Modularity, Reuse and Hierarchy: Measuring
Complexity by Measuring Structure and
Organization

Gregory S. Hornby

University of California Santa Crdz
NASA Ames Research Center, Mail Stop 269-3
Moffett Field, CA 94035-1000
hornby@email.arc.nasa.gov

Abstract

To develop better complexity measures, a reasonable approach is to basertithose
principles of design that designers use. Modularity, reuse and higréfdR&H) have
been identified by engineers as useful principles for designing comypdéarss, and these
characteristics can be seen in Nature. Here we develop metrics forfdd&t&d, and then
use them to develop several metricsstiucture and organizatiarFurther, we propose to
evaluate complexity measures both empirically and on a set of abstract cbjesttuction
examples. After applying these tests to a handful of previously definexgbleaity mea-
sures, as well as ones we define here, we find that only two of our nesgsass both sets
of tests.

Key words: design, evolutionary algorithm, evolutionary design, complexity, structure,
organization

1 Introduction

Over the years various methods have been proposed for measioe complex-
ity of an object, such as Algorithmic Information Content (Al[1-3], Logical
Depth [4], and Sophistication [5]. These metrics vary in hotuitively they mea-
sure complexity, with definite cases in which they are caumtiitive. For ex-
ample, consider two strings (or computer programs) of elqungjth, with the first
consisting of a random sequence of symbols and the secomtyHaerarchies of
regularities. The AIC of the first string will be higher thdretsecond whereas we
are intuitively inclined to think of the second string as emopmplex. In addition,
it is not always clear that what is being measured is a meéripgoperty of an
object. Of interest is the development of a better methodkeasuring complexity

Preprint submitted to Complexity 22 August 2007

that produces results that are more intuitive and is a meaguneaningful design
characteristics.

One approach to developing better complexity measures tak the view that

there are fundamental principles of scalable design artdtieacomplexity of an

object is well correlated with the degree to which it has ¢hedsaracteristics. Con-
tinuing along this line of thought, then to develop bettemptexity measures we
should look to design-related disciplines to see which attaristics have been
identified as necessary for scalable design. In engineamagsoftware develop-
ment sophisticated artifacts are achieved by exploitiegtimciples of modularity,

reuse, and hierarchy (MR&H) [6—8], and these charactesistam also be seen in
the artifacts of the natural world. Assuming that the pihes of MR&H are neces-

sary to achieve scalability, then a meaningful and intaiget of complexity metrics
would be based on measures of MR&H.

Here we define measures of MR&H, as well as several variatibm®mbining
them into a single metric adtructure and organizatioand compare them against
existing measures of complexity. To define metrics of MR&H iway that gen-
eralizes across different design domains, we need an abstadel of an object
that can be analyzed. While the field of Complexity has a tralidif working with
string-based programs that produce strings, here we uph gtaictures since they
are a more powerful data structure than are strings. An bbgtbe encoded by a
graph-structuredesign progranwhich, when executed or compiled out, produces
a tree-structuredssembly procedurer the object. It is on an object’s design pro-
gram and assembly procedure that we define our metrics.

To demonstrate the usefulness of using MR&H to measure coatyleve pro-
pose two types of tests for evaluating a complexity measodeagply them to our
measures as well as to a handful of existing ones. First, ity measures can
be compared by using an automated design system to creatalzEnof designs
for various sizes of a scalable design problem. When apptigde best designs
of each “size” of the problem, we expect a good complexity sneato produce
monotonically increasing values as the problem size scgleSecond, complexity
measures can be compared on abstract examples to deterhetigewor not they
have certain properties. We suggest three such propendiedom designs should
score low; combining an object with itself should producenatt a small increase
in complexity; and an object built from joining two sub-obig should not be much
more complex than either. After applying these tests to ffferdnt complexity
measures we find that only two of our measures of structure@sgahization pass
both sets of tests.

The rest of this paper is organized as follows. First, we dles©ur model of de-
sign representations (in Section 2), since this is needdeftoe the metrics operate
on them. Then we present our measures of Modularity, Reusédamdrchy (in
Section 3), followed by several methods for combining thesasures into a com-

posite measure of structure and organization (in Sectipar) then describe the
other measures of complexity we compare against (in Seb)iddext we describe
our experimental setup for evaluating the different meason different sizes of a
design problem (in Section 6) and present the results ofyapgpthis empirical test
to the different complexity measures (in Section 7). We thepose three prop-
erties which a complexity measure should have and use tlassasond test with
which we evaluate complexity measures (in Section 8). Basdti@results from
evaluating the different complexity measures on our twtste® conclude that the
best measures are two of our measures of structure and pagiani Finally we
close with a discussion (in Section 9) and a summary of thikyio Section 10).

