
Sensor Validation using Bayesian Networks

Ole J. Mengshoel Adnan Darwiche Serdar Uckun
USRA/RIACS Computer Science Department Intelligent Systems Division
NASA Ames Research Center University of California NASA Ames Research Center
Moffett Field, CA 94035 Los Angeles, CA 90095 Moffett Field, CA 94035
Ole.J.Mengshoel@nasa.gov darwiche@cs.ucla.edu Serdar.Uckun@nasa.gov

Abstract

One of NASA’s key mission requirements is robust
state estimation. Sensing, using a wide range of
sensors and sensor fusion approaches, plays a central
role in robust state estimation, and there is a need to
diagnose sensor failure as well as component failure.
Sensor validation techniques address this problem:
given a vector of sensor readings, decide whether
sensors have failed, therefore producing bad data. We
take in this paper a probabilistic approach, using
Bayesian networks, to diagnosis and sensor validation,
and investigate several relevant but slightly different
Bayesian network queries. We emphasize that on-
board inference can be performed on a compiled
model, giving fast and predictable execution times.
Our results are illustrated using an electrical power
system, and we show that a Bayesian network with
over 400 nodes can be compiled into an arithmetic
circuit that can correctly answer queries in less than
500 microseconds on average.

1. Introduction

The problem of faulty sensors is commonplace in
aerospace, leading to a need for sensor validation [2]
[1]. Essentially, the sensor validation problem is this:
given a vector of sensor readings, decide whether one
or more sensors have failed and are therefore
producing bad data.

Much previous work on sensor validation and
failure detection within aerospace has emphasized air-
and spacecraft control in a continuous setting [21] [18].
Many systems of interest to the aerospace community,
for example rocket engines [2] [1] [11] and electrical
power systems [3] [12] [19], are either discrete or
hybrid (both continuous and discrete) and involve
substantial uncertainty. Our focus here is on such
systems, and in particular we emphasize those that can
be formalized using multivariate discrete random

variables represented as Bayesian networks [24]. Our
contribution is three-fold. First, we develop a Bayesian
network framework for reasoning in which we
represent both sensor faults and component faults.
Second, we carefully discuss different probabilistic
queries that are useful for sensor validation and
diagnosis. Third, we investigate the efficient
implementation of these ideas, such that they can be
implemented and deployed on aerospace vehicles.

We take a Bayesian approach to sensor validation
[2]. Specifically, our approach is based on developing
a Bayesian network (BN) [24] model of an aerospace
vehicle or a sub-system of such a vehicle. These
models represent the health modes of sensors
explicitly, and contain random variables for capturing
other aspects of the system (including the health status
of other system components). Our approach
complements other technologies used in aerospace,
including limit checks, redundancy-based voting, and
other analytical redundancy methods. Specifically, we
advocate an analytical technique that fuses information
from multiple sensors in a Bayesian manner, and takes
into account relationships between sensors and other
system components.

To solve the sensor validation problem exactly, we
dynamically provide input to the BN using sensor
readings and commands and pose a MAP (maximum a
posteriori hypothesis) query over the health of sensor
variables only [17]. This should be distinguished from
alternative approaches formulated within probabilistic
frameworks, for instance (i) a MAP computation over
the health variables of all system components; (ii) a
MPE (most probable explanation) computation over all
non-observed system variables; and (iii) a marginal
probability computation over each non-observed
variable, which can easily be used to find the most
likely values (MLVs) of health variables of interest.
There are subtle differences between these queries with
implications for the decision making process. Our
Bayesian framework correctly handles multiple

sensor failures, since it supports reasoning about the
joint probability distribution over the health of all
sensors; traditional approaches typically depend on
marginal probabilities over individual sensor health
variables. At the same time, our framework allows us
to clearly state and investigate a range of probabilistic
queries, both MAP and approximate (but potentially
more efficient) probabilistic queries.

Finally, we investigate how our approach is
supported by efficient algorithms. We report on
experiments using an electrical power system [19], and
show that a Bayesian network with over 400 nodes can
be compiled into an arithmetic circuit that correctly
answers queries in less than 500 microseconds on
average.

The rest of this paper is organized as follows. In
Section 2 we discuss related research. Section 3
introduces our Bayesian network framework for sensor
validation and diagnosis; we also consider different
probabilistic queries. In Section 4 we motivate and
illustrate our approach by means of the Mars Polar
Lander and electrical power systems. In Section 5 we
provide experimental results before concluding in
Section 6.

2. Related Work

Sensor validation can be considered to be part of the
larger effort of improving reliability and safety through
the use of redundancy, which can be classified into
hardware redundancy, analytical redundancy, and
hybrid redundancy [18]. On the hardware side,
techniques such as duplex, triplex, or higher hardware
redundancy along with voting system are used.
Analytical redundancy techniques, further discussed
below, can be classified into quantitative methods and
qualitative methods. Finally, hybrid methods combine
hardware and analytical redundancy.

Bayesian networks represent analytical
(probabilistic or deterministic) relationships between
different states of components and systems, and can
therefore be regarded as an analytical redundancy
approach. We consider Bayesian and non-Bayesian
approaches, and emphasize in this paper the Bayesian
approach [24] [2] [16] [6] [20] [7] [17] [15] [13] [14].
We distinguish between work that explicitly represents,
using random variables, system health [2] [16] [11] [6]
versus work that does not [20] [7].

