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Abstract 
 

One of NASA’s key mission requirements is robust 
state estimation.  Sensing, using a wide range of 
sensors and sensor fusion approaches, plays a central 
role in robust state estimation, and there is a need to 
diagnose sensor failure as well as component failure.   
Sensor validation techniques address this problem: 
given a vector of sensor readings, decide whether 
sensors have failed, therefore producing bad data.  We 
take in this paper a probabilistic approach, using 
Bayesian networks, to diagnosis and sensor validation, 
and investigate several relevant but slightly different 
Bayesian network queries. We emphasize that on-
board inference can be performed on a compiled 
model, giving fast and predictable execution times. 
Our results are illustrated using an electrical power 
system, and we show that a Bayesian network with 
over 400 nodes can be compiled into an arithmetic 
circuit that can correctly answer queries in less than 
500 microseconds on average. 
 
1. Introduction 
 

The problem of faulty sensors is commonplace in 
aerospace, leading to a need for sensor validation [2] 
[1]. Essentially, the sensor validation problem is this:  
given a vector of sensor readings, decide whether one 
or more sensors have failed and are therefore 
producing bad data.   

Much previous work on sensor validation and 
failure detection within aerospace has emphasized air- 
and spacecraft control in a continuous setting [21] [18].  
Many systems of interest to the aerospace community, 
for example rocket engines [2] [1] [11] and electrical 
power systems [3] [12] [19], are either discrete or 
hybrid (both continuous and discrete) and involve 
substantial uncertainty.  Our focus here is on such 
systems, and in particular we emphasize those that can 
be formalized using multivariate discrete random 

variables represented as Bayesian networks [24]. Our 
contribution is three-fold. First, we develop a Bayesian 
network framework for reasoning in which we 
represent both sensor faults and component faults. 
Second, we carefully discuss different probabilistic 
queries that are useful for sensor validation and 
diagnosis.  Third, we investigate the efficient 
implementation of these ideas, such that they can be 
implemented and deployed on aerospace vehicles.   

We take a Bayesian approach to sensor validation 
[2].  Specifically, our approach is based on developing 
a Bayesian network (BN) [24] model of an aerospace 
vehicle or a sub-system of such a vehicle.  These 
models represent the health modes of sensors 
explicitly, and contain random variables for capturing 
other aspects of the system (including the health status 
of other system components). Our approach 
complements other technologies used in aerospace, 
including limit checks, redundancy-based voting, and 
other analytical redundancy methods.  Specifically, we 
advocate an analytical technique that fuses information 
from multiple sensors in a Bayesian manner, and takes 
into account relationships between sensors and other 
system components.    

To solve the sensor validation problem exactly, we 
dynamically provide input to the BN using sensor 
readings and commands and pose a MAP (maximum a 
posteriori hypothesis) query over the health of sensor 
variables only [17].  This should be distinguished from 
alternative approaches formulated within probabilistic 
frameworks, for instance (i) a MAP computation over 
the health variables of all system components; (ii) a 
MPE (most probable explanation) computation over all 
non-observed system variables; and (iii) a marginal 
probability computation over each non-observed 
variable, which can easily be used to find the most 
likely values (MLVs) of health variables of interest. 
There are subtle differences between these queries with 
implications for the decision making process.  Our 
Bayesian framework   correctly handles multiple 



sensor failures, since it supports reasoning about the 
joint probability distribution over the health of all 
sensors; traditional approaches typically depend on 
marginal probabilities over individual sensor health 
variables.   At the same time, our framework allows us 
to clearly state and investigate a range of probabilistic 
queries, both MAP and approximate (but potentially 
more efficient) probabilistic queries.   

Finally, we investigate how our approach is 
supported by efficient algorithms.  We report on 
experiments using an electrical power system [19], and 
show that a Bayesian network with over 400 nodes can 
be compiled into an arithmetic circuit that correctly 
answers queries in less than 500 microseconds on 
average.  

The rest of this paper is organized as follows.  In 
Section 2 we discuss related research.  Section 3 
introduces our Bayesian network framework for sensor 
validation and diagnosis; we also consider different 
probabilistic queries. In Section 4 we motivate and 
illustrate our approach by means of the Mars Polar 
Lander and electrical power systems. In Section 5 we 
provide experimental results before concluding in 
Section 6.  
 