2 Design Encodings are Programs

Before defining the various complexity measures, it is woetbodibing the paradigm
under which these measurements are taken. To define mdtackesign or artifact
in a way that generalizes across various types of domainsakeemeasurements
on the data structures that encode these artifacts ratwertdke measurements of
actual fabricated artifacts. These data structures cahdagght of as a forest of
tree-structured design-construction operators, in weath tree describes the as-
sembly of some parts, or sub-assemblies, into a larger eeeHigure 1(a)). Since
this data-structure defines how the artifact is “built,” wansider it adesign pro-
gramfor building it. Just as computer programs have proceduts aad iterative
loops, so too can design programs have analogous constfwetsadd links to the
trees to represent the jumps in control-flow of these proeedalls and iterative
loops, this results in this forest of trees becoming onedlairger-connected graph
comprising of multiple sub-graphs for each sub-assembly,sab-sub-graphs for
the sub-sub-assemblies, and so on (see Figure 1(b)). Corgiwith the “a design
encoding is really a design program” metaphor, these gsapitiured design pro-
grams can be executed to produce a tree of design-constragerators, called an
assembly procedure

Viewing an object as a graph differs significantly from whatcommonly done
in the field of Complexity, which is to examine both the objeatidhe program
which generates the object as strings, which are typichéyinput and output of a
Turing Machine. Reducing an object and its generating pradoestrings removes
the connections which describe couplings and structurataisgo severely limits
what can be measured. For example, if a procedure in a desigmnam is called
from multiple locations this can be represented in a grapbdiyg links from the
calling nodes to the head of the procedure, whereas in gdtrere is no way to
encode this. Similarly, if an assembly in a design has thubeassemblies attached
to it, a graph-structured representation can encode thasnasle with three nodes
attached to it, whereas with a string-based representtitiennformation cannot
be encoded without using labeled nodes with special meaning

(@) (b)

Fig. 1. A graphical rendition of a design program in which differenp&sarepresent differ-
ent types of operators: (a) the tree structured procedures in theaprp(p) the tree-struc-
tured procedures in the program with the links added to show procedils@nd the extent
of iterative loops.

This paradigm of considering a design as consisting of tpegts — design pro-
gram, assembly procedure and the resulting design — is addirktension of
the traditional paradigm for investigating ideas in CompiieXxisting complexity
measures commonly measure the complexity of a string of sigrily measuring
attributes of the minimal, or near minimal, program thateyates it. This two part
paradigm of a program and the string it generates correspontti the first two
parts (design program and assembly procedure) of the medelidbed here. The
third part is added by using the string of symbols as a linssembly procedure in
which the symbols are used as operators for “constructirtgsagn, much like the
design-construction system described in Section 6.2.

3 Measuring Modularity, Reuse and Hierarchy

The method for measuring MR&H comes out of what is meant byethiesns.
Modularityis defined as an encapsulated group of elements that can lyguaded
as a unityeuseis a repetition or similarity in a design, aherarchyis the number
of layers of encapsulated modules in the structure of a desig

Each of MR&H aids the scalability of evolutionary design gyss in different
ways. For larger and more sophisticated artifacts, beihg tabthierarchically cre-
ate levels of nested modules is needed to break things down soe module is
too large and sophisticated to evolve on its own. This is@y@ls to Simon’s para-
ble of two watchmakers, which illustrated how the abilitynierarchically create
and manipulate modules greatly improves the rate at whicterswucturally so-
phisticated artifacts can be built [9]. Being able to reusagiemodules is helpful
in two ways. First, a module that is useful in one part of theigle may be useful
somewhere else, so creating modules is a way of scaling gie tait of variation.
Second, reuse of a parameter, assembly or function is a wegptéiring design
dependencies into a single location in the design progranekty enabling design-

ers (or search algorithms) to more easily make coordinatadges in the design
[10,11]. We now define our measures of MR&H.

Modularity: The modularity value of a design is a count of the number rofcst
tural modules in it, which we define as an encapsulated grogtements in the
design program that can be manipulated as a unit. Since kttegrocedure can
be manipulated as a unit, each procedure in the design pnogwants as one to-
ward the encoded modularity value. In addition, the abtlitghange the iteration
counter means that the group of encoded elements insiderative block also
constitutes a module, hence each iterative block is one feadihe program. As
well as counting modules in the design program (which welldhefor modules
in the program) we can also count the number of occurrencesodiules in the
design itself M. In this case each procedure call counts as one toward tigndes
modularity value and each iteration of an iterative blocéisadne to the modularity
value of the design.

Reuse: is a measure of the average number of times elements of gigndpro-
gram are used to create the resulting design. Here we maaseegypes of reuse.
The first, overall reuseR,, is calculated by dividing the number of symbols in an
object’s assembly procedure by the number of symbols in ésggd program that
generates it. Second, reuse of build symbBls,is the average number of times
a design constructing operator — as opposed to an operatbista conditional,
iterative statement or procedure call — is used. Third,e@fisnodulesR,,, is the
average number of times modules are reused in the designsasalculated by

dividing M; by M,.

Hierarchy: The hierarchy of a design is a measure of the number of né&steds
of modules, such as through iteration or abstraction. Ageencoding with no
modules has a hierarchy of zero. Each nested module, whethercessful call to
a labeled procedure or a non-empty iterative block, in@e#se hierarchy value by
one. This is similar to measuring the depth of an object'smédy sequence [12],
but whereas there the measure is of basic steps in constyuanti object, here we
are measuring steps of nested modules.