We now discuss related research, turning first to
sensor validation using BNs in aerospace. Bickmore
investigates rocket engine sensor data validation [2].
He presents an approach in which a bipartite Bayesian
network is constructed from an undirected sensor
validation network. Using temperature and pressure

sensors, the approach was successfully tested on space
shuttle main engine (SSME) data. More extensive and
realistic tests were later performed on a fault tolerant
flight computer [1]. Liu and Zhang also developed
sensor validation and fault diagnosis techniques for
SSME [11]. Theirs is a multi-step approach, involving
these steps: Data acquisition, parameter estimation,
fault detection, and fault diagnosis. A bipartite BN
model – consisting of 9 nodes for sensor readings, 9
sensor health nodes, and 5 component health nodes – is
used in the fault diagnosis step only. They report
encouraging simulation results, but note that the fault
detection module causes a few false and missed alarms.

In the area of sensor fusion using BNs, Rehg,
Murphy and Fieguth develop, using computer vision
algorithms, a speaker detection approach that uses
Bayesian networks [20]. They use four “soft sensors”,
namely off-the-shelf computer vision algorithms that
process skin color, skin texture, frontal face, and mouth
motion, and fuse their output by means of a BN.
Promising experiments illustrate the benefit of speaker
detection using BNs. Hansen et al. discuss sensor
fusion using dynamic Bayesian networks (DBNs) [7].
(DBNs are generalizations of Markov chains and
hidden Markov models and are used to reason about
dynamic processes.) They observe that simple state
controllers do not handle faulty sensors, and
investigate how DBN sensor fusion can be applied to
climate control in buildings. This climate control
application uses temperature and humidity sensors;
actuation is done by means of ventilation, heating, or
cooling. The expectation-maximization (EM)
algorithm is used for DBN parameter estimation, and
the Boyen-Koller algorithm [23] for computation of
marginals. The DBN does not contain health nodes,
neither for components nor for sensors. Promising
experiments illustrate estimation of temperature from
other measurements. Ferrari and Vaghi develop a BN-
based sensor fusion approach to mine detection [6].
They consider different types of sensors – specifically
ground-penetrating radar, electro-magnetic induction,
and infrared sensors – and show how machine learning
can be utilized. The sensor model of Ferrari and Vaghi
is particularly rich, and their experiments show how
sensor fusion using BNs improves landmine
classification by 62%.

In the area of sensor fusion and diagnosis using
BNs, Nicholson and Brady developed a DBN-based
approach (DBNs) to solve data association and sensor
validation problems [16]. Specifically, they show how
DBNs can be used for monitoring robots and humans.
For sensor validation, BN nodes representing sensors
faults are dynamically added – and then queried –
based on the computation of a conflict measure. Lerner
et al. develop a hybrid DBN approach to online

monitoring and diagnosis, where nominal as well as
failure modes are represented [10]. Burst failures,
measurement failures, and parameter drift failures are
all represented using discrete BN nodes. During
inference, their approach collapses similar hypothesis,
thereby avoiding computational complexity issues due
to the discrete nodes. In a challenging experiment
involving multiple faults in a system of five liquid
tanks, they report strong results.

Compared to previous research, including work that
explicitly represents nominal and faulty behavior using
Bayesian network nodes [16] [10] [6], we carefully
introduce a Bayesian network framework and
emphasize the different results produced by marginal,
MPE, and MAP queries. In contrast, all previous
sensor validation work we are aware of has employed
marginals. We also do not rely on computation of
residuals [18] or a separate fault detection step [21]
[11]. Instead, we go directly to a diagnosis or sensor
validation step (similar to [10] [7]); fault detection has
been identified as a cause of false and missed positives
[11]. We emphasize that on-line inference including
sensor validation can be performed on a compiled
model, not directly on the Bayesian network.
Compilation of BNs gives fast and predictable
execution times [9] [4], which enable deployment in
the real-time and resource-bounded environments
typically found in aerospace vehicles [5] [13]. Finally,
we note that our Bayesian approach can utilized in
distributed architectures with smart sensors [22], even
though space does not permit us to discuss detailed
here.

3. Bayesian Network Framework

We now discuss our Bayesian network model for an
aerospace vehicle. (Note that our approach generalizes
to systems beyond vehicles of interest to NASA, but in
the interest of specificity we use the term “vehicle”
rather than “system” here.) This model constitutes a
Bayesian approach to sensor fusion and validation, and
it represents the health state of a vehicle’s sensors and
other components. Specifically, we partition the set of
BN nodes X into HV, E, and R as follows:
• Health nodes (HV), where HV = HC ∪ HS and HC

∩ HS = ∅, with:
– Component health nodes (HC): Nodes

representing health of vehicle
components (excluding health of
sensors).

– Sensor health nodes (HS): Nodes
representing health of vehicle’s sensors.

• Evidence nodes (E), where E = EC ∪ ES and EC ∩
ES = ∅, with:

– Command nodes (EC): Nodes
representing commands to vehicle.

– Sensor nodes (ES): Nodes representing
sensor readings from vehicle.

• Remaining nodes (R): Nodes that are not health or
evidence nodes. If X is the set of all BN nodes,
then R = X - HV – EV.