2. Related Work 
 

Sensor validation can be considered to be part of the 
larger effort of improving reliability and safety through 
the use of redundancy, which can be classified into 
hardware redundancy, analytical redundancy, and 
hybrid redundancy [18].  On the hardware side, 
techniques such as duplex, triplex, or higher hardware 
redundancy along with voting system are used.  
Analytical redundancy techniques, further discussed 
below, can be classified into quantitative methods and 
qualitative methods. Finally, hybrid methods combine 
hardware and analytical redundancy.    

Bayesian networks represent analytical 
(probabilistic or deterministic) relationships between 
different states of components and systems, and can 
therefore be regarded as an analytical redundancy 
approach.  We consider Bayesian and non-Bayesian 
approaches, and emphasize in this paper the Bayesian 
approach [24] [2] [16] [6] [20] [7] [17] [15] [13] [14]. 
We distinguish between work that explicitly represents, 
using random variables, system health [2] [16] [11] [6] 
versus work that does not [20] [7].   

We now discuss related research, turning first to 
sensor validation using BNs in aerospace. Bickmore 
investigates rocket engine sensor data validation [2].  
He presents an approach in which a bipartite Bayesian 
network is constructed from an undirected sensor 
validation network. Using temperature and pressure 

sensors, the approach was successfully tested on space 
shuttle main engine (SSME) data. More extensive and 
realistic tests were later performed on a fault tolerant 
flight computer [1].  Liu and Zhang also developed 
sensor validation and fault diagnosis techniques for 
SSME [11]. Theirs is a multi-step approach, involving 
these steps: Data acquisition, parameter estimation, 
fault detection, and fault diagnosis.  A bipartite BN 
model – consisting of 9 nodes for sensor readings, 9 
sensor health nodes, and 5 component health nodes – is 
used in the fault diagnosis step only.  They report 
encouraging simulation results, but note that the fault 
detection module causes a few false and missed alarms.  

In the area of sensor fusion using BNs, Rehg, 
Murphy and Fieguth develop, using computer vision 
algorithms, a speaker detection approach that uses 
Bayesian networks [20].  They use four “soft sensors”, 
namely off-the-shelf computer vision algorithms that 
process skin color, skin texture, frontal face, and mouth 
motion, and fuse their output by means of a BN.  
Promising experiments illustrate the benefit of speaker 
detection using BNs. Hansen et al. discuss sensor 
fusion using dynamic Bayesian networks (DBNs) [7]. 
(DBNs are generalizations of Markov chains and 
hidden Markov models and are used to reason about 
dynamic processes.)  They observe that simple state 
controllers do not handle faulty sensors, and 
investigate how DBN sensor fusion can be applied to 
climate control in buildings.  This climate control 
application uses temperature and humidity sensors; 
actuation is done by means of ventilation, heating, or 
cooling.  The expectation-maximization (EM) 
algorithm is used for DBN parameter estimation, and 
the Boyen-Koller algorithm [23] for computation of 
marginals. The DBN does not contain health nodes, 
neither for components nor for sensors. Promising 
experiments illustrate estimation of temperature from 
other measurements.  Ferrari and Vaghi develop a BN-
based sensor fusion approach to mine detection [6].  
They consider different types of sensors – specifically 
ground-penetrating radar, electro-magnetic induction, 
and infrared sensors – and show how machine learning 
can be utilized.  The sensor model of Ferrari and Vaghi 
is particularly rich, and their experiments show how 
sensor fusion using BNs improves landmine 
classification by 62%.  

In the area of sensor fusion and diagnosis using 
BNs, Nicholson and Brady developed a DBN-based 
approach (DBNs) to solve data association and sensor 
validation problems [16].  Specifically, they show how 
DBNs can be used for monitoring robots and humans.  
For sensor validation, BN nodes representing sensors 
faults are dynamically added – and then queried – 
based on the computation of a conflict measure. Lerner 
et al. develop a hybrid DBN approach to online 



monitoring and diagnosis, where nominal as well as 
failure modes are represented [10]. Burst failures, 
measurement failures, and parameter drift failures are 
all represented using discrete BN nodes. During 
inference, their approach collapses similar hypothesis, 
thereby avoiding computational complexity issues due 
to the discrete nodes. In a challenging experiment 
involving multiple faults in a system of five liquid 
tanks, they report strong results.  

