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Problem statement:

The ADAPT testbed offers a platform to confront a number of challenges to health management applications. For instance, it can be used to test various Data Mining algorithms.  Some of the challenges posed by this system that must be taken into account when designing diagnosis algorithms include: 
· Hybrid system behavior with multiple system configurations made possible by switching among the electrical power system generation, storage, and distribution units as shown in Figure 1.

· Timing considerations and transient behavior. For instance, there is a time lag between power input to the inverter and power output. For some loads, there is a large current transient when the device is turned on. 
· The system voltages and currents depend on the loads attached, and noise in the sensor data becomes more pronounced as more loads are added.
 Due to the low probabilities of failure, seeding/inserting faults is needed. Through an antagonist function [1], it is possible to inject multiple faults into the testbed in all three possible units-power generation, power storage and poser distribution. Here is another fault list to consider:

· Abrupt (a.k.a offset, hard); includes off-scale high/low, bias, short, open circuit

· Static (a.k.a. stuck, frozen, dead, hold)

· Incipient (a.k.a. drift, out of calibration)

· Excessive noise (a.k.a. variance degradation, precision loss)

· Spikes

· Intermittent 

· Discrete (configuration faults such as relays failing open, inverters failing off, etc.)
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Figure 1Test components and interconnections

Scope of study:
In order to monitor the health of the electrical power system, sensor signals will be analyzed to detect the presence of faults. In general, the existence of faults induces different types of attributes in the resulting system response. In complex systems, due to additional system/experimental uncertainties, detecting the warning transients from defective components often turns out to be more complicated than anticipated. The scope of the current research will be restricted to the demonstration of the use of two data mining algorithms as diagnostics tools to detect unusual patterns due to a specific fault injection and to locate the source of these warning signals using sensor ID’s corresponding to each component.
Experimental setup:
Figure 1 depicts ADAPT’s major system components and their interconnections. Two power generation sources are connected to three sets of batteries, which in turn supply two load banks. Each load bank has provisions for 6 AC loads and 2 DC loads.  
Power Generation:

The two prime sources of power generation include two battery chargers which are connected to appropriate wall outlets through relays. The two power generation sources can be interchangeably connected to the three batteries. Hardware relay logic prevents connecting one charge source to more than one battery at the same time, and from connecting one charging circuit to another charging circuit. 

Power Storage:  

Three sets of batteries are used to store energy for operation of the loads. Each “battery” consists of two 12-volt sealed lead acid batteries connected in series to produce a 24-volt output. Two of the battery sets are rated at 100 amp-hrs and the third set is rated at 50 amp-hrs. The batteries and the main circuit breakers are placed in a ventilated cabinet that is physically separate from the equipment racks; however, the switches for connecting the batteries to the upstream chargers or downstream loads are located in the equipment racks. 

Power Distribution:

Electromechanical relays are used to route the power from the sources to the batteries and from the batteries to the AC and DC loads. All relays are the normally-open type. An inverter converts the 24-volt DC battery input to a 120-volt rms AC output. Circuit breakers are located at various points in the distribution network to prevent overcurrents from causing unintended damage to the system components.

Machine learning algorithms for diagnostics:

Diagnosis is the detection, analysis, and classification of any form of faults from measured data. Prognosis is the prediction of the onset of a fault. The most popular approaches to diagnosis and prognosis can be broadly categorized into physics-based models, rule-based models and data driven models, also known as the machine learning approach. Data driven approaches basically rely on the use of historical datasets to educate the model with a learning process on the system behavior. The adopted approach can be supervised or unsupervised in nature. The learning process decides the nature and the outcome of these algorithms. Further details of these methods can be obtained in reference [3]. 

In the present research, Orca and Support Vector Machines (SVMs) have been used as a pattern recognition tool to analyze the sensor signals obtained from the ADAPT testbed. A brief summary of these pattern recognition techniques has been documented in the following sections. 

A. ORCA

Orca, a nearest-neighbor based approach, was first introduced by Bay et al. [4]. The fundamental idea is to define a point as anomalous by virtue of the fact that its nearest neighbors in feature space are far away from it. A popular method of identifying outliers is to define a distance-based metric to compare each point with every other point by examining the distance to an example that represents the nearest neighbors. In this approach, one looks at the local neighborhood of points for an example typically defined by the k nearest examples (also known as neighbors). If the neighboring points are relatively close, then the example is considered normal; if the neighboring points are far away, then the example is considered unusual. The advantages of distance-based outliers are that no explicit distribution needs to be defined to determine unusualness, and that it can be applied to any feature space for which we can define a distance measure. Orca uses a novel pruning rule to obtain near-linear-time performance, allowing it to scale to very large datasets. Further details of the pruning rule can be obtained in the following reference [4]. This method works for both discrete and continuous data streams.