Such a BN model can be used for Bayesian sensor

fusion and sensor validation, as illustrated in Section 4
and Section 5.

Different probabilistic queries are used in BNs.
Given evidence, computation of marginals is
concerned with the posterior belief over individual BN
nodes, while finding an MPE produces the most
probable explanation over all non-evidence nodes [24].
Less known than the marginal and MPE queries are
perhaps maximum a posteriori hypothesis (MAP)
queries [17]. Let X be all BN nodes, E the evidence
nodes, and e the evidence. Then we might be
interested in the MAP over M ⊆ X - E, and use the
notation M = m to mean that m is an instantiation of all
the nodes in M. For MAP instantiation we say
MAP(M, e) = argmaxmPr(M=m, e) = argmaxmPr(M=m
| e). Algorithms for efficiently computing MAP have
recently been developed [17].

Previous sensor validation efforts have generally
computed marginals. Given the concepts introduced
above, we can in fact identify several related but
different probabilistic queries of interest to diagnosis
and sensor validation (the ordering is arbitrary):
1. Health of vehicle query. MAP over the health

variables of all vehicle components and sensors:
MAP(HV, e).

2. Health of components query. MAP over the
health variables of vehicle components only:
MAP(HC, e).

3. Health of sensors (or sensor validation) query.
MAP over sensor health variables: MAP(HS, e).

4. State of vehicle query. MPE over all non-observed
system variables: MAP(X – EV, e) = MPE(e).
MPE can be used to obtain an approximation
MAPMPE of MAP as discussed below.

5. Health of vehicle marginals. Marginal (belief)
over any health variable H: B(H, e) = Pr(H | e) ,
where H ∈ HV. From B(H, e), it is easy to
compute the most likely value of H given e, or
MLV(H , e). Using MLV, we can approximate
MAP, using MAPMLV, as discussed below.

There are subtle differences between these queries

with possible implications for the decision making
process. In fact, examples of MAP, MPE, and MLV

giving different results over query variables X are
known; Section 4 provides an EPS example.

Intuitively, the differences between MAP, MPE,
and marginal queries are as follows. (Note that MAP
is a generalization of MPE and MLV, and hence when
we say “MAP queries” in the following we mean MAP
queries that are not MPE or MLV queries.) We first
discuss marginals versus MPE and MAP. Marginal
queries are local, since they are concerned with
individual BN nodes. MPE and MAP, on the other
hand, are more global and take constraints that involve
multiple BN nodes into account. This difference is
potentially important in diagnosis and sensor validation
because there can be node states that marginally look
most likely, but when considered jointly (by MAP or
MPE) they are in fact not the most likely. For
instance, a state x of one node X ∈ X – E may be
highly uncorrelated with a state y of a different node Y
∈ X – E, even though these two states are marginally
most likely for X and Y respectively (see Section 4.2
for a concrete example). Second, and considering MAP
versus MPE queries, we note that MPE queries are
concerned with all non-evidence nodes X – E, while
with MAP we query a subset M ⊆ X – E of the non-
evidence nodes. Consequently, MPE typically
includes states of nodes that are not essential to the
component health HC or sensor health HS, which are
our main concern in this article.

Along an orthogonal dimension, we note that one
probabilistic query can be used to approximate another
probabilistic query. Specifically, MPE and MLV
queries can be used to approximate MAP queries. We
use the notation MAPMPE(H, e) and MAPMLV(H, e) to
indicate MPE- and MLV-approximations of MAP(H,
e). Here, H = HV, H = HC, or H = HS. Such
approximations are of both theoretical and practical
interest. Theoretically, the MAP problem belongs to a
more difficult complexity class than the MPE and
marginal problems [17], and even the latter problems
can be computationally very challenging [15] [14].
Practically, algorithms and software for MPE and
marginal computation are more wide-spread than those
for MAP computation. When do these
approximations give different results than MAP? This
question is explored in the following sections.

4. NASA Applications

State estimation methods may be studied from
different perspectives, including the mission phase and
the subsystem perspectives. Examples of subsystems
of great interest to NASA include rocket engines [2]
[1] [11] and electrical power systems [3] [12] [19];
mission phases include vehicle takeoff and landing.

In Section 4.1 we turn to a vehicle landing example
of why NASA needs better state estimation methods.
In Section 4.2 we then discuss electrical power systems
and show how BNs can be used in this setting.

4.1 Mars Polar Lander

We present the Mars Polar Lander, discuss its failed

mission, and speculate how the outcome could have
been different if better sensor fusion and sensor
validation techniques had been in place.

The main purpose of the Mars Polar Lander (MPL)
was to collect samples of Mars’ soil. MPL was
launched on January 3, 1999; it lost contact with Earth
on December 3, 1999. The cause of MPL loss is not
known with certainty. According to the Accident
Report, however, the most probable cause is premature
shutdown of descent engines [8]. It is important to
note that MPL was designed for a soft landing (similar
to Apollo lunar landers). To enable a soft landing,
MPL used a descent engine (retrorocket) to decelerate
during descent. Here is a probable sequence of events
that led to the loss of the spacecraft [8]:
1. During the descent, a radar altimeter continuously

measured height above surface.
2. When a certain height above surface (50 ft.) was

reached, the legs of the spacecraft were
commanded to deploy.