Compared to previous research, including work that 
explicitly represents nominal and faulty behavior using 
Bayesian network nodes [16] [10] [6], we carefully 
introduce a Bayesian network framework and 
emphasize the different results produced by marginal, 
MPE, and MAP queries.  In contrast, all previous 
sensor validation work we are aware of has employed 
marginals. We also do not rely on computation of 
residuals [18] or a separate fault detection step [21] 
[11].  Instead, we go directly to a diagnosis or sensor 
validation step (similar to [10] [7]); fault detection has 
been identified as a cause of false and missed positives 
[11]. We emphasize that on-line inference including 
sensor validation can be performed on a compiled 
model, not directly on the Bayesian network. 
Compilation of BNs gives fast and predictable 
execution times [9] [4], which enable deployment in 
the real-time and resource-bounded environments 
typically found in aerospace vehicles [5] [13].  Finally, 
we note that our Bayesian approach can utilized in 
distributed architectures with smart sensors [22], even 
though space does not permit us to discuss detailed 
here.  

 
3. Bayesian Network Framework  
 

We now discuss our Bayesian network model for an 
aerospace vehicle.  (Note that our approach generalizes 
to systems beyond vehicles of interest to NASA, but in 
the interest of specificity we use the term “vehicle” 
rather than “system” here.)  This model constitutes a 
Bayesian approach to sensor fusion and validation, and 
it represents the health state of a vehicle’s sensors and 
other components.  Specifically, we partition the set of 
BN nodes X into HV, E, and R as follows:  
• Health nodes (HV), where HV = HC ∪ HS and HC 

∩ HS = ∅, with:  
– Component health nodes (HC): Nodes 

representing health of vehicle 
components (excluding health of 
sensors).   

– Sensor health nodes (HS): Nodes 
representing health of vehicle’s sensors.  

• Evidence nodes (E), where E = EC ∪ ES and EC ∩ 
ES = ∅, with:  

– Command nodes (EC): Nodes 
representing commands to vehicle.  

– Sensor nodes (ES): Nodes representing 
sensor readings from vehicle.   

• Remaining nodes (R): Nodes that are not health or 
evidence nodes.  If X is the set of all BN nodes, 
then R = X - HV – EV.  

 
Such a BN model can be used for Bayesian sensor 

fusion and sensor validation, as illustrated in Section 4 
and Section 5.  

Different probabilistic queries are used in BNs. 
Given evidence, computation of marginals is 
concerned with the posterior belief over individual BN 
nodes, while finding an MPE produces the most 
probable explanation over all non-evidence nodes [24]. 
Less known than the marginal and MPE queries are 
perhaps maximum a posteriori hypothesis (MAP) 
queries [17].  Let X be all BN nodes, E the evidence 
nodes, and e the evidence.  Then we might be 
interested in the MAP over M ⊆  X - E, and use the 
notation M = m to mean that m is an instantiation of all 
the nodes in M. For MAP instantiation we say 
MAP(M, e) = argmaxmPr(M=m, e) = argmaxmPr(M=m 
| e).  Algorithms for efficiently computing MAP have 
recently been developed [17].   

Previous sensor validation efforts have generally 
computed marginals.  Given the concepts introduced 
above, we can in fact identify several related but 
different probabilistic queries of interest to diagnosis 
and sensor validation (the ordering is arbitrary):  
1. Health of vehicle query. MAP over the health 

variables of all vehicle components and sensors:  
MAP(HV, e). 

2. Health of components query. MAP over the 
health variables of vehicle components only: 
MAP(HC, e). 

3. Health of sensors (or sensor validation) query. 
MAP over sensor health variables: MAP(HS, e).  

4. State of vehicle query. MPE over all non-observed 
system variables: MAP(X – EV, e) = MPE(e). 
MPE can be used to obtain an approximation 
MAPMPE of MAP as discussed below.  

5. Health of vehicle marginals. Marginal (belief) 
over any health variable H: B(H, e) = Pr(H |  e) , 
where H ∈ HV. From B(H, e), it is easy to 
compute the most likely value of H  given e, or 
MLV(H , e). Using MLV, we can approximate 
MAP, using MAPMLV, as discussed below. 

 
There are subtle differences between these queries 

with possible implications for the decision making 
process.  In fact, examples of MAP, MPE, and MLV 



giving different results over query variables X are 
known; Section 4 provides an EPS example.  

