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Abstract

Design and performance results are presented for a
generic example as an application of optimal alarm sys-
tems, appealing to its interaction and reliance on data min-
ing and machine learning techniques. By using an optimal
alarm system, the fewest false alarms are elicited for a fixed
detection probability of a specifically defined level-crossing
event. The aim of this paper is to investigate the margin
to optimality and subsequent performance when introduc-
ing approximations for the design of an alarm system. The
optimal alarm system and its approximations use Kalman
filtering for univariate linear dynamic systems driven by
Gaussian noise, and provide a layer of predictive capabil-
ity. Other level-crossing based alarm systems are intro-
duced for comparison. These other methods also incor-
porate auxiliary fixed thresholds or redlines that provide a
similar layer of predictive capability, but have no provision
for minimizing false alarms.

1. Introduction & Background

This paper explores the development of a novel idea [12]
for anomaly detection that is derived from the collusion
of decades-old theory [3],[15] with more recent techniques
[17],[18]. The idea stems from the design of optimal alarm
systems which may enhance reliability and support health
management for aerospace applications when monitoring
control system error. When unexpected large transients in
the control system error occur, this may be indicative of an
impending fault or change in the system that may be cause
for further diagnostic investigation. This error can be com-
pared against a threshold whose selection is based upon the
physics of the system and the margin of safety required.
Even though the target application described above is spe-
cific to an aerospace platform, the technique has been well
motivated by other applications. These techniques include

the prediction of high water levels [17], an application of
thermal comfort as studied in [11], and potentially other en-
vironmental, science, or financial applications as appealed
to in [1].

The idea of an “optimal alarm system” as an anomaly
detection algorithm is derived from the prediction of level-
crossing events whose optimality lies in the fact that the
alarm system will elicit the fewest false alarms for a fixed
detection probability and a given prediction window. The
models currently under consideration are restricted to uni-
variate linear time invariant systems driven by Gaussian
noise, and hence the relationship to data mining lies in the
fact that these models are generated by standard machine
learning techniques. Rather thorough development of the
type of model used here can be found in [9]. This model
falls within the class of linear dynamic systems whose para-
meters are learned via the EM algorithm under certain con-
straints.

The practical applications of Kalman filtering for
aerospace have largely been relegated to state estimation for
guidance, navigation, and control purposes. Although the
study of auxiliary failure detection and bad data rejection
algorithms have been developed in concert with Kalman fil-
ters [8], [15], [19], the main purpose of those Kalman fil-
ters was for state estimation in guidance, navigation, and
control systems. Kalman filtering has seen limited prac-
tical application dedicated to system reliability and health
management as related to exceedance of predetermined fail-
ure thresholds in aerospace systems or more generally for
anomaly detection.

Furthermore, most anomaly detection algorithms that
have evolved from the data mining community use only a
single threshold for decision ordesignpurposes. Inherently,
design of an anomaly detection algorithm involves adjusting
the threshold in order to achieve an acceptable trade-off be-
tween true and false positives or a related performance met-
ric. These thresholds are not traditionally based on physical
limits, the physics of the system, the margin of safety re-



quired, determined from domain experts, experimental test-
ing, in flight tests, or using statistical models. The thresh-
olds which do characterize these predetermined limits are
considered to befailure-based. As such, we must make
a functional distinction between design-based and failure-
based thresholds for anomaly detection based on data min-
ing.

We propose the current optimal alarm system machin-
ery therefore as a means to make the distinction between
design-based and failure-based thresholds, in addition to
providing a layer of predictive capability. This is enabled by
the fact that the design based-thresholds incorporate both a
design parameter and the failure-based thresholds. This al-
lows for decoupling of the alarm system design using rele-
vant performance metrics from the critical event itself, pro-
viding for a measure of functional distinction.

In the case of using only a design-based single threshold,
it is necessary to observe examples of failures in order to
generate a metric such as the ROC curve empirically. Such
a metric is used for alarm system design, and will suffi-
ciently characterize the alarm system performance. Subject
to certain constraints, design of the optimal alarm system
can proceed without the need to observe actual examples
of failures, and there is no need to estimate the alarm sys-
tem metrics empirically. This obviates the need to rely upon
having actual available examples of failures for alarm sys-
tem design to generate the ROC curve. That is because they
are based on the model and design parameters. However,
the hypothesis-based level-crossing event must sufficiently
characterize an actual physical failure for the model-based
analysis to be of great benefit.

