. The International Civil Aviation Organization has also developed 
requirements for an operational concept in 2025 (International Civil Aviation Organization, 
2003), emphasizing collaborative decision making. It also provides a comprehensive view of 
operations, including airspace design, airport operations and collision avoidance, and 
describes potential benefits and a possible adoption strategy. 

The FAA has developed useful training materials that explains terms, techniques, and 
programs associated with traffic flow management in the NAS 
(Federal Aviation Administration, 2007). Operational details of ATFM, including the ATFM 
roles and duties at the ATCSCC, ATFM tools, flight restriction guidelines, and overviews of 
the traffic patterns within each ARTCC are available from the FAA 
(Federal Aviation Administration, 2006). Finally, the Airline Handbook 
(Air Transport Association of America, 2007) provides a brief history of aviation and an 
overview of important aviation topics, including: the principles of flight, deregulation, the 
structure of the industry, airline economics, airports, air traffic control, safety, security and 
the environment, and a glossary of commonly used aviation terms.  

Additional Reading References 
 
Agent iSolutions. Brahms [Electronic Version]. Retrieved December 15, 2007, from  
http://www.agentisolutions.com/ 
 
Air Transport Association of America. (2007). The Airline Handbook. Washington, D.C.: 
ATA Publications. 
 
Ball, M., Hoffman, R., Chen, C.-Y., & Vossen, T. (2000). Collaborative Decision Making in 
Air Traffic Management: Current and Future Research Directions. In L. Bianco, P. 
Dell'Olmo & A. R. Odoni (Eds.), New Concepts and Methods in Air Traffic Management 
(pp. 17-30). New York, New York, USA: Springer. 
 
Ball, M. O., Hoffman, R. L., Knorr, D., Wetherly, J., & Wambsganss, M. (2001). Assessing 
the Benefits of Collaborative Decision Making in Air Traffic Management. In G. L. Donohue 
& A. G. Zellweger (Eds.), Air Transportation Systems Engineering, Progress in Astronautics 
and Aeronautics (Vol. 193, pp. 239). Reston, Virginia: American Institute of Aeronautices 
and Astronautics. 
 
Bilimoria, K., Sridhar, B., Chatterji, G., Sheth, K., & Grabbe, S. (2001). FACET: Future 
ATM Concepts Evaluation Tool. Air Traffic Control Quarterly, 9(1), 1-20. 
 
Castro, A. J. M., & Oliveira, E. (2007, November). Using Specialized Agents in a Distributed 
MAS to Solve Airline Operations Problems: a Case Study. Paper presented at the Institute of 



A Multi-Agent Simulation of Collaborative Air Traffic Flow Management 
 

Electrical & Electronic Engineers/ Web Intelligence Consortium/ Association for Computing 
Machinery (IEEE/WIC/ACM) International Conference on Intelligent Agent Technology 
(IAT 2007), Fremont, CA.  
 
Clancey, W. J. (2002). Simulating activities: Relating motives, deliberation, and attentive 
coordination. Cognitive Systems Research: Special Issue on Situated and Embodied 
Cognition, 3(3), 471-499. 
 
Erzberger, H. (1994, July). Center-TRACON Automation System (CTAS). Paper presented at 
the Capacity Technology Subcommittee, FAA Research and Development Advisory 
Committee, Washington, D.C.  
 
EUROCONTROL. (2004). A Measure to Assess the Impact of Automation on Teamwork 
[Electronic Version]. Retrieved December 15, 2007, from 
http://www.eurocontrol.int/humanfactors/gallery/content/public/docs/DELIVERABLES/HF4
8-HRS-HSP-005-REP-07%20Released-withsig.pdf  
 
European Commission. (2004). LEONARDO Final Report [Electronic Version]. Retrieved 
December 15, 2007, from 
http://ec.europa.eu/transport/air_portal/research/doc/rtd_5_leonardo.pdf  
 
Federal Aviation Administration. (2007). Collaborative Decision Making [Electronic 
Version]. Retrieved December 15, 2007, from http://cdm.fly.faa.gov/  
 
Federal Aviation Administration. (2006). National System Strategy Team [Electronic 
Version]. Retrieved December 15, 2007, from 
http://www.fly.faa.gov/Operations/NSST/nsst2006.pdf 
 
Federal Aviation Administration. (2007). Traffic Flow Management for Flight Operations 
Personnel [Electronic Version].  Retrieved December 15, 2007. from 
http://www.fly.faa.gov/Products/Training/Traffic_Management_for_Pilots/TFM_NASv2.pdf 
 
Gaertner, N., Klopfenstein, M., & Wilmouth, G. (2007). Updated Operational Concept for 
System Enhancements for Versatile Electronic Negotiation (SEVEN) [Electronic Version]. 
Retrieved December 15, 2007, from 
http://cdm.fly.faa.gov/Workgroups/ICEFM/2007/32F0907-005-
R0%20Updated%20SEVEN%20Operational%20Concept.pdf  
 
Hoang, T. (2004, September). A Description of the Mutli-Center Traffic Management 
Advisor (McTMA) Simulation Environment. Paper presented at the American Institute of 
Aeronautics and Astronautics (AIAA) Aircraft Technology, Integration and Operations 
(ATIO), Chicago, Illinois.  
 