As defined, these measures of MR&H apply to any programmingulage, and
are thus comparable on the same systems as existing cotgpieeasures, such as
AIC, Logical Depth and Sophistication. These measures canta generalized to
any representation with a hierarchical graph structureh sis the set of parts used
to describe a complex assembly in a CAD/CAM package, and artgraythat can
be described as a hierarchical graph structure, such aslaregpression, context-
free grammar or unrestricted grammar. For example, thelaegupression(0 +
10)*((11)* + 001)* can be though of as a design program consisting of 19 symbols
with the module$), 10, 11, 001, 0+ 10, and(11)* 4 001. Similarly, the modularity,
reuse and hierarchy scores of strings in this language @®uhdeasured. The string
1010100011111001 is in this language and consists of three occurrences of lmodu

10 and three occurrences of module)* + 001, one of which is two occurrences
of module11 and the other two are occurrences of modufé. It has a design
modularity,M;, of 10, an hierarchyH, of 2 and its reuse scores are Rnof 0.84,
anR, of 2.0 and arR,,, of 1.67.

In the rest of this paper we u3drH to refer to the metrics for modularity, reuse
and hierarchy and MR&H to refer to the characteristics of nhadly, reuse and
hierarchy. Next, in Section 4 we discuss how to combine timesasures oVRH
into a single measure, which we call a measurstafcture and organizatian

4 A Single Metric for Structure and Organization

Each of the proposed metrics of modularity, reuse and ladbyameasure different
aspects of the structure and organization of an object. ©fast is combining the
scores of these three metrics into a measure of structur@rgagization with a
single value.

One method for combining the three score®BH into a single value is by treating
each of them as the orthogonal axes of a 3D system and thanthsitength of the
vector from the origin as the measure of structure and ozg#ion of an object.

SOy = /M2 + R2 + H* (1)
SOy = /M2 + R2, + H? 2

A problem with this approach is that the different metricepa their range, and

a small change in hierarchy will generally have little impan the overall struc-

ture and organization measure of an object since hierarshglly has the smallest
value.

Another method for combining the thr&&RH scores is to multiply them together.

SO3 =M, x R, x H 3)
SO, =M, x R, x H (4)

This approach has the desirable property that a changé&fin any one of the
IVRH values will result in the sam& % change in the overall measure of structure
and organization.

Of concern with the above approaches to measuring struahderganization is
that they do not take into account the size of the object osibe of the program
that generates it. For example, a large object with a smetgmage of its informa-
tion organized into some structure can out score a much enwddject which has a

small, maximally-organized, design program. Two ways tomadize structure and
organization scores for size are to divide by the size of tjead and to divide by
the size of the design program (which is the amount of infdionan the object).

M, x R, x H

505 = DesignSize ®)
506 = A%e?i;%;s;f ©)
SO7 = W (7)
SO, = M, ><A};ig x H ®)

5 Other Complexity Metrics

To demonstrate that theRH metrics of structure and organization are meaning-
ful we evaluate them, and a handful of other complexity mession two types
of tests. Measures that were selected are those that ateelglistraightforward
to compute or approximate and which we thought had a reakoohbnce at be-
ing relevant. Examples of measures we left out are: Aritier@omplexity [13],
Cognitive Complexity [14], Dimension of Attractor [15], Easé Decomposition
[16], Logical Complexity [13], Mutual Information [17], Nuber of Inequivalent
Descriptions, Number of States in a Finite Automata [18]mi\ber of Variables,
and Thermodynamic Depth [19]. All of these measures, asagathany others, are
reviewed in [16]. In addition we also add some additional soees of to serve as
a kind of control variables. We now review the different cdexty metrics which
we evaluate.

Algorithmic Information Content (AIC) is one of most well known and influ-
ential complexity metrics, having been used as a startingt for many others,
and was invented separately by Chaitin [1], Kolmogorov [2[] &olomonoff [3].
The AIC of a given string is the length, in number of symbofshe shortest pro-
gram that produces that string. Other complexity measueegaay similar, such as
counting the number of lines of code in a computer prograr [Aére we measure
AIC as the number of symbols in the design program.

Design Size (DS) is a measure of the size of what is encoded by the des@n pr
gram, and here we measure this by counting the number of dgritbthe assem-
bly procedure. This contrasts with AIC, which counts the nandd symbols in the
program that generates the assembly procedure.

Logical Depth is a measure of the value of information and, for a given gtiins
the minimum running time of a near-incompressible prograat produces it [4].

This can also be considered computational complexity, &t ithis a measure of
the amount of computational time that is spent to computasisembly procedure.
In our experiments we calculate Logical Depth as the numbeymbols that are
processed in generating the assembly procedure from tignda®gram.

Sophistication is a measure of the structure of a string by counting the numwibe
control symbols in the program used to generate it [5]. In trying tasuge the
structure of a string, the goal for this measure is similath® goal of theVRH
metrics. Here we calculate the sophistication of a designdunting the number
of control symbols — that is, procedure symbols, loop sysyahd conditionals —
in the program that is used to generate it.

Number of Build Symbols, whereas Sophistication is a measure of structure by
counting the number of control symbols, we propose a couméasure which is a
count of the number of non-control symbols in the programithased to generate
the assembly procedure. In our system, these non-contrdd@lg are the operators
that are used by the design-constructing interpreter anchithembuild symbols,
since they are used to generate a design.

Grammar Size: any string that has a pattern can be expressed as beingaggher
by a grammar. Simple strings with simple patterns generallye a simple gram-
matr, thus the size of the grammar needed to produce a stmngssas a measure of
complexity [16]. The representation used here can be thafgts a kind of gram-
mar, with different procedures being different grammaesullhus to calculate the
grammar size of an assembly procedure we use the desigraprdbat produces
it as the grammar and count the number of production rules in i

Connectivity: more complex systems have greater inter-connectednés®edre

components, thus the connectivity of a system can be usedas@exity measure
[16]. For a graph-structure, its connectivity is the maximaoumber of edges that
can be removed before it is split into two non-connected lggapo calculate the
connectivity of a design we use the connectivity of the degigbgram (in graph

form) that is used to generate it.