The novelty in the approach that we take with this in-
vestigation is that the Kalman filter machinery will be im-
plemented for the express purpose of system reliability and
health management, invoking more recently available data
mining and machine learning techniques [7], [13], to de-
velop suitable models. In addition, the Kalman filter ma-
chinery is more ubiquitously used for aerospace and other
applications as distinct from ARMA models. These ARMA
models were the original construct in which the practical
use of optimal alarm systems was introduced [18]. Using
Kalman filtering in tandem with optimal alarm theory will
also invoke the predictive and functional strengths of apply-
ing both design and failure thresholds.

2. Methodology

2.1. Data-Driven Modeling

We assume that the system under consideration is a stan-
dard linear dynamic system specified in discrete time by
Eqns. 1-2.

xk+1 = Axk + wk (1)

yk = Cxk + vk (2)

where

wk ∼ N (0,Q)
vk ∼ N (0, R)

Therefore the parameters to be learned are as specified
below, as the parameterθ.

θ = (µx,P0,A,C,Q, R) (3)

where

µx = E[x]
P0 = E[(x0 − µx)(x0 − µx)T ]

These parameters are also shown in Fig. 1, which spec-
ify them in relation to the probabilistic graphical modeling
paradigm to be used for machine learning purposes.

During the learning procedure for the linear dynamic
system, the EM algorithm is used to find the parameters
shown in Fig. 1. Details of this procedure are provided
in Zoubin and Hinton [5] as well as Digalakis et al. [4],
and it is implemented using Murphy’s BNT (Bayes’ Net
Toolbox) [14]. Throughout learning, we attempt to retain
the continuous-time analogue of Eqns. 1-2 in controllable
canonical structure shown in Eqns. 4-8.

ẋ(t) = Acx(t) + Bww(t) (4)

y(t) = Ccx(t) + v(t) (5)

where

w(t) ∼ N (0, Qc)
v(t) ∼ N (0, Rc)

Ac =
[

0 1
−ω2

n −2ζωn

]
(6)

Bw =
[

0
ω2

n

]
(7)

Cc =
[

1 0
]

(8)

This is performed in order to allow for a mapping to intu-
itive canonical parameters: the natural frequency,ωn, which
is clamped during training, and the damping ratio,ζ, whose
value is learned during training. Enforcing these constraints
is easily performed by their allowance in Murphy’s BNT



Figure 1. Linear Dynamic System

[14], and slight modification of the appropriate open-source
routines. Doing so introduces sub-optimality into the learn-
ing procedure, which means that the learning curve will not
necessarily increase monotonically. However, a reasonable
sub-optimal local minimum will be found that best repre-
sents the parameter space with enforcement of the control-
lable canonical form constraint.

Clearly this is an extravagant simplification of the data
generating process, however in doing so we allow for ar-
bitrary system dynamics to be represented in an intuitive
manner. Furthermore, at the very minimum an allowance
for the introduction of serially correlated dynamics is in-
troduced unlike other anomaly detection algorithms such as
IMS [6] and Orca [2], [16]. The advantage of using ma-
chine learning lies in the fact that only the observations of a
system,{yk}T

0 (transformed or raw) are required for deter-
mination ofθ. In this way the technique is truly data-driven
in nature.

2.2. Alarm Systems

The essence of the optimal alarm system is derived from
the use of the likelihood ratio resulting in the conditional in-
equality:P (Ck|y0, . . . , yk) ≥ Pb. This basically says “give
alarm when the conditional probability of the event,Ck, ex-
ceeds the levelPb.” Here, Pb represents some optimally
chosen border or threshold probability with respect to a rel-
evant alarm system metric. It is necessary to find the alarm
regions in order to design the alarm system. The event,Ck,
can be chosen arbitrarily, and is usually defined with respect
to a pre-specified critical threshold,L, as well as a predic-
tion window,d. In this paper, the event of interest is shown
in Eqn. 9, and represents at least one exceedance outside of
the threshold envelope specified by[−L, L] of the process
yk within the specified look-ahead prediction window,d.

Ck
4
= {|yk| > L}

⋃  d⋃
j=1

[
j−1⋂
i=0

|yk+i| < L, |yk+j | > L

]
(9)

There are three different alarm systems to compare
which will all attempt to predict the level-crossing event
defined by Eqn. 9, whose probability,P (Ck), can be com-
puted according to formulae presented in [12]. The details
are omitted here for the sake of brevity. The first alarm
system attempts to define an envelope,[−LA, LA], outside
of which an alarm will sound. In order to provide for a
layer of predictive capability,LA should be chosen such that
LA < L. An alarm probability can likewise be computed,
P (Ak) = P (|yk| > LA) and the details of this formula
are also provided in [12]. This “redline” alarm system is
termed as such in order to give credence to the fact that a
simple level is used, and often the same terminology is used
in practice. Even without the benefit of using any predicted
future process values, this alarm system would be superior
to a true redline system that uses only a single levelL. How-
ever, in this case two levels are used,L as the failure thresh-
old, andLA as the design threshold.

