
Symbolic Execution and Model
Checking for Testing

Corina Păsăreanu & Willem Visser
Perot Systems/NASA Ames Research Center & SEVEN Networks

Thanks:
Saswat Anand (Georgia Institute of Technology)
Sarfraz Khurshid (University of Texas, Austin)

Radek Pelánek (Masaryk University)

Introduction

• (… still needs work)
• Framework for symbolic execution (JPF-SE)–

built around Java PathFinder
– Abstract subsumption checking for state matching
– Test input generation: container classes; NASA

software

JPF – SE

• Explicit state model checking can not handle
large/complex input data domains

• JPF – SE [TACAS’03, TACAS’07]:
– Framework built around Java PathFinder (JPF)

<javapathfinder.sourceforge.net>
– Symbolic execution of Java code
– Abstract subsumption checking for state matching

• No automated refinement
• User-provided abstractions

• Generate tests for systems that manipulate complex data
structures

• Applied to container classes; NASA software

Symbolic Execution

• King [Comm. ACM 1976]
• Analysis of programs with unspecified inputs

– Execute a program on symbolic inputs
• Symbolic states represent sets of concrete states
• For each path, build a path condition

– Condition on inputs – for the execution to follow that path
– Check path condition satisfiability – explore only feasible paths

• Symbolic state
– Symbolic values/expressions for variables
– Path condition
– Program counter

x = 1, y = 0

1 > 0 ? true

x = 1 + 0 = 1

y = 1 – 0 = 1

x = 1 – 1 = 0

0 > 1 ? false

int x, y;

if (x > y) {

 x = x + y;

 y = x – y;

 x = x – y;

 if (x > y)

 assert false;

}

Concrete Execution PathCode that swaps 2 integers

Example – Explicit Execution

[PC:true]x = X,y = Y

[PC:true] X > Y ?

[PC:X>Y]y = X+Y–Y = X

[PC:X>Y]x = X+Y–X = Y

[PC:X>Y]Y>X ?

int x, y;

if (x > y) {

 x = x + y;

 y = x – y;

 x = x – y;

 if (x > y)

 assert false;

}

Code that swaps 2 integers Symbolic Execution Tree

[PC:X≤Y]END [PC:X>Y]x= X+Y
false true

[PC:X>Y∧Y≤X]END [PC:X>Y∧Y>X]END
false true

path condition

Example – Symbolic Execution

False!

• JPF – SE handles
– Dynamically allocated data structures, arrays, preconditions
– Recursion, concurrency, etc.

• Lazy initialization for arrays and structures [TACAS’03]
• Java PathFinder (JPF) used

– To generate and explore the symbolic execution tree
• Implementation via instrumentation

– Programs instrumented to enable JPF to perform symbolic execution
– Decision procedures used to check satisfiability of path conditions

• Subsumption checking for (abstract) symbolic states

Generalized Symbolic Execution

Example

class Node {
int elem;
Node next;

Node swapNode() {
 if (next != null)
 if (elem > next.elem) {
 Node t = next;
 next = t.next;
 t.next = this;
 return t;
 }
 return this;
}

}

? null

E0 E1

E0

E0 E1 null

E0 E1 ?

E0 E1

E0 E1

Input list + Constraint Output list

E0 > E1

none

E0 <= E1

none

E0 > E1

E0 > E1

E0 > E1

E1 E0 ?

E1 E0

E1 E0

E1 E0 null

E0 E1

E0

? null

NullPointerException

program
 instrumentation

counterexample(s)/test suite
[heap+constraint+thread scheduling]

Implementation via Instrumentation

model
 checking

decision
 procedure

 instrumented
program

correctness
specification/

coverage
criterion

continue/
backtrack

path condition (data)
heap configuration
thread scheduling

state:

 original
program

OmegaLib,
CVCLite, STP,
Yices

Lazy Initialization (illustration)

E0
next

E1
next

t
null

t
E0

next
E1

next
?

next
E0

next
E1

t next E0 next E1

next

t

E0
next

E1
next

t

consider executing
next = t.next;

Precondition: acyclic list

E0 E1
next

t
null

next

t
E0 E1

next
?

next
next

State Matching: Subsumption Checking

• Performing symbolic execution on looping programs
– May result in an infinite execution tree