B. One Class Support Vector Machines
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Figure 2 Geometric representation of optimal hyperlane construction for two-dimensional case.
One class SVM belongs to a unique group of the SVM family where the input vectors (used for training) belong to one-class, i.e., the class representative of normal or nominal system behavior.  The algorithm returns a decision function f(x) that evaluates for every new data point (x) to determine which side of the hyperplane it falls on in high dimensional feature space. Figure 2 represents the schematic overview of the one-class SVM and its parameters to construct the optimal hyperplane for nonseparable patterns in two dimensional feature space. For training data, the decision function takes the value of 
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 elsewhere. This algorithm was first proposed by Schölkopf et al. [5] for estimating the support vectors of a high dimensional distribution.

The major difference between a One-Class SVMs Classifier with other conventional classifiers lies mostly in how the classifier has been trained. A One-Class SVMs Classifier is only trained by the reference set of dataset. The separating hyperplane between two classes is constructed solely based on the training dataset. Since (N-1) dimensional hyperplane can exist in the N-dimensional feature space, the primary task is to find the optimal separating plane in order to maximize the margin between the origin and the hyperplane. Further details of this optimization subroutine can be obtained in the following reference [5]. Another important consideration would be to adjust the kernel width and the upper bound on the fraction of the training error such that for a given training dataset the separating hyperplane minimizes the misclassifications such as target data rejection and acceptance of outliers. One of the key features of the One-Class SVMs Classifier is that majority of the training data points would lay on one-side of the optimal hyperplane and any test point would be evaluated to find on which side of the constructed hyperplane it falls into.

Data description:

For fault quantification, experiments were conducted to obtain the response of electrical power system with a total of 122 different sensing channels. The collected data comprises different state variables: voltage, current, temperature, relay positions, circuit breaker positions, light intensity and alternating current frequency at the inverter output terminal.
The investigated faults are abrupt or incipient in nature, injected at an arbitrary instance in time. However, it is assumed that a single fault type has been inserted to represent each fault scenario. The nominal dataset, used for training, is of 3000 sample points and each of the test data for various fault scenarios is of 242 sample points in length. The acquired data has been sampled at 2 Hz.

Results and Discussions
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In this section we discuss the performance of Orca and One-Class SVM’s at detecting the outliers. 
Orca provides metrics, termed scores, to quantify the outliers. One of them is the overall score that quantifies how anomalous the system behavior is, considering all the channels (sensor outputs) altogether. Table 1 represents the top 5 outliers identified based on the average overall score. Figure (3) and figure (4) represent the top 5 outliers for the fault scenario 1 for training and test samples respectively (refer to Table 1). The overall score of the system under scenario 1 has been shown in figure(5) and the individual scores of corresponding top 5 outliers has been shown in figure(6). From table 1, it can be seen that Orca is able to correctly identify and assign the faulty channels in the top 2 outlier list for all the fault scenarios. However, for all the test cases, the top most outlier is component LT505 which measures the light intensity. 

	Injected fault scenarios
	

	
	Compo-nent ID
	State variable
	Location in EPS
	Mean score (individual)
	Comments

	Scenario-1

FaultType = abrupt

FaultMode = offscale low

FaultLocation = E142

FaultInjection = software
	LT505
	Light intensity 

(box 2)
	Power Distribution Unit
	1.9851e4


	

	
	E142
	Voltage
	Power Storage
	0.1353 e4
	

	
	TE510
	Temperature (goose neck light)
	Power Distribution Unit
	   0.0254 e4

        
	

