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This paper presents a hybrid adaptive control method for improving the command-following performance
of a flight control system. The hybrid adaptive control methal is based on a neural network on-line parameter
estimation using an indirect adaptive control in conjunction with a direct adaptive control. The parameter
estimation revises a dynamic inversion control model to redce the tracking error. The direct adaptive control
then accounts for any residual tracking error by a rate command augmentation. The plant parameter esti-
mation is based on two approaches: 1) an indirect adaptive & derived from the Lyapunov direct method to
ensure that the tracking error is bounded, and 2) a recursivdeast-squares method that minimizes the modeling
error. Simulations show that the hybrid adaptive control can provide a significant improvement in the tracking
performance over a direct adaptive control method alone.

[. Introduction

While air travel remains the safest mode of transportaenidents do occur on rare occasions with catastrophic
consequences. For this reason, the Aviation Safety Prograter the Aeronautics Research Mission Directorate
(ARMD) at NASA has created the Integrated Resilient Airtadntrol (IRAC) research project to advance the state
of aircraft flight control and to provide on-board contraoiteence for ensuring safe flight in the presence of adverse
conditions such as faults, damage, and/or upsd@isese hazardous flight conditions can impose heavy demands o
aircraft flight control systems in their abilities to enahlgilot to stabilize and navigate an aircraft safely. Thelgoa
of the IRAC project is to arrive at a set of validated multaiidinary integrated aircraft control design tools and
techniques for enabling safe flight in the presence of agvessiditionst Aircraft stability and maneuverability in
off-nominal flight conditions are critical to aircraft suveability.

Adaptive flight control is identified as a technology that @aprove aircraft stability and maneuverability. Sta-
bility of adaptive control remains a major challenge thavents adaptive control from being implemented in high
assurance systems such as mission- or safety-critical flaficles. Understanding stability issues with adapte-c
trol, hence, will be important in order to advance adaptwetml technologies. Thus, one of the objectives of IRAC
adaptive control research is to develop metrics for agsgssability of adaptive flight control by extending the rebu
control concept of phase and gain margins to adaptive domrmther objective of the IRAC research is to advance
adaptive control technologies that can better managereomistimposed on an aircraft. These constraints are dittat
by limitations of actuator dynamics, aircraft structud limits, frequency bandwidth, system latency, and ather

The ability of an adaptive control system to modify a preiglesd flight control system is at the same time a
strength and a weakness. On the one hand, the premise ofdid@etp accommodate vehicle degradation is a major
selling point of adaptive control since traditional gaghsduled control methods are viewed to be less capable of
handling off-nominal flight conditions outside their dasigperating points. Nonetheless, gain-scheduled control
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approaches are robust to disturbances and secondary dymann the other hand, potential problems with adaptive
control exist with regards to high-gain learning and unniedéelynamics. Moreover, adaptive control algorithms can
also be sensitive to other effects such as actuator dynaexogenous disturbances, etc.

Over the past several years, various adaptive flight coteainiques have been investigate®l 1011 Adaptive
flight control provides a possibility for maintaining aiadt stability and performance by means of enabling a flight
control system to adapt to system uncertainties. Researatiaptive control has spanned several decades, but chal-
lenges in obtaining robustness in the presence of unmodegleaimics, parameter uncertainties, and disturbances as
well as the issues with verification and validation still &m® 3 Adaptive control laws may be divided into direct
and indirect approaches. Indirect adaptive control metteod based on identification of unknown plant parameters
and certainty-equivalence control schemes derived franptirameter estimates which are assumed to be their true
values!® Parameter identification techniques such as recursiveseasires and neural networks have been used in
indirect adaptive control methodsin contrast, direct adaptive control methods directly atjgontrol parameters
to account for system uncertainties without identifyindmiown plant parameters explicitly. In recent years, direct
model-reference adaptive control (MRAC) using neural oeks has been a topic of great research intere8ts? 11
In particular, Rysdyk and Calise described a method for argimg acceleration commands via a neural net direct
adaptive control law to improve handling qualittdohnson et al. introduced a pseudo-control hedging apprfoac
dealing with control input characteristics such as actusaturation, rate limit, and linear input dynamicklan et al.
studied a hierarchical neural net adaptive control usingsgary actuators such as engine propulsion to accommo-
date for failures of primary actuato?sHovakimyan et al. developed an output feedback adaptive@do address
issues with parametric uncertainty and unmodeled dynathi€ao et al. developed a#; adaptive control method
to address high-gain learnifg.