3. The legs deployed and locked into position,
causing a transient on contact sensor(s) that were
installed on the legs.

4. The contact sensor transient caused the descent
engine controller to (erroneously) infer that the
spacecraft had touched down on Mars.

5. The descent engine was shut off prematurely,
causing the spacecraft to crash from a height of
~50 ft and be destroyed.

In retrospect, it is clear that MPL had enough

instrumentation onboard to enable robust state
estimation. Height above surface was the critical state
variable, and the radar altimeter combined with the
touchdown (contact) sensors would have enabled a
better estimate of height above surface had the two
readings been fused by using a BN model.

We want to make the following two points
regarding the MPL accident. First, there are multiple
direct or indirect measurements of a state variable of
interest. Consequently, there is an opportunity to fuse
these multiple observations or sensor readings using an
analytical model, in our case a BN. Second, there is a
need to query the BN in order to find conflicts and
causes of conflicts in sensor readings, and then to
decide which sensor reading(s) to trust. For the MPL,

one sensor (the contact sensor) indicated touchdown,
while another sensor (radar altimeter) did not indicate
touchdown. A BN model could have been used to
resolve this conflict by explicitly reasoning about the
health of these sensors, using the probabilistic queries
discussed in Section 3.

4.2 Electrical Power Systems

Electrical power systems (EPSs) play an essential
and increasing role in aerospace vehicles [3] [12] [19].
EPS loads include avionics, propulsion, life support,
and thermal management. For the purpose of this
paper, the EPS components we are interested in include
batteries, relays, circuit breakers, and EPS loads such
as light and pumps. For EPSs, sensors include voltage
sensors, current sensors, and load sensor such as
temperature and light sensors.

Here is a simple example of EPS operation.
Suppose that a vehicle crew member issues a command
to a relay in a vehicle’s EPS. If the relay is healthy, the
command changes the status of the relay – from open
to closed, or from closed to open. There is also a
feedback element that – if healthy – reports back the
actual relay state to the crew member. Now suppose
that the crew member gives a “close relay” command,
resulting in a “relay open” feedback message. There is

an inconsistency here, since the relay was commanded
to close, but the feedback says that it is open!

Figure 1 shows how this simple example can be
formalized using a BN. The BN expresses how the
status of the relay, StatusRelay (SR), depends on the
health of the relay, HealthRelay (HR), as well as the
command given to it, CommandRelay (CR). Further,
the message from the relay’s feedback sensor,
FeedbackSensor (FS), is determined by the status of
the relay as well as its health, HealthSensor (HS).
Using the framework established in Section 3, we have
HC = {HealthRelay}, HS = {HealthSensor}, EC =
{CommandRelay}, ES = {FeedbackSensor}, and R =
{StatusRelay}. To reflect the command from the crew
member, we clamp CommandRelay to close in the BN,
while the feedback we get from the EPS is that the
relay is open, thus we clamp FeedbackSensor to
readOpen.

Using this BN and the above evidence, we can
explore possible reasons for the inconsistency. We
employ the five probabilistic queries from Section 3
and obtain the following results:
1. Health of vehicle query. MAP(HV, e) =

{HealthRelay = stuckOpen, HealthSensor =
healthy} and MAP(HV, e) = {HealthRelay =
healthy, HealthSensor = stuckOpen}. These two
answers have the same probability.

2. Health of components query. MAP(HC, e) =
{HealthRelay = stuckOpen}.

3. Health of sensors (or sensor validation) query.
MAP(HS, e) = {HealthSensor = stuckOpen}.

4. State of vehicle query. MAPMPE(HV, e) =
{HealthRelay = healthy, HealthSensor =
stuckOpen}. This approximation is the same as
one of the MAP(HV, e) results above.

5. Health of vehicle marginals. MAPMLV(HV, e) =
{HealthRelay = stuckOpen, HealthSensor =
stuckOpen}. This approximation is different from
both of the MAP(HV, e) results above.

Suppose that we are interested in HV = HC ∪ HS =

{HealthRelay, HealthSensor}, and consider MAP(HV,
e). Intuitively, this query considers combinations of
values for both HealthRelay and HealthSensor.
However, when each health node in HV is considered
in isolation, as it is in MAPMLV(HV, e) above, incorrect
approximations can result.

We note that both the two last queries above are
approximations of MAP(HV, e). When we take
MAPMLV(HV, e) in Query 5 above, we obtain two
unhealthy nodes. This is different from all the other
queries above. This is an interesting example of how
naively computing the MLVs over HV to approximate
MAP(HV, e) does not always give the desired answer.

CR HR

SR HS

FS

0.5close

0.5open

Prob.

CommandRelay (CR)

0.0

1.0

open

stuckOpen

1.0

0.0

close

0.0

1.0

open

healthy

1.0

0.0

open

stuckClosed

0.0

1.0

close

HR

1.0closed

0.0open

closeCR

StatusRelay (SR)
0.0005

0.0005

0.999

Prob.

stuckClosed

stuckOpen

healthy

HealthSensor (HS)

0.0005stuckClosed

0.0005stuckOpen

0.999healthy

Prob.