Hoof, R. v., & Sierhuis, M. (2007). Brahms Language Specification, TM99-0008 [Electronic 
Version]. Retrieved December 15,  2007, from 
http://www.agentisolutions.com/documentation/language/ls_title.htm  



A Multi-Agent Simulation of Collaborative Air Traffic Flow Management 
 

 
Ingrand, F. F., Georgeff, M. P., & Rao, A. S. (1992). An architecture for real-time reasoning 
and system control. Institute of Electrical & Electronic Engineers (IEEE) Expert 7(6), 34-44. 
 
International Civil Aviation Organization (2003, November). ATM Operational Concept 
Document. Paper presented at the 11th Air Navigation Conference, Montreal, Canada.  
 
Joint Planning and Development Office. (2007). Concept of Operations for the Next 
Generation Air Transportation System [Electronic Version]. Retrieved December 15, 2007, 
from http://www.jpdo.gov/library/NextGen_v2.0.pdf  
 
Jonker, G., Meyer, J.-J., & Dignum, F. (2005, December). Towards a Market Mechanism for 
Airport Traffic Control. Paper presented at the 12th Portuguese Conference on Artificial 
Intelligence (EPIA 2005), Covilha, Portugal.  
 
Klügl, F., & Bazzan, A. L. C. (2004). Route Decision Behaviour in a Commuting Scenario: 
Simple Heuristics Adaptation and Effect of Traffic Forecast. Journal of Artificial Societies 
and Social Simulation, 7(1). 
 
Ljunberg, M., & Lucas, A. (1992, September). The OASIS Air Traffic Management System. 
Paper presented at the Second Pacific Rim International Conference on Artificial Intelligence 
(PRICAI '92), Seoul, Korea. 
 
Metron Aviation. (2006a). Flight Schedule Monitor [Electronic Version]. Retrieved 
December 15, 2007, from 
http://www.metronaviation.com/content/text/collaborativeDecisionMakingFSM_2.pdf.  
 
Metron Aviation. (2006b). Post Operations Evalution Tool [Electronic Version]. Retrieved 
December 15, 2007, from 
http://www.metronaviation.com/content/text/collaborativeDecisionMakingPOET_2.pdf  
 
National Oceanic and Atmospheric Administration. (2007). Collaborative Convective 
Forecast Product: Product Description Document [Electronic Version]. Retrieved December 
15, 2007, from http://aviationweather.gov/products/ccfp/docs/pdd-ccfp.pdf  
 
Pujet, N., Feron, E., & Rakhit, A. (1998, August). Modeling and identification of an Airline 
Operations Center as a multi-agent queueing system. Paper presented at the American 
Institute of Aeronautices and Astronautics (AIAA) Guidance, Navigation, and Control 
Conference (GNC 1998), Boston, Massachusetts.  
 
Ruit, G. J. v. d., Schuylenburg, M. v., & Ottjes, J. A. (1995, June). Simulation of shipping 
traffic flow in the Maasvlakte port area of Rotterdam. Paper presented at the European 
Simulation Multiconference (ESM 1995), Prague, Czech Republic.  
 
Sierhuis, M. (2007). It's not just goals all the way down - It's activities all the way down. In 
G. M. P. O'Hare, A. Ricci, M. J. O'Grady & O. Dikenelli (Eds.), Engineering Societies in the 



A Multi-Agent Simulation of Collaborative Air Traffic Flow Management 
 

Agents World VII (Vol LNAI 4457/2007). 7th International Workshop (ESAW 2006) (pp. 1-
24) Dublin, Ireland: Springer.  
 
Sierhuis, M., & Clancey, W. J. (2002). Modeling and Simulating Work Practice: A human-
centered method for work systems design. Institute of Electrical & Electronic Engineers 
(IEEE) Intelligent Systems, 17(5). 
 
Stark, H.-U., Helbing, D., Schönhof, M., & Holyst, J. A. (2006). Alternating cooperation 
strategies in a route choice game: Theory, experiments, and effects of a learning scenario. In 
A. Innocenti & P. Sbriglia (Eds.), Games, Rationality, and Behaviour (pp. 256-273). 
Houndmills, England and New York, New York: Palgrave Macmillan. 
 
Tumer, K., & Agogino, A. (2007, May). Distributed Agent-Based Air Traffic Flow 
Management. Paper presented at the 6th International Joint Conference on Autonomous 
Agents and Multiagent Systems (AAMAS 2007), Honolulu, Hawaii.  
 
Usmani, A. (2005, November). Upcoming TFM Enhancements: The Role of Simulation. 
Paper presented at the FAA Eurocontrol Action Plan 9 (AP9) Traffic Flow Management 
(TFM) in Fast-Time Simulation Technical Interchange Meeting, Atlantic City, New Jersey.  

 

Key Terms & Definitions 
 
Air Traffic Control (ATC): A service operated by the appropriate authority to promote 

the safe, orderly, and expeditious flow of air traffic. 
 
Air Traffic Flow Management (ATFM): The regulation of air traffic in order to avoid 

exceeding airport or airspace capacity, and to ensure that available capacity is used 
efficiently. 

 
Airline Operations Center (AOC): An airline unit responsible for dispatching flights and 

adjusting schedules in response to restrictions in the airspace system. 
 
Brahms: A set of software tools to develop and simulate multi-agent models of human 

and machine behavior.   
 
Collaborative Decision Making (CDM): Collaboration involving the system 

stakeholders in determining the best approach to a given situation. In the context of air 
transportation, it is the cooperative effort between the government and industry to exchange 
information for better decision-making. 

 
Traffic Management Unit (TMU): A team of air traffic controllers who analyze the 

demand and external effects, such as weather, on the airspace system and implement 
initiatives to balance the demand with capacity. 