Number of Branches: related to the previous measure of complexity, we propose
another measure of the structure of a graph: a count of nuaflmerdes which are
branch nodes (nodes which have two or more children). Stivage a very simple
structure with no branching nodes, whereas a fully balahoeary tree will have
roughlylg(n) branch nodes. We apply this measure to the assembly prazedur

Height: is the maximum number of edges that can be traversed in dmngthe
root of the tree to a leaf node. Unlike other complexity nostrivhich are based on
strings, this measure is for trees. This measure of contplexrelated to work in
formal language theory in which ideas for measuring easemwifehension are to
measure the depth of postponed symbols [20] or depth anthgestlled Syntactic
Depth [21]. We apply this measure to the assembly procedure.

6 Experimental Setup for the Empirical Test

The first test on which we evaluate complexity measures isfargcally test them
on different “sizes” of a class of designs. For this test we ais an evolutionary
algorithm [22,23] to evolve designs for different sizes afesign problem and then
apply the different measures to the best evolved desigrsabf €ze. This test uses
the assumption that as we scale up a design problem, a margfex’ design is
needed to produce good designs for it. Consequently, fotabis good complexity
measure is one whose values grow monotonically with theeas® in design size.
We now describe the test problem and the evolutionary desygtem, GENRE,
used for these experiments.

6.1 Test Problem

For the empirical test, the design problem we use is that @fiywing a three di-
mensional table out of cubes. A table is evaluated by firstrdghing whether or
not it will fall over, which is done by testing whether or ntg center of mass falls
within its footprint. Tables which are found to fall over ag&ren a fitness score
of zero, and tables which are found to stand up are furthduated using a func-
tion of their height, surface structure, stability and thienber of excess cubes used
[24,11]. Height is the number of cubes above the ground.asarstructure is the
number of cubes at the maximum height. Stability is a fumotibthe volume of the
table, and is calculated by summing the area at each laybeaéble. Maximizing
height, surface structure and stability typically resuitgable designs that are solid
volumes, thus a measure of excess cubes is used to rewaghslésat use fewer
bricks,

Jheignt = the height of the highest cubg,, . 9)
fsurface = the number of cubes af,,.. (10)
}/'IYLCL{X)
fstability: Z fa'rea(y) (11)
y=0
farea(y) = area in the convex hull at height (12)
fezcess = NUMber of cubes not on the surface. (13)

To produce a single fitness score for a design these fiveiaraee combined to-
gether:

fitness= fheight X fsurface X fstability/femcess (14)

This problem can be scaled by varying the size of the grid unexperiments we
perform runs with sizes fror20 x 20 x 20 to 80 x 80 x 80.

6.2 Representation

To encode tables, the representation used by GENRE is a kipcbgfam which
specifies how to construct a table. This program consistéaéat of tree-structured
procedures in which each node in the tree is an operator, @er@iors can be pro-
cedure calls, control-flow operators, or design constonctiperators. Designs are
created by compiling a design program into an assembly duoeeof construction
operators and then executing this assembly procedure trajerthe artifact.

The following example of a design encoded with GENRE's regméstion consists
of two labeled procedure®r oc 0 andPr oc_1, each with two parameters, and
the initial call to the progran®Pr oc_0(4. 0, 2. 0) :

Proc0(4.0,2.0) :

Proc0(ng,nq) :

ng > 3.0 — rotate-z(1) [Prod(1.0,2.0) repeat(2) [forward(/2) [
repeat-end [Prad(ny+2.0,2.0) [forward(1) J 1[0 11111

true — rotate-z(1) [repeat(4) [rotate-y(1) [forward1.0) repeat-
end [rotate-x(1) 111101]

Proc_1(ng,nq) :

nog > 1.0 — forward(2) [Proc1(1.0p2,+1.0) [forward(1)] rotate-y(2) [
[] Proc.1(1.0p2,+1.0) [forward(1)]] Procl(ng-2.0y2,-1.0)
[end-proc]]

ng > 0.0 — rotate-y(1) [[] backward{;) [end-proc []]]

Graphical versions of this design program are shown in egdrand 2(a).

To generate the assembly procedure for this design prodriamxecuted, starting
with the statemenPr oc_0(4. 0, 2. 0) . This results in the following assembly
procedure:

rotate-z(1l) [rotate-z(1) [rotate-y(1l) [forward(3)
rotate-y(1l) [forward(3) rotate-y(1) [forward(3)
rotate-y(1) [forward(3) rotate-x(1) 1 1 11 [] 1]
forward(1l) [forward(1l) [forward(2) [rotate-y(1)

[[] backward(3) [forward(1l) []]] rotate-y(2)

[[] rotate-y(1) [[] backward(3) [forward(1l)

10

| |
Ai e §
‘S\ ¢0/ ‘

(©)

Fig. 2. This figure contains: (a) a graphical version of an example Wesigoding; (b) the
assembly procedure it produces; and (c) the resulting design.