The second alarm system incorporates the use of pre-
dicted future process values, and is called the “predictive”
alarm system. This alarm system also defines an envelope,
[−LA, LA], outside of which an alarm will sound. Simi-
larly, LA should be chosen such thatLA < L in order to
provide for a layer of predictive capability. However, the
alarm probability is defined in a different fashion than the
for the redline method, asP (Ak) = P (|ŷk+d|k| > LA),
where the predicted future process valueŷk+d|k is found
from standard Kalman filter equations (omitted here for the
sake of brevity, but found in [12]).

Neither of the previous two alarm systems described are
optimal in the sense of minimizing false alarms. Even
though the predictive method is optimal in the sense of least
squares due to the use of the Kalman filter, it still does not
have any provisions for minimizing false alarms. The final
alarm system to be compared to the previous two is the op-
timal alarm system, and has two approximations, but only
the one presented as Eqn. 10 will be used for comparison in
this paper. The alarm condition,P (Ck|y0, . . . , yk) ≥ Pb,
can be approximated to form the alarm region specified in
Eqn. 10.



Ak =
d⋃

i=0

|ŷk+i|k| ≥ L +
√

Vk+i|kΦ−1(Pb) (10)

whereΦ−1(·) represents the inverse cumulative normal
standard distribution function, and

Vk+i|k = Var(yk+i|y0, . . . , yk) (11)

All of the three alarm systems described will be com-
pared using the ROC curve. This provides a performance
metric with which to assess and compare the performance
of each alarm system. The ROC curve parametrically dis-
plays the true positive rate against the false positive rate.
The parameters of interest areLA for the redline and pre-
dictive methods, andPb for the approximation to the opti-
mal alarm system. It is possible to generate formulae for
the true and false positive rates as a function of these pa-
rameters (LA, Pb) as well as the model parameters (θ) by
appealing to Eqns. 12-13. These details for constructing
these formulae are provided in [12].

True positive rate:

P (Ck|Ak) =
P (Ck, Ak)

P (Ak)
(12)

False positive rate:

P (Ak|C
′

k) =
P (C

′

k, Ak)
P (C ′

k)
(13)

3. Results

The example to be used for the presentation of our results
has no specific application, but is generic, and the model
parameters are provided in Eqns. 14-17.

A =
[

0 1
−0.9 1.8

]
(14)

C =
[

0.5 1
]

(15)

Q
4
=

[
0 0
0 1

]
(16)

R
4
= 0.08 (17)

For all cases, the thresholdL = 16, and the prediction
window, d = 5. The resulting ROC curve is shown in Fig.
2 for comparison, and qualitative realizations based upon
selecting the optimal design point is shown in Fig. 3. The
optimal design points for each method have been selected
based upon the same (minimax) criterion, indicated on the
ROC curve.

Figure 2. ROC Curve Comparison

4. Conclusion

Clearly, the optimal alarm system outperforms both the
redline and predictive methods. This can be ascertained ei-
ther from the ROC curve in Fig. 2, or by the realizations
provided in Fig. 3. In Fig. 2, the optimal alarm approxima-
tion is “above” both the predictive and redline curves. This
indicates that the true positive rate of the optimal alarm sys-
tem is higher for any given false positive rate of the redline
or predictive alarm systems. In Fig. 3, the “minimax” de-
sign criterion is used to select the design point from each re-
spective ROC curve. Recall that for the each alarm system,
the event of interest is to predict at least one exceedance out
of the envelope[−L,L] in the nextd steps.

The critical levels that comprise the envelope in addi-
tion to the monitored process are displayed along with the
alarm thresholds, false alarms, missed detections, correct
detections, and predicted future process values (where ap-
plicable) for each alarm system. For easy comparison, the
realization is identical for each alarm system. It is clear
that on the bottom graph representing the optimal alarm sys-
tem there are much fewer false alarms (identified by the red
crosses), and many more correct detections (identified by
black circles). For the other two graphs on top of Fig. 3,
many more false alarms appear due to predictions that are
sub-optimally based on a fixedLA rather than time-varying
optimal thresholds based onPb shown on the bottom.

Therefore, using either method of presenting the results,
Fig. 2, or Fig. 3, it is apparent that using the best approxi-
mation to the optimal alarm system will always outperform
the predictive method. In this case, the predictive method
actually performs worse than the redline method. In some
cases this may be true of the approximations to the optimal
alarm system, but this is dependent on the dynamics of the
system, and the fidelity of the approximation, both of which
may be investigated in future studies.



Figure 3. Qualitative Comparison of Realiza-
tions
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