Intuitively, the differences between MAP, MPE, 
and marginal queries are as follows.  (Note that MAP 
is a generalization of MPE and MLV, and hence when 
we say “MAP queries” in the following we mean MAP 
queries that are not MPE or MLV queries.)  We first 
discuss marginals versus MPE and MAP.  Marginal 
queries are local, since they are concerned with 
individual BN nodes.  MPE and MAP, on the other 
hand, are more global and take constraints that involve 
multiple BN nodes into account.   This difference is 
potentially important in diagnosis and sensor validation 
because there can be node states that marginally look 
most likely, but when considered jointly (by MAP or 
MPE) they are in fact not the most likely.  For 
instance, a state x of one node X ∈ X – E may be 
highly uncorrelated with a state y of a different node Y 
∈ X – E, even though these two states are marginally 
most likely for X and Y respectively (see Section 4.2 
for a concrete example). Second, and considering MAP 
versus MPE queries, we note that MPE queries are 
concerned with all non-evidence nodes X – E, while 
with MAP we query a subset M ⊆ X – E of the non-
evidence nodes.  Consequently, MPE typically 
includes states of nodes that are not essential to the 
component health HC or sensor health HS, which are 
our main concern in this article.  

Along an orthogonal dimension, we note that one 
probabilistic query can be used to approximate another 
probabilistic query. Specifically, MPE and MLV 
queries can be used to approximate MAP queries. We 
use the notation MAPMPE(H, e) and MAPMLV(H, e) to 
indicate MPE- and MLV-approximations of MAP(H, 
e).  Here, H = HV, H = HC, or H = HS.  Such 
approximations are of both theoretical and practical 
interest. Theoretically, the MAP problem belongs to a 
more difficult complexity class than the MPE and 
marginal problems [17], and even the latter problems 
can be computationally very challenging [15] [14].  
Practically, algorithms and software for MPE and 
marginal computation are more wide-spread than those 
for MAP computation.   When do these 
approximations give different results than MAP? This 
question is explored in the following sections.   

 
4. NASA Applications  
 

State estimation methods may be studied from 
different perspectives, including the mission phase and 
the subsystem perspectives.  Examples of subsystems 
of great interest to NASA include rocket engines [2] 
[1] [11] and electrical power systems [3] [12] [19]; 
mission phases include vehicle takeoff and landing.   

In Section 4.1 we turn to a vehicle landing example 
of why NASA needs better state estimation methods. 
In Section 4.2 we then discuss electrical power systems 
and show how BNs can be used in this setting.  
 
4.1 Mars Polar Lander  

 
We present the Mars Polar Lander, discuss its failed 

mission, and speculate how the outcome could have 
been different if better sensor fusion and sensor 
validation techniques had been in place.  

The main purpose of the Mars Polar Lander (MPL) 
was to collect samples of Mars’ soil. MPL was 
launched on January 3, 1999; it lost contact with Earth 
on December 3, 1999.  The cause of MPL loss is not 
known with certainty.  According to the Accident 
Report, however, the most probable cause is premature 
shutdown of descent engines [8].  It is important to 
note that MPL was designed for a soft landing (similar 
to Apollo lunar landers).  To enable a soft landing, 
MPL used a descent engine (retrorocket) to decelerate 
during descent. Here is a probable sequence of events 
that led to the loss of the spacecraft [8]:  
1. During the descent, a radar altimeter continuously 

measured height above surface. 
2. When a certain height above surface (50 ft.) was 

reached, the legs of the spacecraft were 
commanded to deploy. 

3. The legs deployed and locked into position, 
causing a transient on contact sensor(s) that were 
installed on the legs. 

4. The contact sensor transient caused the descent 
engine controller to (erroneously) infer that the 
spacecraft had touched down on Mars.  

5. The descent engine was shut off prematurely, 
causing the spacecraft to crash from a height of 
~50 ft and be destroyed. 

 
In retrospect, it is clear that MPL had enough 

instrumentation onboard to enable robust state 
estimation. Height above surface was the critical state 
variable, and the radar altimeter combined with the 
touchdown (contact) sensors would have enabled a 
better estimate of height above surface had the two 
readings been fused by using a BN model.   

We want to make the following two points 
regarding the MPL accident.  First, there are multiple 
direct or indirect measurements of a state variable of 
interest.   Consequently, there is an opportunity to fuse 
these multiple observations or sensor readings using an 
analytical model, in our case a BN.  Second, there is a 
need to query the BN in order to find conflicts and 
causes of conflicts in sensor readings, and then to 
decide which sensor reading(s) to trust.  For the MPL, 



one sensor (the contact sensor) indicated touchdown, 
while another sensor (radar altimeter) did not indicate 
touchdown.  A BN model could have been used to 
resolve this conflict by explicitly reasoning about the 
health of these sensors, using the probabilistic queries 
discussed in Section 3.  
 