[T 111 forward(2) [rotate-y(1) [[] backward(?2)
[forward(1l) []]] rotate-y(2) [[] rotate-y(1) |
[] backward(2) [forward(1l) []]]] forward(2) |
rotate-y(1) [[] backward(1l) [forward(1l) []] 1
rotate-y(2) [[] rotate-y(1l) [[] backward(l) |

forward(1) []] 1] forward(1) J 11 [T [1 1 I [11]

A table is constructed by starting with a single cube in areotise empty 3D grid
and then the assembly procedure is executed to add more tubes structure.
Cubes are added to this design with the operdtorsnar d() andbackwar d() .
The current state, consisting of location and orientatisnnaintained with the
addition of cubes resulting in a change in the current locatand there are three
operatorsy ot at e- [x| y| z] (), that change the current orientation in units of
90° about the appropriate axis. A branching in the assemblyegoha@ results in

a split in the construction process with construction gantig with each child
subtree working with its own copy of the construction state.

A graphical version of this design program is shown in Fig2fa), along with
the corresponding assembly tree of design-constructieradgrs, Figure 2(b), and
the resulting design, Figure 2(c). In the images of the aegigpgram and as-
sembly procedure, cubes represent labeled procedurebeandlts to them, pyra-
mids represent control-flow operators, and constructiceratprs are represented
by spheres.

This example design can be analyzed using the metriddRbf and the various
complexity measures. The program has six modules which sed a total of 17
times giving a modularity value of 6 for the encoding and a olarty value of
17 for the design. The size of the program is 30 symbols andit#eeof the final
assembly procedure is 38 symbols giving a reuse value of, &7 it has five
levels of nested modules which gives a hierarchy value ds%dores on the other
complexity measures are: an AIC of 30; a Design size of 38;@idab Depth of
124; a Sophistication of 21; 13 build symbols; a grammar sfZ& a connectivity
of 5; 8 branches; and a height of 10.

11

(b)

Fig. 3. Two of the best, and most structurally organized, of the evolvddsabhe first

(a) was evolved in thed x 20 x 20 design space and the second (b) was evolved in the

80 x 80 x 80 design space.
6.3 Evolutionary Algorithm

The EA used for these experiments is the Age-Layered Papnul&tructure (ALPS)
[25]. Unlike a traditional EA, ALPS maintains several layerf individuals of dif-
ferent age levels and continuously introduces new, ranggemerated individuals
into the first layer. It has been shown to work better than #moaical EA by better
avoiding premature convergence. The setup we use conkBidayers, each with
40 individuals. In each layer the best 2 individuals fromphevious generation are
copied to the current generation and then new individuascegated with a 40%
chance of mutation and 60% chance of recombination. Touenaselection with
a tournament size of 5 is used to select parents. In our erpats we run 15 trials
with each configuration and each trial is run for one milliealeations.

7 Resultsof the Empirical Test

To compare complexity anblRH metrics we performed a number of evolutionary
design runs on different sizes of a design problem. The dgsigblem and evolu-

tionary algorithm were described in the previous sectiod,far these experiments
we evolved tables for four different grid sizes. Since wauassthat as the design
space is increased in size more complex designs will be deageare looking for

complexity measures whose values scale up along with tbis@se.

Figure 3 contains images of two of the best and most struttuwayanized tables
that were evolved. The smaller table, Figure 3(a), was @ebin the20 x 20 x 20
design space and has a fithess of 582221 and the followingscAalC of 913;
Design Size of 8007; Logical Depth of 10311; Sophisticabb@9; 811 build sym-
bols; a Grammar Size of 13; a Connectivity of 34; 1595 branchéeight of 155.
Its MRH scores arel, is 34, M, is 431;R, is 8.8;R, is 9.9;R,, is 12.7 and it has
anH of 8. The larger table, Figure 3(b), was evolved in #ex 80 x 80 design
space and has a fitness of 600324286 and the following s@i@sf 630; Design
Size of 9753; Logical Depth of 14365; Sophistication of 929 Bhuild symbols; a

12

—

W e W R W D W o
¥ i | §
e
(b)

Fig. 4. A graphical rendition of the assembly procedures for constttie two tables in
Figure 3. The assembly procedure in (a) produces a table for the 20&2{®sign space
and the assembly procedure in (b) produces a table for the 80x80sRMhdpace.

Grammar Size of 11; a Connectivity of 58; 1668 branches; arelghhof 168. Its
MRH scores areM, is 20,V; is 2202;R, is 15.5;R; is 18.4;R,, is 110.1 and it has
anH of 9. While these scores give examples of the differencesctmahappen, a
better overall picture is gained from looking at the averagiees from a number
of evolutionary runs on different sizes of the design proble

Table 1 lists the average values over 15 trials of the differeeasures as applied
to the best tables evolved on different sizes of the desigblem Q0 x 20 x
20, 40 x 40 x 40, 60 x 60 x 60, and80 x 80 x 80). As expected, the averaged
best fitness monotonically increases along with an increaseze of the design
space. The measures which have values that also monotgrircaiease in step
with an increase in size of the design space are: Design Bmgcal Depth,M;,
R,., andH. Of these it is not surprising that Design Size increasel thig size of
the design space and, given that the Design Size increagealso not surprising
that Logical Depth (a measure of the running time of the mogthat creates the
assembly procedure) also increases with size of the degagresinterestingly, the
information in a design, AIC, does not grow monotonicallywsize of the design
space or Design Size. In addition, none of the other meaguoas monotonically
with the size of the design space except some oMRid measures: the amount of
modularity in the design\};), the reuse of module®(,) and hierarchyHj).