Direct MRAC based on the work by Rysdyk and Calibas been used by NASA to develop a neural net intelligent
flight control system (IFCS). The IFCS has been demonstratedn F-15 fighter aircraft! The intelligent flight
control uses the Calise’s direct MRAC, dynamic inversiontoal approach. The neural net direct adaption is designed
to provide consistent handling qualities without requgrextensive gain-scheduling or explicit system identifarat
This particular architecture uses both pre-trained antir@learning neural networks and a reference model to §peci
desired handling qualities. Pre-trained neural networksused to provide estimates of aerodynamic stability and
control characteristics. On-line learning neural netvgaake used to compensate for errors and adapt to changes in
aircraft dynamics. As a result, consistent handling ggslinay be achieved across different flight conditions. Riece
flight test results demonstrate the potential benefits gbtadacontrol technology in improving aircraft flight coatr
systems in the presence of adverse flight conditions dueltwefal® The flight test results also point out the needs
for further research to increase the understanding of @ffaess and limitations of the direct adaptive flight cohtr

While the neural net direct adaptive law has been researektedsively and has been used with successes in a
number of applications, the possibility of a high-gain ecohtlue to aggressive learning can be an issue. Aggressive
learning is characterized by setting a learning rate fdnitmg a neural network high enough so as to reduce the
dynamic inversion error rapidly. This can potentially ldach control augmentation command that may saturate the
control authority. A high-gain control may also excite urdeted dynamics of the plant that can adversely affect the
stability of the adaptive law. The issues with control sation and unmodeled dynamics have been addressed by
Johnson et al. and Hovakimyan et d* but not in the context of a high-gain control. Moreover, unali¢-nominal
flight conditions, the knowledge of plant dynamics of aniftmay become impaired and as a result this can present
a problem for a pilot to safely navigate the aircraft withiflight envelope that has been constrained by changes in
aircraft flight dynamics. For example, changes in stabditg control derivatives due to damage can potentially cause
a pilot to apply excessive or incorrect stick commands thatccworsen the aircraft handling qualities. Direct MRAC
approaches accommodate changes in plant dynamics irhphbait do not provide an explicit means for ascertaining
the knowledge of plant dynamics which can be used to impralaptve control strategies by revising the plant
model. Moreover, as additional side benefits, the improvexitedge of plant dynamics can potentially be used for
developing fault detection isolation (FDI) strategies anakrgency flight planning to provide guidance laws for safe
navigation.

Another drawback with adaptive control in general is thé&latrobustness in the presence of disturbances and
unmodeled dynamics. In the presence of hazards such as daméajlures, flight vehicles can exhibit numerous
coupled effects such as aerodynamics, vehicle dynamicgtstes, and propulsion. These coupled effects impose a
considerable amount of uncertainties on the performaneefliht control system. Thus, even though an adaptive
control may be stable in a nominal flight condition, it mayl fai maintain enough control margins in the presence
of these uncertainties. For example, conventional airdlight control systems incorporate aeroservoelasticrilte
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to prevent control signals from exciting wing flexible moddéfschanges in the aircraft configuration are significant
enough, frequencies of the flexible modes may be shiftedr¢mater the filters ineffective. This would allow control
signals to potentially excite flexible modes which can cgusdlems for a pilot to maintain good tracking control.
Another example is the use of slow actuators such as enginesndrol effectors. In off-nominal events, engines are
sometimes used to control aircraft. This has been shownablempilots to maintain control in some emergency situ-
ations such as the DHL incident involving an Airbus A300-B£2003 that suffered structural damage and hydraulic
loss over Baghda#’ and the Sioux City, lowa accident involving United AirlinEght 2321° The dissimilar actuator
rates can cause problems with adaptive control and cantaitgfead to pilot-induced oscillations (PIG).

Adaptive control methods are generally time-domain methdgrapunov direct method is a preferred technique
for deriving stable adaptive laws which are usually nordimélowever, robust control is usually done in the frequency
domain. Robust control requires a controller to be analyeing the phase and gain margin concepts in the frequency
domain. With this tool, an adaptive control can be analypexbsess its control margin sensitivity for different léagn
rates. This would then enable a suitable learning rate teberhined. By incorporating the knowledge of unmodeled
dynamics, a control margin can be evaluated to see if it icgerit to maintain stability of a flight control system in
the presence of potential hazards.