	
	TE511
	Temperature (LGT4)
	Power Distribution Unit
	0.0119 e4
	

	
	FT525
	Pump flow rate (PMP 2)
	Power Distribution Unit
	0.0065 e4
	

	Scenario-2

FaultType = abrupt

FaultMode = offscale high

FaultLocation = E161

FaultInjection = software
	LT505
	light intensity

 (box 2)
	Power Distribution Unit
	1.5719  e4
	

	
	E161
	Voltage
	Power Storage
	0.3377 e4
	

	
	TE511
	Temperature (LGT4)
	Power Distribution Unit
	0.0893 e4
	

	
	TE501
	Temperature

 (lamp box 1: S2)
	Power Distribution Unit
	0.0211 e4
	

	
	TE502
	Temperature

 (lamp box 1: S3)
	Power Distribution Unit
	0.0138 e4
	

	Scenario-3

FaultType = incipient

FaultMode = negative drift

FaultLocation = E167

FaultInjection = software
	LT505 
	light intensity

 (box 2)    
	Power Distribution Unit
	1.4637 e4
	

	
	E167
	Voltage
	Power Storage
	0.1952 e4
	

	
	TE511
	Temperature (LGT4)
	Power Distribution Unit
	0.0098 e4
	

	
	TE502
	Temperature 

(lamp box 1: S3)
	Power Distribution Unit
	0.0055 e4
	

	
	TE510
	Temperature (goose neck light)
	Power Distribution Unit
	0.0053 e4
	

	Scenario-4

FaultType = abrupt

FaultMode = offscale low

FaultLocation = IT140

FaultInjection = software
	LT505
	Light intensity 

(box 2)
	Power Distribution Unit
	1.3012 e4

	

	
	IT140
	Current
	Power Storage
	0.0604 e4
	

	
	TE502
	Temperature (lamp box 1: S3)
	Power Distribution Unit
	0.0086 e4
	

	
	TE501
	Temperature (lamp box 1: S2)
	Power Distribution Unit
	0.0083 e4
	

	
	ST515
	Fan speed

 (FAN 1)
	Power Distribution Unit
	0.0075 e4
	

	Scenario-5

FaultType = abrupt

FaultMode = flow blocked

FaultLocation = PMP2
FaultInjection = manual
	LT505   
	light intensity (box 2)   
	Power Distribution Unit
	1.2053 e4    
	

	
	FT525
	Pump flow rate (PMP 2)
	Power Distribution Unit
	0.6353 e4
	

	
	TE501
	Temperature (lamp box 1: S2)
	Power Distribution Unit
	0.0148 e4
	

	
	TE502
	Temperature (lamp box 1: S3)
	Power Distribution Unit
	0.0131 e4
	

	
	TE500
	Temperature (lamp box 1: S1)
	Power Distribution Unit
	0.0116 e4
	


 Comparison of figure (5) and figure (6) shows a clear mismatch between the responses of LT505 from training to test case for fault scenario 1. The real reason of such behavior (of LT505) was not clear in the beginning but feedbacks from domain experts suggested that light sensor (LT505) was known to be faulty in several occasions. For the current experiments, even though LT505 does not belong to the active load bank, under nominal situation the logged data shows some unexpected behavior and that was the probable reason to identify all the test cases as anomalous.
In the second phase of the analysis, the outcome of the one Class SVMs algorithm has been investigated. In the training phase the optimal hyperplane is constructed in the embedding feature space, using the nominal data set. After that, individual fault scenarios are tested. Firstly, the training has been done using the response from 122 channels and the algorithm infers all test cases as 100% anomalous over the time. This indicates that the system behavior is abnormal through out the time axis and this has been seen true for all fault scenarios. However if SVMs are trained with the nominal data for channel y and the corresponding yth channel for any test scenarios is quantified, the algorithm reveals some important information regarding the presence of the outliers. Figure (7) shows the response of LT505 that has been quantified as anomalous throughout the time axis. Figure (8) represents the detected outliers due to the injection of the fault in channel E142. Both outcomes are very consistent with that predicted by Orca. Both the algorithms identify the presence of a consistent fault (LT505) in the response, apart from the injected faults (E142). Moreover both the algorithms show significant sensitivities to the occurrence of such faults.
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Future tasks:

At present, the ADAPT lab has the capability to incorporate a diagnosis tool along with the existing hardware setup in order to do an online health monitoring of the electrical power system. IMS [6] is currently being installed along with Hyde and TEAMS and serves as the only data driven technique for the health management of the ADAPT setup. The future task will be to incorporate Orca and SVMs as parallel diagnostic schemes with the ADAPT system. In return, the outcome of these multiple algorithms will help to make decisions with more confidence regarding the presence or the occurrence of different faults.         
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Figure 3 Training patterns (top 5 anomalies)





Figure 4 Test patterns (top 5 anomalies)





Figure 5 Oversll score for injected scenarios-1 (refer: ORCA outcome table)





Figure 6 Individual scores of top 5 outliers for fault scenarios-1 (refer: ORCA outcome table)





Figure 7 Outliers detected for channel LT505 (SVMs outcome)





Figure 8 Outliers detected for channel E142 (SVMs outcome)








Table 1 ORCA outcome (top 5 outliers)
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