Of the three measures of reugg, R, andR,,, only modular reuseR,,) monotoni-
cally increases with the size of the design space and theditofethe best designs.
This suggests that the type of reuse that is useful is noafiveuse R,) or reuse

of build symbols R,), but the reuse of modules. By extension, this also suggests
that those design representations which do not have théyabihierarchically as-
semble and reuse modules (such as artificial genetic regyla¢tworks [26]) will

not scale well.

Of the two modularity measureb, monotonically increased along with the in-
crease in fitness and size of the design space whédeass higher in the(x

13

20° 40° 60° 80°
Fitness &«10°) | 0.56 18.1 123 440
AIC | 719 768 680 775
Design Size| 6769 9499 9739 9944
Logical Depth| 9541 13421 14376 18011
Sophistication] 79.9 70.53 74.0 85.4
Number of Build Symbolg 626 684 593 676
Grammar Size 13.5 13.2 12.5 135
Connectivity| 33.7 25.2 26.4 37.3
Number of Branch Nodes 1653 2087 1905 1825
Height| 118 145 276 220
Modularity) | 27.5 26.1 308 311
Mod. in Design ;) | 377 547 1133 1329
ReuseR,) | 12.1 14.0 16.6 15.7
Reuse of Build Symbol€R,) | 15.2 16.2 19.6 18.5
Reuse of ModulesR,;,) | 15.2 21.8 37.4 50.1
Hierarchy {) | 7.53 7.7 8.0 8.6

Table 1
A comparison of the resulting scores on the different metrics of the bdsstatolved with
the different representations. Results are the average over 15 trials.

20 x 20 space than in thé0 x 40 x 40 space. Sinc#/; is a product of the number of
modules in a design progranv)(and the amount of reuse of these modukes)(

it may be a more reliable measure of “complexity” becauss & product of two
separate aspects: modularity and modular reuse. This stsghat measuring mod-
ularity alone is not a good overall measure of the complexitgn object and that
combining the measures of all three characteristics of MR&td a single measure
may result in an even better measure of an object’s struatwterganization.

Table 2 contains the scores for the different measureswgtsiie and organization
(SO) on the best design programs evolved for different sizeh@fdesign prob-
lem. Of these eight measures of structure and organizattherS0O, and.SO5
increase monotonically along with the size of the desigresp&ince both of these
use overall reuse and not modular reuse this suggests tlthtlangeuse is more
important than overall reuse. The other six measures oftsireland organization
do increase monotonically and, of these six, the four measoir structure and or-
ganization which use modular reude,() seem to scale better than those that use
overall reuseR,).

14

200 400 60° 80

Fitness & 10°) 0.56 181 123 440
SOq: MR, H 31.3 311 371 37.1
SO3: MR,.H 340 36.0 516 64.4

SOs: Mx R, xH 2013 2872 3708 4019

SOq: Mx R, xH 2889 4324 8643 11207

S05: MRH 1931 031 038 040
S0s: MR.H 1940 046 089 113

SO7: MxR,xH/AIC | 3.22 468 6.75 6.77

SOg: MxR,xH/AIC | 459 6.87 154 19.3

Table 2
Different ways of combinindvVRH scores to produce a single measure of structure and
organization.

Overall, we conclude that the measures which pass the exaldest for this design
problem are AIC, Design Size, Logical Dept;, R,,, H, SO,, SO3, SOy, SOs,
SO+, andSOs. Certainly there are limitations with any empirical test -this par-
ticular one biases are introduced from such things as @nttron the maximum
size of our design program and on the particular design probwe chose. While
doing more empirical tests on different design problemagigifferent automated
design systems can improve the reliability of this testta@oapproach is to eval-
uate a complexity measure on an abstract object-consiruetiample.

8 Object Construction Test

One shortcoming with some measures of complexity, such @s ialthat they are
not very intuitive. We can examine how intuitive these measwf structure and
organization are by testing them on abstract object-cocstn examples. First,
consider the AIC of an algorithmically random bit string, Which is meant one
with no regularities. Since the string has no regularitiesannot be compressed,
so its AIC is the size of the string plus the overhead necgdsarthe pri nt
operator. Compare this to théRH and structure and organization values of this

15

string: its modularity value is 0, since it has no modulesréuse value is 1, since
there are no reused symbols, and its hierarchy value is € #iere is no modules
to be nested. Using these values, its various structure rgrashization valuesy0O,
...50g)are:1,1,0,0,0,0, 0, and 0. These values of 0 and 1 for thsunes of
IVRH and structure and organization match our intuition thatr@oan string does
not have a sophisticated structure.

We can also compare how the different complexity measurake sts we scale
the size of the random string. For AIC, Design Size and Lodiegith — the three
measures that passed the empirical test of Section 7 — thpdlice a complexity
value oflength(A) + k, for string A, wherek is the overhead for performing the
printing. These scores imply that longer random stringsnapee complex than
shorter ones. In contrast, tMHandSOmeasures all produce the same complexity
measure of 0 or 1 for any random string: more randomness imom complexity.