In this paper, we introduce a hybrid adaptive control metthad blends both direct and indirect adaptive control
to improve adaptive control strategits The idea is that in the current direct MRAC approach, the dyinanver-
sion controller is normally based on a fixed plant model. Tiserépancy between the plant model and the actual
aircraft plant dynamics, called modeling error, is profmoral to the tracking error dynamics. Most adaptive control
approaches are designed to cancel out the effect of the img@etor. In this method, the dynamic inversion controller
adapts to changes in plant dynamics by an indirect adaptivéiat performs an explicit parameter estimation of plant
model parameters. This results in a reduction of the mogeliror that directly leads to a reduced tracking error. Any
residual tracking error can then be handled by the curreattladaptive law using a smaller learning rate in order
to reduce the possibility of high-gain learning.. The pagtanestimation is computed using two approaches: 1) an
indirect adaptive law established by the Lyapunov directhoé to ensure that the tracking error is bounded, and 2)
a recursive least-squares optimal estimation that mirdmthe modeling error. Simulations for a damaged aircraft
show that the hybrid adaptive control with the recursivetesjuares indirect adaptive law can provide a significant
improvement in the tracking performance over a direct adajgbntrol method alone.

This paper also introduces a bounded linear stability aifpr analyzing stability and convergence of adaptive
control methods. Neural net adaptive control methods amergdly nonlinear. However, the bounded linear stability
analysis can be performed without linearizing the adapéiwes. The effect of high-gain learning for the direct MRAC
and hybrid adaptive control are examined. The analysis shiogveffect of learning rate on the original system gains.
Moreover, the analysis also shows high frequency osahattypically accompanied with the direct MRAC method
are not significantly present with the hybrid method withitheursive least-squares indirect adaptive law. The method
of bounded linear stability provides a means for assessimdjrrear adaptive control using widely available robust
control analysis tools or linear systems.

II. Hybrid Adaptive Control

In an event of damage, aircraft may experience significaahgbs in aerodynamics and mass properties. Asym-
metric damage can result in cross coupling between thetlagigil motion and lateral-direction motion. The non-
linear equations of motion for asymmetric damaged airdnaft been establishéd. To maintain stability, a rate-
command-altitude hold (RCAH) controller is designed usarnfgedback linearization approach with true aircraft dy-
namics described by a linear model about its trim point inghflenvelope

W= +0A0=Aw+AXx+Bd Q)

T T
wherew = [ p qr } is the aircraft angular rate; = [ a B ¢ or } is a trim state vector to maintain

-
trim condition, d = { % % o } is a control vector of aileron, elevator, and rudder deftextj A; € R™",

A € R™M andB € R™" are true plant matrices which are unknoway is the unknown aircraft dynamics due to
parametric uncertainties, amgf is the nominal aircraft dynamics described by

W = A, w+Asx+B'S @)
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whereA], A, andB* are the nominal plant matrices which are assumed to be knblaese matrices can generally be
assumed to be associated with an ideal, undamaged aircraft.

An architecture of the hybrid adaptive control method isrghn Fig. 1. This architecture uses a reference model
to specify desired handling qualities, a neural net indieglaptive law to perform parameter estimation of true plant
dynamics, a dynamic inversion controller to compute a adrglocation, and a neural net direct adaptive law to
compensate for any residual tracking error. The paramstenates of the true plant dynamics are used to update
the plant model used for computing the dynamic inversiortrodier. If the parameter estimation converges, then
the modeling error is expected to reduce, thereby causmtraicking error to decrease. Any residual amount of the
tracking error is then compensated for by the direct ada .

Adaptive Parameter

Estimation
@ 9
| PI Controller Model yinversion

w Wp,q, w = . w, o
Fe,l PGT  |Wm,~We, Kp o f | Aircraft 2

S+ Wp,q.r - 8
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/

Neural Net

—10

Fig. 1 - Hybrid Adaptive Flight Control Architecture

The dynamic inversion controller is computed from a plantigidhat is revised on-line by the indirect adaptive

law according to . . A
5=B"1(ay—Arw—Ax) ©)

wherecy is the desired acceleration, aAgd= Aj+AA1, Ay = A§+AA2, andB = B* + AB are estimated plant matrices.
Because the true plant dynamics is unknown, the dynamicsiovecontroller will generate a modeling error
£=0— Gy = (DAL — DA w— (AA — AAY) X+ (AB—AB) & 4)

whereAA; = A — A, M =Ar— 5, andAB = B — B* are the differences between the true and nominal plant
matrices. Thus, if\;, Ao, andB can be estimated accurately, the modeling error will be lstealding to less tracking
error.

The reference model filters a pilot commamidito a reference angular radg, via a first-order model

@ = AmGm + Bmr %)

whereAn € R™" is Hurwitz andBy, € R™",

A tracking error signatu. = wm — w is formed by comparing the reference angular rate with thesh@ngular
rate output. The inner loop is then closed with a proportiamizzgral (P1) controllee operated on the tracking error
signal as

t
ue:Kpa)e+Ki/() cdt ©6)

whereK, € R™" andK; € R"*" are diagonal positive-definite proportional and integaihgnatrices. The Pl con-
troller is designed to better handle errors detected fravatigular rate feedback. A windup protection is included to
limit the integrator at its current value when a control aoe is saturated.