HealthRelay (HR)

0.0

1.0

open

stuckOpen

1.0

0.0

closed

0.0

1.0

open

healthy

1.0

0.0

open

stuckClosed

0.0

1.0

closed

HS

1.0readClose

d

0.0readOpen

closedSR

FeedbackSensor (FS)

Figure 1. Bayesian network representing an

electrical power system relay.

CR HR

SR HS

FS

0.5close

0.5open

Prob.

CommandRelay (CR)

0.0

1.0

open

stuckOpen

1.0

0.0

close

0.0

1.0

open

healthy

1.0

0.0

open

stuckClosed

0.0

1.0

close

HR

1.0closed

0.0open

closeCR

StatusRelay (SR)
0.0005

0.0005

0.999

Prob.

stuckClosed

stuckOpen

healthy

HealthSensor (HS)

0.0005stuckClosed

0.0005stuckOpen

0.999healthy

Prob.

HealthRelay (HR)

0.0

1.0

open

stuckOpen

1.0

0.0

closed

0.0

1.0

open

healthy

1.0

0.0

open

stuckClosed

0.0

1.0

closed

HS

1.0readClose

d

0.0readOpen

closedSR

FeedbackSensor (FS)

CR HR

SR HS

FS

0.5close

0.5open

Prob.

CommandRelay (CR)

0.5close

0.5open

Prob.

CommandRelay (CR)

0.0

1.0

open

stuckOpen

1.0

0.0

close

0.0

1.0

open

healthy

1.0

0.0

open

stuckClosed

0.0

1.0

close

HR

1.0closed

0.0open

closeCR

StatusRelay (SR)

0.0

1.0

open

stuckOpen

1.0

0.0

close

0.0

1.0

open

healthy

1.0

0.0

open

stuckClosed

0.0

1.0

close

HR

1.0closed

0.0open

closeCR

StatusRelay (SR)
0.0005

0.0005

0.999

Prob.

stuckClosed

stuckOpen

healthy

HealthSensor (HS)

0.0005

0.0005

0.999

Prob.

stuckClosed

stuckOpen

healthy

HealthSensor (HS)

0.0005stuckClosed

0.0005stuckOpen

0.999healthy

Prob.

HealthRelay (HR)

0.0005stuckClosed

0.0005stuckOpen

0.999healthy

Prob.

HealthRelay (HR)

0.0

1.0

open

stuckOpen

1.0

0.0

closed

0.0

1.0

open

healthy

1.0

0.0

open

stuckClosed

0.0

1.0

closed

HS

1.0readClose

d

0.0readOpen

closedSR

FeedbackSensor (FS)

0.0

1.0

open

stuckOpen

1.0

0.0

closed

0.0

1.0

open

healthy

1.0

0.0

open

stuckClosed

0.0

1.0

closed

HS

1.0readClose

d

0.0readOpen

closedSR

FeedbackSensor (FS)

0.0

1.0

open

stuckOpen

1.0

0.0

closed

0.0

1.0

open

healthy

1.0

0.0

open

stuckClosed

0.0

1.0

closed

HS

1.0readClose

d

0.0readOpen

closedSR

FeedbackSensor (FS)

Figure 1. Bayesian network representing an

electrical power system relay.

5. Experiments

What are the differences, if any, between using the
probabilistic queries MAPMPE(HV, e), MAPMLV(HV, e),
MAP(HV, e), MAP(HC, e), and MAP(HS, e) in more
realistic applications? What are the execution times?
To explore these questions, we now report on
experiments using data from the Advanced Diagnostics
and Prognostics Testbed (ADAPT) [19]. ADAPT is a
facility developed at NASA Ames for supporting the
development of diagnostic and prognostic models; for
evaluating advanced warning systems; and for testing
diagnostic and prognostic tools and algorithms.
ADAPT is an electrical power system (EPS) with
components for power generation, storage, and
distribution. Over a hundred sensors report their
measurements to health management systems that
monitor the status of the EPS.

For the purposes of diagnosis and sensor validation,
we have developed an ADAPT BN which contains a
total of 432 nodes. The ADAPT BN reflects the
testbed and is developed according to the framework
presented in Section 3. There are 122 nodes in HV, 57
nodes in HC, and 65 nodes in HS. The BN combines
BN fragments representing individual EPS
components, similar to the relay discussed in Section
4.2, into a representation of power storage,
distribution, and loads in ADAPT.

ADAPT provides an environment in which to inject
failures in a controlled manner, and this makes it ideal
for use in sensor validation and diagnosis experiments.

For each experiment considered here (see Table 1), the
location and type of the injected fault is presented.
Component failures are injected in experiments 304,
305, and 306, while sensor failures are injected in
experiments 308 and 311.

Experiments were performed using the SamIam and
ACE software tools (see http://reasoning.cs.ucla.edu/).
Results from the experiments are presented in Table 1.
Only BN nodes with non-healthy states are presented
in this table. We have also merged the results for the
queries MAP(HV, e), MAPMPE(HV, e), and
MAPMLV(HV, e), since they turned out to be the same
(in general they will not be, as we saw in Section 4.2).

Perhaps the most interesting observation in Table 1
is how the results are the same across the different
probabilistic queries. In some ways this is good news,
since it suggests that the faster and more common
MAPMPE(HV, e) and MAPMLV(HV, e) probabilistic
queries can sometimes be good approximations to
MAP for BNs like the ADAPT BN.