Next, consider what happens to the different complexity@alwhen an object,
A1, is joined to itself to form a new object,. In this case the design program
of the new objectA,, would be the same as for the original object, plus the mod-
ule, A, = A; + A;. As a result of this new module, the hierarchyAfwould be
H(A;) plus 1 and the modularity would bg,(A;) plus 1. Depending on the AIC
of A;, the amount of reuse will be up to a factor of 2 larger for the pbject since
Ra.(Ay) = DS(AX;?;?S‘”““, wherek is the size of adding the new module and
DS(A) is the Design Size afl. As a result of these changesM®H, the structure
and organization values &fO5 through SOg should be only slightly larger, but
those ofSO;(A,) andSO4(A,) will be roughly double that ofd,. Consider what
happens to other scores of complexity: AIC, Sophisticatimh Grammar Size in-
crease slightly but Logical Depth doubles. Singgis just two copies ofd4, it is
not clear that it should have twice the complexity4f thus we conclude that mea-
suresSO; throughSOyg scale intuitively, whereaSO;(A,), SO4(As) and Logical
Depth do not scale intuitively on this example.

Similarly, consider the case in which two completely diéfier objects A; and As,
with the same complexity andRH scores, are combined to form a new objett,

Ay = A; + As. In this case the new module results in the hierarchy of thve ne
object being one plus the hierarchy of either of its compomdijects:H(A,) =
H(A;) + 1 = H(A3) + 1. The modularity of this new object is equal to one plus
the sum of its to component object:A4) = M,(A4;) + M,(A3) + 1. Whereas both
modularity and hierarchy increase, this new object has seralightly less than
both of its component objects since the size of the desidgnd$0;) + DS(Os)

but the size of the design programAdC(0O,) + AIC(O3) plus some additional
symbols for specifyingd; = A; + As.! ThusSO; and SO, would be (roughly)

I To be precise, the design programs for bdthand A; have a starting rule, one of these
is kept and is changed to call the new rulg, = A; + A3, and the other starting rule is
deleted so the AIC ofi, is only a couple of symbols larger thatY C'(A;) + AIC(As3).

16

double in value forA, as they are ford; and As, but SO5 through SOg would
change little since both AIC and design size would also (rdggdouble in size.
Not only would AIC for A, be roughly double that of eithet; or A3, but so would
Logical Depth, Sophistication, and Grammar Size. Just agatng an object with
itself does not seem like it should lead to a doubling in caxiy, neither does it
seem that combining two completely different objects with same complexity
should lead to a doubling of complexity. Thus, as with theviaes example, we
find that the more intuitive measures of complexity &re; throughSOs.

To summarize the results of these three object-construettamples we can state
some desirable properties of a measure of complexity:

1: The complexity value of a random string should be small.

2: The complexity value of an object joined to itself shouddim more than slightly
larger than that of the original object.

3: The complexity value of two objects joined together sdawt be smaller than
the lesser value of the two original objects and should nanbeh larger than
the greater value of the two original objects.

Using these principles, and the results of the experimentSeiction 7, the best
measures of complexity a0z and.SOs.

9 Discussion

One issue that has not yet been addressed in this paper muhgtle design pro-
grams can generate the same object. A common method forihgrttls is to
take measurements on the shortest program that generaigsjéict, as is done for
AIC, or on a near minimal program, as is done for Logical Deptbth of these
approaches are valid and can be used for producing objedi#and structure
and organization measures of an object. At least for theatetnalysis this works
fine, but for actual real-world objects it becomes somewhablpmatic.

Given an object, along with the CAD/CAM files that make up itsigieshow does
one measure its complexity? It can be impractical to crésentinimal program,
so performing measurements on the design program that wedoged is not
only a pragmatic solution but it has other advantages. Dedigpically go through
multiple revisions regardless of whether they were produnanually or evolved
through a natural or artificial system, and the resultinggiegrogram captures part
of this revision process. Similarly, a design program canhoeight of as a point
in the design space with a neighborhood of designs that aeineith minimal
changes. Different design programs for the same objechailé a different neigh-
borhood of designs that are easily reachable. Measuringptinglexity of an object
by measuring the actual design program that was developéidhiay be useful in

17

capturing something about how it was designed or whereiit ke greater design
space.

Finally, for an automated design system to be able produsme with certain
types and levels of complexity it must have a representatagpable of encoding
such designs and a search algorithm that can take advarftttgerepresentation.
For example, for an automated design system to be able peathsigns with cer-
tain types and levels of complexity it must have a represemtaapable of encod-
ing such designs. In the empirical experiments, the reptasen we used is a kind
of computer program with combination, abstraction and mitow implemented
in a particular way. With a different representation one orenf MR&H, or some
other type of design characteristic, may not be possibléhitncase, on an empir-
ical comparison the measured amount of that charactewstidd be the same for
all designs so it would not fail the empirical test. Unfordiely, we cannot make
strong guarantees on the performance of the search algosithwe cannot ex-
pect the empirical test to be completely reliable, and héineaeed for evaluating
complexity measures on abstract object-constructionasaen

10 Conclusion

To develop better complexity measures, a reasonable agpi®éo base them on

those principles of design that designers use. Modulagtyse and hierarchy have
been identified by engineers as useful principles for desggoomplex systems,

and these characteristics can be seen in Nature. Here wibgdegeneasures for

each of MR&H, and also used these three measures to develo@abmeasures of

structure and organization.