4.2 Electrical Power Systems  
 

Electrical power systems (EPSs) play an essential 
and increasing role in aerospace vehicles [3] [12] [19]. 
EPS loads include avionics, propulsion, life support, 
and thermal management.  For the purpose of this 
paper, the EPS components we are interested in include 
batteries, relays, circuit breakers, and EPS loads such 
as light and  pumps.  For EPSs, sensors include voltage 
sensors, current sensors, and load sensor such as 
temperature and light sensors.   

Here is a simple example of EPS operation.  
Suppose that a vehicle crew member issues a command 
to a relay in a vehicle’s EPS. If the relay is healthy, the 
command changes the status of the relay – from open 
to closed, or from closed to open.  There is also a 
feedback element that – if healthy – reports back the 
actual relay state to the crew member.  Now suppose 
that the crew member gives a “close relay” command, 
resulting in a “relay open” feedback message.  There is 

an inconsistency here, since the relay was commanded 
to close, but the feedback says that it is open!   

Figure 1 shows how this simple example can be 
formalized using a BN. The BN expresses how the 
status of the relay, StatusRelay (SR), depends on the 
health of the relay, HealthRelay (HR), as well as the 
command given to it, CommandRelay (CR). Further, 
the message from the relay’s feedback sensor, 
FeedbackSensor (FS), is determined by the status of 
the relay as well as its health, HealthSensor (HS). 
Using the framework established in Section 3, we have 
HC = {HealthRelay}, HS = {HealthSensor}, EC = 
{CommandRelay}, ES = {FeedbackSensor}, and R =  
{StatusRelay}.   To reflect the command from the crew 
member, we clamp CommandRelay to close in the BN, 
while the feedback we get from the EPS is that the 
relay is open, thus we clamp FeedbackSensor to 
readOpen.  

Using this BN and the above evidence, we can 
explore possible reasons for the inconsistency. We 
employ the five probabilistic queries from Section 3 
and obtain the following results:  
1. Health of vehicle query. MAP(HV, e) = 

{HealthRelay = stuckOpen, HealthSensor = 
healthy} and MAP(HV, e) = {HealthRelay = 
healthy, HealthSensor = stuckOpen}.  These two 
answers have the same probability.  

2. Health of components query. MAP(HC, e) = 
{HealthRelay = stuckOpen}.  

3. Health of sensors (or sensor validation) query. 
MAP(HS, e) = {HealthSensor = stuckOpen}. 

4. State of vehicle query. MAPMPE(HV, e) = 
{HealthRelay = healthy, HealthSensor = 
stuckOpen}.  This approximation is the same as 
one of the MAP(HV, e) results above.  

5. Health of vehicle marginals.  MAPMLV(HV, e) =  
{HealthRelay = stuckOpen, HealthSensor = 
stuckOpen}. This approximation is different from 
both of the MAP(HV, e) results above. 

 
Suppose that we are interested in HV = HC ∪ HS = 

{HealthRelay, HealthSensor}, and consider MAP(HV, 
e).  Intuitively, this query considers combinations of 
values for both HealthRelay and HealthSensor.   
However, when each health node in HV is considered 
in isolation, as it is in MAPMLV(HV, e) above, incorrect 
approximations can result.  

We note that both the two last queries above are 
approximations of MAP(HV, e). When we take 
MAPMLV(HV, e) in Query 5 above, we obtain two 
unhealthy nodes.  This is different from all the other 
queries above. This is an interesting example of how 
naively computing the MLVs over HV to approximate 
MAP(HV, e)  does not always give the desired answer.   
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Figure 1. Bayesian network representing an 

electrical power system relay. 
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Figure 1. Bayesian network representing an 

electrical power system relay. 



5. Experiments 
 

What are the differences, if any, between using the 
probabilistic queries MAPMPE(HV, e), MAPMLV(HV, e), 
MAP(HV, e), MAP(HC, e), and MAP(HS, e) in more 
realistic applications? What are the execution times? 
To explore these questions, we now report on 
experiments using data from the Advanced Diagnostics 
and Prognostics Testbed (ADAPT) [19]. ADAPT is a 
facility developed at NASA Ames for supporting the 
development of diagnostic and prognostic models; for 
evaluating advanced warning systems; and for testing 
diagnostic and prognostic tools and algorithms. 
ADAPT is an electrical power system (EPS) with 
components for power generation, storage, and 
distribution.   Over a hundred sensors report their 
measurements to health management systems that 
monitor the status of the EPS.    