Since aerospace vehicles often have stringent real-
time and resource requirements, we are interested in
the arithmetic circuit execution times of ACE. In
Figure 2, statistics for ACE inference times for the
MAPMPE(HV, e) and MAPMLV(HV, e) queries are
summarized. These measurements were made on a PC
with an Intel Pentium 4 3.2 Ghz processor, 1 GB
RAM, and Windows XP Pro. The inference time
statistics are based on all probabilistic queries during
an experimental run. For both query types, the benefit
of compilation to an arithmetic circuit is clearly

Table 1. Experimental results for ADAPT testbed.

Health_LT500 =

stuckLow

Health_LT500 =

stuckLow

Load Sensor Failed,

LT500311

Health_e261 =

stuckVoltageLo

Health_e261 =

stuckVoltageLo

Voltage Sensor Failed,

E261308

Health_breaker_ey262_

op = stuckOpen

Health_breaker_ey262_

op = stuckOpen

Circuit Breaker

Tripped, cbISH262306

Health_relay_ey175_cl

= stuckOpen

Health_relay_ey175_cl

= stuckOpen

Relay Feedback

Sensor Failed,

ESH175

305

Health_relay_ey260_cl

= stuckOpen

Health_relay_ey260_cl

= stuckOpen

Relay Failed Open,

EY260304

MAP(HS , e)MAP(HC , e)MAP(HV, eInjected Fault and

Location

ID

Health_LT500 =

stuckLow

Health_LT500 =

stuckLow

Load Sensor Failed,

LT500

Health_e261 =

stuckVoltageLo

Health_e261 =

stuckVoltageLo

Voltage Sensor Failed,

E261

Health_breaker_ey262_

op = stuckOpen

Health_breaker_ey262_

op = stuckOpen

Circuit Breaker

Tripped, cbISH262

Health_relay_ey175_cl

= stuckOpen

Health_relay_ey175_cl

= stuckOpen

Relay Feedback

Sensor Failed,

ESH175

Health_relay_ey260_cl

= stuckOpen

Health_relay_ey260_cl

= stuckOpen

Relay Failed Open,

EY260

MAP(HS , e)MAP(HC , e)MAP(HV, e),MAP MPE (H
V
,,e),Injected Fault and

and MAP MLV (H
V

,,e)

Table 1. Experimental results for ADAPT testbed.

Health_LT500 =

stuckLow

Health_LT500 =

stuckLow

Load Sensor Failed,

LT500311

Health_e261 =

stuckVoltageLo

Health_e261 =

stuckVoltageLo

Voltage Sensor Failed,

E261308

Health_breaker_ey262_

op = stuckOpen

Health_breaker_ey262_

op = stuckOpen

Circuit Breaker

Tripped, cbISH262306

Health_relay_ey175_cl

= stuckOpen

Health_relay_ey175_cl

= stuckOpen

Relay Feedback

Sensor Failed,

ESH175

305

Health_relay_ey260_cl

= stuckOpen

Health_relay_ey260_cl

= stuckOpen

Relay Failed Open,

EY260304

MAP(HS , e)MAP(HC , e)MAP(HV, eInjected Fault and

Location

ID

Health_LT500 =

stuckLow

Health_LT500 =

stuckLow

Load Sensor Failed,

LT500

Health_e261 =

stuckVoltageLo

Health_e261 =

stuckVoltageLo

Voltage Sensor Failed,

E261

Health_breaker_ey262_

op = stuckOpen

Health_breaker_ey262_

op = stuckOpen

Circuit Breaker

Tripped, cbISH262

Health_relay_ey175_cl

= stuckOpen

Health_relay_ey175_cl

= stuckOpen

Relay Feedback

Sensor Failed,

ESH175

Health_relay_ey260_cl

= stuckOpen

Health_relay_ey260_cl

= stuckOpen

Relay Failed Open,

EY260

MAP(HS , e)MAP(HC , e)MAP(HV, e),MAP MPE (H
V
,,e),Injected Fault and

and MAP MLV (H
V

,,e)

Health_LT500 =

stuckLow

Health_LT500 =

stuckLow

Load Sensor Failed,

LT500311

Health_e261 =

stuckVoltageLo

Health_e261 =

stuckVoltageLo

Voltage Sensor Failed,

E261308

Health_breaker_ey262_

op = stuckOpen

Health_breaker_ey262_

op = stuckOpen

Circuit Breaker

Tripped, cbISH262306

Health_relay_ey175_cl

= stuckOpen

Health_relay_ey175_cl

= stuckOpen

Relay Feedback

Sensor Failed,

ESH175

305

Health_relay_ey260_cl

= stuckOpen

Health_relay_ey260_cl

= stuckOpen

Relay Failed Open,

EY260304

MAP(HS , e)MAP(HC , e)MAP(HV, eInjected Fault and

Location

ID

Health_LT500 =

stuckLow

Health_LT500 =

stuckLow

Load Sensor Failed,

LT500

Health_e261 =

stuckVoltageLo

Health_e261 =

stuckVoltageLo

Voltage Sensor Failed,

E261

Health_breaker_ey262_

op = stuckOpen

Health_breaker_ey262_

op = stuckOpen

Circuit Breaker

Tripped, cbISH262

Health_relay_ey175_cl

= stuckOpen

Health_relay_ey175_cl

= stuckOpen

Relay Feedback

Sensor Failed,

ESH175

Health_relay_ey260_cl

= stuckOpen

Health_relay_ey260_cl

= stuckOpen

Relay Failed Open,

EY260

MAP(HS , e)MAP(HC , e)MAP(HV, e),MAP MPE (H
V
,,e),Injected Fault and

and MAP MLV (H
V

,,e)

demonstrated: The query evaluations are very fast,
specifically in the 300-500 microseconds range (on
average) for the compiled ADAPT BN. In addition,
query execution is predictable, which is crucially
important for real-time applications. Predictability is
expected to further increase once a real-time operating
system is used.