• Perform search with limited depth
• State matching – subsumption checking

[SPIN’06, J. STTT to appear]
– Obtained through DFS traversal of “rooted” heap configurations

• Roots are program variables pointing to the heap
– Unique labeling for “matched” nodes
– Check logical implication between numeric constraints

State Matching: Subsumption Checking

E1

E2

E3 E4

E1 > E2 ∧
E2 > E3 ∧
E2 ≤ E4 ∧
E1 > E4

E1

E2

E3 E4

Stored state:

New state:
⇒

Set of concrete
states represented

by stored state

Set of concrete
states represented

by new state

⊆⊆

E1 > E2 ∧
E2 > E3 ∧
E2 < E4 ∧
E1 > E4

1:

2:

4:3:

1:

2:

3: 4:

Normalized using existential quantifier elimination

Abstract Subsumption

• Symbolic execution with subsumption checking
– Not enough to ensure termination
– An infinite number of symbolic states

• Our solution
– Abstraction

• Store abstract versions of explored symbolic states
• Subsumption checking to determine if an abstract state is re-visited
• Decide if the search should continue or backtrack

– Enables analysis of under-approximation of program behavior
– Preserves errors to safety properties/ useful for testing

• Automated support for two abstractions:
– Shape abstraction for singly linked lists
– Shape abstraction for arrays
– Inspired by work on shape analysis (e.g. [TVLA])

• No refinement!

Abstractions for Lists and Arrays

• Shape abstraction for singly linked lists
– Summarize contiguous list elements not pointed to by

program variables into summary nodes
– Valuation of a summary node

• Union of valuations of summarized nodes
– Subsumption checking between abstracted states

• Same algorithm as subsumption checking for symbolic states
• Treat summary node as an “ordinary” node

• Abstraction for arrays
– Represent array as a singly linked list
– Abstraction similar to shape abstraction for linked lists

Abstraction for Lists

E1 = V0 ∧ (E2 = V1 ∨ E2 = V2) ∧ E3 = V3

PC: V0 ≤ v ∧ V1 ≤ v ∧ V2 ≤ v

V0
next V1

next

n

V2
nextthis V3

next V0
next { V1

n

, V2 }
nextthis V3

next

V0
next V1

next

n

V2
nextthis V0

next V1
next

n

V2
nextthis

⊆

Symbolic states Abstracted states

2: 3:1:

1: 2: 3:

PC: V0 ≤ v ∧ V1 ≤ v

PC: V0 ≤ v ∧ V1 ≤ v ∧ V2 ≤ v

E1 = V0 ∧ E2 = V1 ∧ E3 = V2

PC: V0 ≤ v ∧ V1 ≤ v

Unmatched!

Applications of JPF-SE

• Test input generation for Java classes:
– Black box, white box [ISSTA’04, ISSTA’06]

• Proving program correctness with
generation of loop invariants [SPIN’04]

• Error detection in concurrent software
• Test input generation for NASA flight

control software
• Other …

Testing Java Containers

• Containers
– Binary Tree, Fibonacci Heap, Binomial Heap, Tree Map – available with JPF distribution

• Explore method call sequences
– Match states between calls to avoid generation of redundant states
– Abstract matching but no refinement

• Test input – sequence of method calls
BinTree t = new BinTree(); t.add(1); t.add(2); t.remove(1);

• Compared
– Traditional Model Checking, Symmetry Reductions, Symbolic Execution
– Symbolic/Concrete Execution using Abstract Matching on the shape of the containers,
– Random Testing

• Testing coverage
– Statement, Predicate

• Results
– Symbolic execution worked better than explicit model checking
– Model checking with shape abstraction

• Good coverage with short sequences
• Shape abstraction provides an accurate representation of containers

– Random testing
• Requires longer sequences to achieve good coverage

Conclusion (II)

• Symbolic execution with subsumption checking
– Explores only feasible program behavior
– Handles heap structures and arrays

• Abstractions for lists and arrays
– Explore an under-approximation of feasible behavior
– Complementary to over-approximation based abstraction

• Future work:
– Investigate other shape abstractions
– Combine with predicate abstraction
– Automatic abstraction refinement
– Compositional analysis
– Combine Monte Carlo simulations and symbolic execution for system

level testing
• Future – hybrid approaches:

– Concrete/symbolic analysis, over-/under- approximations
– DART/CUTE, SYNERGY [FSE’06] …

More Information

• Predicate Abstraction with Underapproximation Refinement,
Corina S. Pasareanu, Radek Pelanek, Willem Visser,
in Logical Methods in Computer Science, Volume 3, Issue 1.