Thus, the tracking error dynamics can be expressed as

é=—Ke+b(ug—¢) (7)
-
wheree = [ JoaedT @e | . Ugisthe direct adaptive control signal, akds R?™?" andb € R?™" are defined as

c[2e [
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The eigenvalues & are found to be as

2 3
A (K) = diag [%i (%—KJ ] 8)

To achieve good loop gains, the integral gain should be st that the real part of the minimum eigenvalue is

greatest. This requires
2

K > & 9)
‘=4

The system then has two complex poles in the open leftdailine.

Referring to Eq. (7), if the direct adaptive control sigonglor the parameter estimation from the indirect adaptive
law could perfectly cancel out the modeling ersrthen the tracking error would tend to zero asymptoticalty.
practice, there is always some residual modeling errorératfaptation, so asymptotic stability of the tracking error
is not guaranteed, but a weaker uniformly asymptotic stglmibuld be achieved by a proper design of the direct and
indirect adaptive laws.

A. Lyapunov-Based Indirect Adaptive Law

The cancellation of the modeling error is handled by the algt indirect and direct adaptive control signals. Let

Ug =Wy By (10)
DAL =W, Bo (11)
DA, =W By (12)
DB =W B (13)

whereWy, W,,, Wy, andWs are neural net weightgy, B, Bx, andBs are basis functions.
A modified single-layer sigma-pi neural network is used talelmonlinear plant parameters according to

.
Bo=[C1 C C: Ci Cs o |

whereCi, i =1,...,6, are inputs to the neural network consisting of control s@nds, sensor feedback, and bias
terms defined as
CG=pV?[1 a B o2 B? af |

czzpavsz[l a ;3}
cgzpavzéT[l a B}
G=w'[p qr]
Cssz[u v w}

Co=[16 ¢ o |

wherea, 3, 0, @, u, v, w, V, p,, or are angle of attack, sideslip angle, pitch angle, bank afgteard speed, lateral
speed, normal speed, absolute speed, atmospheric dansityngine throttle, respectively.

Specifically,C; models the aerodynamic moments due to the angle of attacksideslip,C, models the aero-
dynamic moments due to the angular rdig,models the aerodynamic moments due to the flight controbsarf
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deflectionsC4 models the inertial moments, afg andCs model the inertial moments due to the center-of-gravity
(CG) shift. The basis functionf3,, Bx, andfs can be any suitable subset@f such as

1 a B
Bw = PaV2 1 a B
1 a B
Bx = paV?
[36 = Bw

The tracking error dynamics can now be written as
eé=—Ke+bd'O+b(ug—Aw) (14)

whered” = | W, W W, |isaneural netweightmatrixwith € R"™*"and@’ = [ W' BS xB 5By }

is an input matrix with® € R2"M,
The neural net weightyy is computed by the direct adaptive law due to Rysdyk and €alith a learning rate
I > 0 and an e-modification paramefer> 04 according to

Wy = T (BdeTPb—l—u HeTPwad) (15)

where| .| is a Frobenius norm arfél € R2"2" solves the Lyapunov equation
K'P+PK=0Q (16)

for some positive-definite matri@.
Let Q = Ionx2n, then solving foP in the Lyapunov equation yields

p_1 l Ki HKp+ Ky H(Ki+1) Kt

0
2 Kt Kot (1 +K) ] -

The e-modification term provides robustness in the direaptide law!* The weight update law in Eq. (15)
provides uniform boundedness of the neural net weight amttdéicking error. The proof of this update law is provided
by Rysdyk and Calise.

The plant matriceAA;, AA,, andAB can be estimated using the Lyapunov direct method. The pearastima-
tion is given by the following normalized weight update law

A
i

whereA > 0 is a learning rate > 0 is an e-modification parameter, amd € R is a normalization factor defined as

b= (eeTPb+n HeTPbHcD) (17)

m=14+0"RO (18)

with R e R@*mx(2n+m) g 3 positive-semi-definite weight matrix. The normaliaathelps improve the adaptation
and prevent high-gain learning.