To evaluate our proposed complexity measures we compagaudhainst existing
complexity measures on two different tests. Working wita ttypothesis that in
scaling the size of a design problem more complex solutioasexjuired to solve
it, we performed an empirical comparison of different coextly measures using
an evolutionary algorithm to evolve solutions to differsites of a design prob-
lem. Of the pre-existing complexity measures, only Desige &nd Logical Depth
produced values that monotonically increased with tharsgalf the problem. Of
the measures proposed in this paper, modularity in the d€bg, reuse of mod-
ules R,,) and hierarchyH) all scaled appropriately, as did most of our measures of
structure and organization. In addition, we proposed tdesgrable properties of
a complexity measure: random designs score low; combimngpgect with itself
should result in, at most, a small increase in complexitg;@mbining two objects
with the same complexity should result in the new object iiga complexity that
is, at most, a small increase in complexity of its two compaseWhile none of
the existing measures of complexity meet all three of thieiga, two measures of
structure and organization meet them as well as pass theieahpest. As a result,

18

we conclude that the best measures of complexity are the #asunes of structure
and organizatiotyOg andSOg. These two measures are the product of multiplying
the MR&H measures together, and then normalizing by eithadidig by AIC (for
SOg) or by dividing by the design size (fatOy).

The measures we have proposed in this paper are a first ategmphstructing
complexity measures based on principles of design. Futark in developing bet-
ter complexity measures may use different methods for memsWMR&H, com-
bine them in different ways, or use other design charatiesisRegardless of how
new complexity measures are developed, we advocate thaatbhevalidated both
empirically and on abstract object-construction scemsario

References

[1] G. J. Chaitin. On the length of programs for computing finite binary seces
Journal of the Association of Computing Machinet@:547-569, 1966.

[2] A. N. Kolmogorov. Three approaches to the quantitative definition fidrmation.
Problems of Information Transmissiolt1-17, 1965.

[3] R. J. Solomonoff. A formal theory of inductive inferenciformation and Contrql
7:1-22,224-254, 1964.

[4] C. H. Bennett. On the nature and origin of complexity in discrete, hommggn
locally-interacting systemdoundations of Physic46:585-592, 1986.

[5] M. Koppel. Complexity, depth and sophisticatio@omplex System4:1087-1091,
1987.

[6] C. C. Huang and A. Kusiak. Modularity in design of products andesys. IEEE
Transactions on Systems, Man, and Cybernetics, Pa2BAL):66—77, 1998.

[7] B. Meyer. Object-oriented Software ConstructioRrentice Hall, New York, 1988.

[8] K. Ulrich and K. Tung. Fundamentals of product modularityPimc. of ASME Winter
Annual Meeting Symposium on Designh and Manufacturing Integrapiages 73—79,
1991.

[9] H. A. Simon. The Sciences of the ArtificiaMIT Press, Cambridge, MA, 1969.

[10] G. S. Hornby.Generative Representations for Evolutionary Design AutomattrD
thesis, Michtom School of Computer Science, Brandeis University, WalthdA,
2003.

[11] G.S. Hornby. Functional scalability through generative repitasiems: the evolution
of table designsEnvironment and Planning B: Planning and Desi@d(4):569-587,
July 2004.

19

[12] M. Goldwasser, J.-C. Latombe, and R. Motwani. Complexity measoresstembly
sequences. IRroc. IEEE Intl. Conf. on Robotics and Automatigages 1581-1587,
Minneapolis, MN, April 1996.

[13] J.-Y. Girard. Proof Theory and Logical Complexjtyolume 1. Elsevier Science
Publishing Company, New York, NY, 1987.

[14] J. S. Kelly. Social choice and computational complexidpurnal of Mathematical
Economics17(1):1-8, February 1988.

[15] G. L. Baker and J. P. Gollub.Chaotic Dynamics: An Introduction Cambridge
University Press, Cambridge, UK, second edition, 1996.

[16] B. Edmunds. Syntactic Measures of Complexity?hD thesis, Dept. of Philosophy,
University of Manchester, 1999.

[17] C. C. H. Adami and N. J. Cerf. Complexity, computation, and measuremm
T. Toffoli, M. Biafore, and J. Leao, editor$roc. 4th Workshop on Physics and
Computationpages 7-11, Boston, MA, November 1996.

[18] B. R. Gaines. On the complexity of causual mod¢EEEE Transactions on Systems,
Man and Cybernetic$:56-59, 1976.

[19] S S. Lloyd and Pagels. Complexity as thermodymanic degthnals of Physicgs
188:186-213, 1988.

[20] V. H. Yngve. A model and an hypothesis for language structur@raceedings of the
American Philosophical Societgages 444—-466, 1960.

[21] B. K. Rosen. Syntactic complexitynformation and Contrql24:305-335, 1974.
[22] K. A. De Jong.Evolutionary Computation: A Unified ApproacMIT Press, 2006.

[23] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs
Springer-Verlag, Berlin, third edition, 2000.

[24] G. S. Hornby and J. B. Pollack. The advantages of generataramatical encodings
for physical design. '€ongress on Evolutionary Computatigpages 600-607. IEEE
Press, 2001.

[25] G. S. Hornby. ALPS: The age-layered population structuredducing the problem
of premature convergence. In M. Keijzer et al., editerpc. of the Genetic and
Evolutionary Computation Conference, GECCO-20p6ges 815-822, New York,
NY, 2006. ACM Press.

[26] S. Kumar and P. J. BentleyOn Growth, Form and ComputersElsevier Academic
Press, 2003.

20