6. Conclusion

In this paper, we have provided a framework for
sensor validation and diagnosis using a Bayesian
network approach. The framework has been applied
to an electrical power system, an essential subsystem in
aerospace vehicles [3] [19]. We advocate an analytical
technique that (i) fuses information from multiple
sensors and (ii) takes into account relationships
between sensors and other system components. We
identify five different probabilistic queries, including a
MAP query that correctly handles multiple sensor
failures as it explicitly reasons about the joint
probability distribution over all sensor health variables,
compared to traditional approaches that typically
depend on marginal probabilities over individual
sensors. We also discuss approximations using
marginals and MPE. While we give an example of
marginals performing poorly in our electrical power

system setting, our experiments showed that MAP
approximation based on marginals and MPE can in fact
give very good results.

Our Bayesian formulation has several theoretical
and practical benefits. Theoretical benefits include:
the solid foundation of Bayesian networks in
probability and graph theory; a compilation approach
that creates fast and predictable vehicle health
management systems in embedded and resource-
bounded settings (for details see [5] [4] [13]); and the
fact that Bayesian networks generalize techniques –
such as Kalman filters, fault trees, and hidden Markov
models – that are already well-established in the
aerospace community. Practical benefits include: The
existence of a plethora of academic and commercial
software tools that implement Bayesian networks and
their inference algorithms; general but efficient BN
inference algorithms that provide a foundation for
sensor fusion and sensor validation; and the ability of
BNs to enable cross-fertilization and integration
between different application areas and subsystems.

7. Acknowledgments

This material is based upon work supported by
NASA under contract NNA07BB97C ISRDS. The
help of Keith Cascio, Mark Chavira, and Scott Poll
related to ADAPT and running the ADAPT BN
experiments is also greatly appreciated and
acknowledged.

8. References

[1] R. L. Bickford, T. W. Bickmore, and V. A. Caluori,
“Real-Time Sensor Validation for Autonomous Flight
Control”, In Proc. 33rd Joint Propulsion Conference and
Exhibit, Seattle, WA, July 1997.

[2] T. W. Bickmore, “A Probabilistic Approach to Sensor
Data Validation”, In Proc. 28th Joint Propulsion Conference
and Exhibit, Nashville, TN, July 1992.

[3] R. M. Button and A. Chicatelli, “Electrical Power System
Health Management”, In Proc. 1st International Forum on
Integrated System Health Engineering and Management in
Aerospace, November 2005, Napa, CA.

[4] M. Chavira and A. Darwiche, “Compiling Bayesian
Networks Using Variable Elimination”, In Proc. of the 20th
International Joint Conference on Artificial Intelligence
(IJCAI-07), January 2007, pp. 2443 – 2449.

[5] A. Darwiche, “Model-Based Diagnosis under Real-World
Constraints”, AI Magazine, Vol. 21, No. 2, 2000, pp. 57-73.

ADAPT Experiments - MPE Run Times

0.384 0.471
0.360 0.443 0.478

10.48 10.39 10.41 10.34 10.45

0.100

1.000

10.000

100.000

304 305 306 308 311

ADAPT Experiment ID

R
u

n
 t

im
e
 (

m
il
li
s
e
c
)

Mean

Median

Maximum

ADAPT Experiments - MLV Run Times

0.368
0.472

0.315
0.435 0.455

12.18 12.04 12.06 12.08 11.99

0.100

1.000

10.000

100.000

304 305 306 308 311

ADAPT Experiment ID

R
u

n
 t

im
e
 (

m
il
li
s
e
c
)

Mean

Median

Maximum

Figure 2. Execution times for ADAPT

Bayesian network after it has been

compiled into an arithmetic circuit.

ADAPT Experiments - MPE Run Times

0.384 0.471
0.360 0.443 0.478

10.48 10.39 10.41 10.34 10.45

0.100

1.000

10.000

100.000

304 305 306 308 311

ADAPT Experiment ID

R
u

n
 t

im
e
 (

m
il
li
s
e
c
)

Mean

Median

Maximum

ADAPT Experiments - MLV Run Times

0.368
0.472

0.315
0.435 0.455

12.18 12.04 12.06 12.08 11.99

0.100

1.000

10.000

100.000

304 305 306 308 311

ADAPT Experiment ID

R
u

n
 t

im
e
 (

m
il
li
s
e
c
)

Mean

Median

Maximum

ADAPT Experiments - MPE Run Times

0.384 0.471
0.360 0.443 0.478

10.48 10.39 10.41 10.34 10.45

0.100

1.000

10.000

100.000

304 305 306 308 311

ADAPT Experiment ID

R
u

n
 t

im
e
 (

m
il
li
s
e
c
)

Mean

Median

Maximum

ADAPT Experiments - MLV Run Times

0.368
0.472

0.315
0.435 0.455

12.18 12.04 12.06 12.08 11.99

0.100

1.000

10.000

100.000

304 305 306 308 311

ADAPT Experiment ID

R
u

n
 t

im
e
 (

m
il
li
s
e
c
)

Mean

Median

Maximum

Figure 2. Execution times for ADAPT

Bayesian network after it has been

compiled into an arithmetic circuit.