For the purposes of diagnosis and sensor validation, 
we have developed an ADAPT BN which contains a 
total of 432 nodes.  The ADAPT BN reflects the 
testbed and is developed according to the framework 
presented in Section 3. There are 122 nodes in HV, 57 
nodes in HC, and 65 nodes in HS.   The BN combines 
BN fragments representing individual EPS 
components, similar to the relay discussed in Section 
4.2, into a representation of power storage, 
distribution, and loads in ADAPT.  

ADAPT provides an environment in which to inject 
failures in a controlled manner, and this makes it ideal 
for use in sensor validation and diagnosis experiments. 

For each experiment considered here (see Table 1), the 
location and type of the injected fault is presented.  
Component failures are injected in experiments 304, 
305, and 306, while sensor failures are injected in 
experiments 308 and 311.  

Experiments were performed using the SamIam and 
ACE software tools (see http://reasoning.cs.ucla.edu/).  
Results from the experiments are presented in Table 1. 
Only BN nodes with non-healthy states are presented 
in this table.  We have also merged the results for the 
queries MAP(HV, e), MAPMPE(HV, e), and 
MAPMLV(HV, e),  since they turned out to be the same 
(in general they will not be, as we saw in Section 4.2).   

Perhaps the most interesting observation in Table 1 
is how the results are the same across the different 
probabilistic queries.  In some ways this is good news, 
since it suggests that the faster and more common 
MAPMPE(HV, e) and MAPMLV(HV, e) probabilistic 
queries can sometimes be good approximations to 
MAP for BNs like the ADAPT BN.   

Since aerospace vehicles often have stringent real-
time and resource requirements, we are interested in 
the arithmetic circuit execution times of ACE. In 
Figure 2, statistics for ACE inference times for the 
MAPMPE(HV, e) and MAPMLV(HV, e) queries are 
summarized. These measurements were made on a PC 
with an Intel Pentium 4 3.2 Ghz processor, 1 GB 
RAM, and Windows XP Pro. The inference time 
statistics are based on all probabilistic queries during 
an experimental run.   For both query types, the benefit 
of compilation to an arithmetic circuit is clearly 
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demonstrated:  The query evaluations are very fast, 
specifically in the 300-500 microseconds range (on 
average) for the compiled ADAPT BN.  In addition, 
query execution is predictable, which is crucially 
important for real-time applications.  Predictability is 
expected to further increase once a real-time operating 
system is used.   

 
6. Conclusion  
 

In this paper, we have provided a framework for 
sensor validation and diagnosis using a Bayesian 
network approach.   The framework has been applied 
to an electrical power system, an essential subsystem in 
aerospace vehicles [3] [19]. We advocate an analytical 
technique that (i) fuses information from multiple 
sensors and (ii) takes into account relationships 
between sensors and other system components.   We 
identify five different probabilistic queries, including a 
MAP query that correctly handles multiple sensor 
failures as it explicitly reasons about the joint 
probability distribution over all sensor health variables, 
compared to traditional approaches that typically 
depend on marginal probabilities over individual 
sensors.  We also discuss approximations using 
marginals and MPE.  While we give an example of 
marginals performing poorly in our electrical power 

system setting, our experiments showed that MAP 
approximation based on marginals and MPE can in fact 
give very good results.   

Our Bayesian formulation has several theoretical 
and practical benefits.  Theoretical benefits include:  
the solid foundation of Bayesian networks in 
probability and graph theory; a compilation approach 
that creates fast and predictable vehicle health 
management systems in embedded and resource-
bounded settings (for details see [5] [4] [13]); and the 
fact that Bayesian networks generalize techniques – 
such as Kalman filters, fault trees, and hidden Markov 
models – that are already well-established in the 
aerospace community.  Practical benefits include:  The 
existence of a plethora of academic and commercial 
software tools that implement Bayesian networks and 
their inference algorithms; general but efficient BN 
inference algorithms that provide a foundation for 
sensor fusion and sensor validation; and the ability of 
BNs to enable cross-fertilization and integration 
between different application areas and subsystems.  
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