Overview

GOAL:
Develop infrastructure and processes for small spacecraft software development using automatic code generation techniques.

2007 Objectives:
- Flatsat – Small cart on flat granite table. Develop approach/processes and conduct tool trades using simple example.
- 6 DOF Integration Test – Demonstrate 6DOF control on small spacecraft bus test platform with cold gas thrusters.
- Cruise Phase Simulation – Demonstrate “lost-in-space” algorithm and trajectory correction maneuvers in simulation.
FLATSAT TESTBED
Common Spacecraft Bus Pressure Test
FSW Development: Workstation Simulation (WSIM) Environment

- Sun Workstation
- TCP/IP
- Commands and Telemetry
 - CMD
 - TLM
- Spacecraft C&DH Software Model
- Spacecraft GN&C Software Model
- Actuator Data
- Sensor Data
- Simulation Input and Output
 - Simulation Software Model

- Command and Control Software
FSW Development: Processor-in-the-Loop

VME Based Avionics and Simulation Target

Actuator and Sensor Data Shared Across the Backplane

Simulation Input and Output (TCP/IP)

Command & Control Host & Simulation Host

Commands and Telemetry (TCP/IP)
FSW Development: Hardware-in-the-Loop

Commands and Telemetry (TCP/IP)

Simulation Input and Output (TCP/IP)
Broad Reach Engineering Development Unit

- 8 Slot (5 C&DH, 3 Power) 3U cPCI Chassis
- BRE Starter BRE440
 - 128 Mbyte SDRAM, 8 Mbytes Boot-ROM
 - 200 MHz/400 Mips
- MOAB IO Board
 - 47 AD590 Temp channels
 - 12 Sun sensor channels
 - 24 Analog channels
 - 40 RS422 /LVDS transmitters and receivers
 - 48 Discrete Inputs and Outputs
 - MIL-STD-1553
- Solar Array Control Integration (SACI) board.
- Power Switching and Pyro Integration (PAPI) board.
Top Level Model:
- Simulated Cart
- Hardware Interfaces
- Flight Code
Actuators: 8 Nitrogen Thrusters

Sensors:
- Analog IMU
- Serial IMU
- Camera Positioning System
- Analog Pressure and Temperature Sensors

Rigid Body Dynamics: 6 DOF
GN&C:
- Developed in Simulink & Autocoded with EC, brought into SystemBuild environment using UCB.
- Multiple approaches investigated: Bang-Bang, PWPF

Telemetry:
- Connect signals to populate
- External Script file creates database by interrogating model
- Currently implemented TCP/IP and 422 in TCM format.

Vehicle Health Monitoring:
- Command Checking
- Sensor Limit Checking
- Hardware status

Command Processing:
- Receives commands via TCP/IP or 422.
- Compiled in script allows flexible sequencing.

Sensor Processing:
- Receives analog or serial data.
- Low Pass Filter
- Auto generated Kalman Filter integrated through UCB.

FLIGHT SOFTWARE MODEL
• Simulink supports two way trace-ability between models and generated code
• Code Easy to read, well commented
Mission Ops Software

- Integrated with commercially available (Octant Technologies) mission operations software
 - CmdBuilder – GUI for spacecraft telecommands and scripting.
 - TelemScope – telemetry monitoring, archiving, and trend analysis.
- Investigations ongoing into ASIST and SCL
V&V

- Utilizing html based documents for tracking requirements, procedures, specifications, and verification results.
- Unit test scripts exercise low level blocks within the model in the WSIM.
- Perl scripts for automatic execution of integrated tests in WSIM, PIL, and HWIL. Test results and links to data automatically populated in html docs.
Lessons Learned

- **Spiral Development Approach** – Prototype, code, test, and debug early and often.
- **Elimination of Errors** – Eliminated need to manually translate GN&C algorithms to flight code.
- **Reduced Training** – No need to teach control systems experts how to write “good code”.
- **Compatibility** – Using Simulink, SystemBuild and hand written code within the same development framework allows compatibility with various vendors, tools, and legacy code.
- **Enhanced Debugging** – Model based tools provide graphical debugging facilities in addition to standard embedded systems debugging tools.
- **Reuse** – The model based technique lends itself to reusing components. Successfully reused a majority of the software components for the 6 DOF integration tests that were originally built for the granite table tests.
- **Wide Applicability** – Approximately 85% of the software we have developed is automatically generated. Low level software more suited to hand coding. Didn’t try to force it.
Summary

- NASA Ames has been implementing an infrastructure for small spacecraft software development based on Automatic Code Generation techniques.
- Demonstrating this approach on two testbeds.
- Automatic Code Generation seems both feasible and desirable.
- Continuing to refine approach and look at tools/process trades.