[6] S. Ferrari and A. Vaghi, “Demining Sensor Modeling and
Feature-Level Fusion by Bayesian Networks”, IEEE Sensors
Journal, Vol. 6, No. 2, April 2006.

[7] J. A. Hansen, T. D. Nielsen, and H. Schiøler, “Sensor
Fusion using Dynamic Bayesian Networks in Livestock
Production Buildings”, In Proc. of the International
Conference on Computational Intelligence for Modelling,
Control and Automation (CIMCA06), 2006.

[8] JPL Special Review Board, “Report on the Loss of the
Mars Polar Lander and Deep Space 2 Missions”, JPL Special
Review Board Report, March 2000.

[9] S. Lauritzen and D. J. Spiegelhalter, “Local Computations
with Probabilities on Graphical Structures and their
Application to Expert Systems (with Discussion)”, Journal of
the Royal Statistical Society series B, Vol. 50, No. 2, 1988,
pp. 157-224.

[10] U. Lerner, R. Parr, D. Koller, and G. Biswas, “Bayesian
fault detection and diagnosis in dynamic systems”, In Proc.
of the Seventeenth National Conference on Artificial
Intelligence (AAAI-00), 2000, pp. 531–537.

[11] E. Liu and D. Zhang, “Diagnosis of Component Failures
in Space Shuttle Main Engines using Bayesian Belief
Networks: A Feasibility Study”, In Proc. 14th IEEEE
International Conference on Tools with Artificial Intelligence
(ICTAI-02), 2002.

[12] W. A. Maul, K. J. Melcher, A. K. Chicatelli, and T. S.
Sowers, “Sensor Data Qualification for Autonomous
Operation of Space Systems”, In AAAI Fall Symposium on
Spacecraft Autonomy: Using AI to Expand Human Space
Exploration, Arlington, VA, October 2006.

[13] O. J. Mengshoel, “Designing Resource-Bounded
Reasoners using Bayesian Networks: System Health
Monitoring and Diagnosis”, In Proc. of the 18th
International Workshop on Principles of Diagnosis (DX-07),
Nashville, TN, May 2007.

[14] O. J. Mengshoel, “Macroscopic Models of Clique Tree
Growth for Bayesian Networks”. In Proc. of the 22nd
National Conference on Artificial Intelligence (AAAI-07).
July 2007, Vancouver, Canada, pp. 1256-1262.

[15] O. J. Mengshoel, D. C. Wilkins, and D. Roth,
“Controlled Generation of Hard and Easy Bayesian
Networks: Impact on Maximal Clique Tree in Tree
Clustering”. Artificial Intelligence, 170(16–17), October
2006, pp. 1137–1174.

[16] A. E. Nicholson and J. M. Brady, “Dynamic Belief
Networks for Discrete Monitoring”, IEEE Trans. on Systems,
Man, and Cybernetics, Vol. 24, No. 11, November 1994.

[17] J. D. Park and A. Darwiche, “Complexity Results and
Approximation Strategies for MAP Explanations”, Journal of
Artificial Intelligence Research (JAIR), Vol. 21, 2004, pp.
101-133.

[18] R. J. Patton, “Fault detection and diagnosis in aerospace
systems using analytical redundancy”, Computing & Control
Engineering Journal, Vol.2, No.3, May 1991, pp.127-136.

[19] S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D.
Hall, C. Lee, O. J. Mengshoel, C. Neukom, D. Nishikawa, J.
Ossenfort, A. Sweet, S. Yentus, I. Roychoudhury, M. Daigle,
G. Biswas, and X. Koutsoukos, “Advanced Diagnostics and
Prognostics Testbed”, In Proc. of the 18th International
Workshop on Principles of Diagnosis (DX-07), Nashville,
TN, May 2007.

[20] J. M. Rehg, K. P. Murphy, P. W. Fieguth, “Vision-
Based Speaker Detection Using Bayesian Networks”, In
Proc. 1999 Conference on Computer Vision and Pattern
Recognition (CVPR-99), June 1999, Ft. Collins, CO, pp.
2110-2116.

[21] A. S. Willsky, “A Survey of Design Methods for Failure
Detection in Dynamic Systems”, Automatica, Vol. 12, 1976,
pp. 601-611.

[22] F. Figueroa and J. Schmalzel, “Rocket Testing and
Integrated System Health Management”, In Condition
Monitoring and Control for Intelligent Manufacturing, W.
Gao (ed), Springer Verlag, 2006, pp. 373-392.

[23] D. Koller and X. Boyen, “Exploiting the Architecture of
Dynamic Systems,” In Proc. of the 16th National Conference
on Artificial Intelligence (AAAI-99), July 1999, pp. 313-320.

[24] J. Pearl, “Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference”, Morgan Kaufmann, 1988.