• JPF – SE: A Symbolic Execution Extension to Java PathFinder (tool
description),
Saswat Anand, Corina S. Pasareanu, Willem Visser,
in Proceedings of TACAS'07.

• Symbolic Execution with Abstraction,
Saswat Anand, Corina S. Pasareanu, Willem Visser,
in STTT 2007 (to appear).

• http://ase.arc.nasa.gov/people/pcorina/

JPF – SE

Generic Decision Procedure Interface

formula satisfiable/unsatisfiable

Omega
Maryland

JPF

CVCLite
Stanford

Yices
SRI

STP
Stanford

State Matching: Subsumption Checking

e1

e2

e3 e4

e5

e1 > e2 ∧
e2 > e3 ∧
e2 < e4 ∧
e5 ≥ e1

e1

e2

e3 e4

e5

e1 > e2 ∧
e2 > e3 ∧
e2 < e4 ∧
e5 > e1

Same shape

Stored state:

New state:
⇒ Matched

Set of concrete
states represented

by stored state

Set of concrete
states represented

by new state

⊆

Normalized using existential quantifier elimination

Subsumption Checking

e1:v1

e2:v4

e3:v3 e4:v5

e5:v2

e1 = V1 ∧ e2 = V4 ∧ e3 = V3 ∧
e4 = V5 ∧ e5 = V2

PC:
V1 < V2 ∧ V4 > V3 ∧ V4 < V1 ∧
V4 < V5 ∧ V7 < V2 ∧ V7 > V1

∃ V1,V2,V3,V4,V5,V7:
e1 = V1 ∧ e2 = V4 ∧ e3 = V3 ∧ e4 = V5 ∧ e5 = V2 ∧ PC

simplifies to
e1 > e2 ∧ e2 > e3 ∧ e2 < e4 ∧ e5 > e1

Existential Quantifier Elimination

Communication Methods

• JPF and the Interface code is in Java
– Decision procedures are not in Java, mainly C/C++ code

• Various different ways of communication
– Native: using JNI to call the code directly
– Pipe: start a process and pipe the formulas and results back and

forth
– Files: same as Pipe but now use files as communication method

• Optimizations:
– Some decision procedures support running in a incremental mode

where you do not have to send the whole formula at a time but just
what was added and/or removed.

– CVCLite, Yices

Decision Procedure Options

• +symbolic.dp=
– omega.file
– omega.pipe
– omega.native
– omega.native.inc

• …inc - with table optimization
– yices.native
– yices.native.inc
– yices.native.incsolve

• …incsolve - Table optimization and incremental solving
– cvcl.file
– cvcl.pipe
– cvcl.native
– cvcl.native.inc
– cvcl.native.incsolve
– stp.native

• If using File or Pipe one must also set
– Symbolic.<name>.exe to the executable binary for the DP

• For the rest one must set LD_LIBRARY_PATH to where the DP libraries are stored
– Extensions/symbolic/CSRC

• Currently everything works under Linux and only CVCLite under Windows
– Symbolic.cvclite.exe = cvclite.exe must be set with CVClite.exe in the Path

Results TCAS

0

5

10

15

20

25

30

35

TCAS (2694 quesries)

omega.pipe

omega.file

cvcl.pipe

cvcl.file

omega.native

omega.native.inc

cvcl.native

cvcl.native.inc

cvcl.native.incsolve

yices.native

yices.native.inc

yices.native.incsolve

stp.native

Results TreeMap

0

100

200

300

400

500

600

700

800

TreeMap size 6 (83592 queries)

omega.pipe

omega.file

cvcl.pipe

cvcl.file

omega.native

omega.native.inc

cvcl.native

cvcl.native.inc

cvcl.native.incsolve

yices.native

yices.native.inc

yices.native.incsolve

STP took > 1 hour

Applications

• Test input generation for NASA flight
control software: abort logic (400 LOC)
– Symbolic execution generated 150 test cases

in ~30 seconds
– Covered all flight rules/aborts in a few

seconds, discovered errors
– Random testing covers only a few flight

rules (no aborts)
– Manual test case generation took ~20 hours