The indirect adaptive law (17) is a stable adaptive law wigizh be proved as follows:

Proof: Let Wy = W} +Wy and® = ®* + ®, where the asterisk denotes the ideal weight matrices antilde
denotes the weight deviations. The ideal weight matricesiaknown but they may be assumed constant and bounded
to stay within aAe-neighborhood, where

De— supHWd*TBd +oTo— Ac'uH
Bd

Consider the following Lyapunov candidate function
V = e Pettr (WJ M0y + &JTnF/\*lcb)
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where tr(.) is a matrix trace operator.
The time derivative of the Lyapunov candidate function ertlicomputed as

V < —e Qe 2¢7Pb (W By + 7O+ Ae) + 217~V e’ P

— Wy HeTPbH (Wi + W) — DT @e Pb— ' HeTPbH (@* +&>)}
)
)

Completing the square yields

tr [—\TvdTuHeTPbH (WJ-FWd)} = —HeprH (Hu% (V\éd* +Wd) HZ— ||“%;Nd*

2 | nior
2

[ -6"n [e"p| (0 3)] = - |o7pt| (H”% (% +5)
)
—2||e"Pb (Hn% (% +d>) HZ— H ”%Zq’*

e'Qe<p(Q) el
e PbAe < p (P) €]l || Qe
2

We then obtain

. W ~ 2 lW*
V< —eTQe+2eTPbAe—2HeTPbH (Hu% ( < +wd>H _ H“ZTd

2)
Sincel|b|| = 1, we establish that

2

1 1
Wy H2Wy
|eol[|| =] < (P el | <5
2 2
lor | lo |
7P| ‘” | <p® el |5

wherep (P) andp (P) are the spectral radii @ andP.
Thus, the hybrid adaptive law is uniformly asymptoticaligtse provided that

p(P) 2)
2p(Q)

We havee, ©/me £, butee % since

lef >

1.2 1,
(4||Ae||+Hu2Wd +[|n?e

[t <p(@ [Pt <V (©) -V (t—e)+20(P) [ el et
JO 0 JO

2
00 1 W* - 1 CD* ~
~200) [ el [Hu (i) # ot (5 +#)

This can be simplified as

2
dt < oo

2 *
1 ~
5
—|—Hl’] (2 —|—CD)
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2
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Thus, the value o¥ ast — o and the tracking errog are uniformly bounded. Furthermore Af =0, u = 0 and
n = 0, we establish by means of the LaSalle-Yoshizawa theorattith . ||€]| — 0 so that|Wg|| — 0 andHCDH -0
ast — oo. This means that the indirect adaptive law will result in a@gence of the estimatéd\;, AA,, andAB to
their steady state values if there is no neural network agpration error and the input signals are sufficiently rich to
excite all frequencies of interest in the plant dynamicss Eondition is known as a persistent excitation (PE)

We note that the effect of the e-modificatigpnandn parameters is to increase the negative time rate of change
of the Lyapunov candidate function so that as long as thetsfigf unmodeled dynamics and or disturbances do not
exceed the value of (0), the adaptive signals should remain bounded. The e-mailificthus makes the adaptive
law robust to unmodeled dynamit¢&However, this usually comes at a sacrifice in performancelabashown later.

O

B. Recursive Least-Squares Indirect Adaptive Law

A recursive least-squares (RLS) method can be used in li¢heafiormalized Lyapunov-based indirect adaptive law
(17) for identifying plant dynamics. The RLS method is anpde law based on the optimal estimation method that
uses the modeling error as the adaptive signal instead ofetbieing error as in the Lyapunov-based indirect adaptive
law. The plant matriceAAs, AA,, andAB can be estimated as

AA1 = W(];—Bw (19)
DA, =W By (20)
DB =W Bs (21)
with the following weight update law
o1 T T
CD_—ERO(O ®-27) (22)
R— - 1ROO'R (23)
m
whereg* _
& =0-Alw—Ax—B*d (24)

is the estimated modeling error for a fixed nominal plant nhedéch requires an estimated angular accelerafion

as an input. Generally, the angular acceleration may novaiaale rate gyro sensors, but can be estimated from a

Kalman filter, a differentiator, or a numerical filter via abitior B-spline method. In any case, the estimation of the

angular acceleration will introduce an error source. Iféh@r is unbiased, i.e., it can be characterized as a whiseno

about the mean value, then the RLS indirect adaptive law eapbplied to estimate the changes in the plant dynamics.
The tracking error dynamics for the RLS indirect adaptiwve tae expressed as

e— —Ke+ bud+b(q>Te—e*) (25)
The proof of the RLS indirect adaptive law is as follows:

Proof: To reduce the tracking error, the modeling error must be k@ptmum. The optimal estimation method
can be used to minimize the modeling error. Consider thevatig cost least-squares functional

J(CD):%/:%HGJT@—E*

To minimize the cost functional, we compute its gradienhweéspect tab and set it to zero, thus resulting in

0ag = /0t %e(ew—é”) dr=0

2
dr

This can be written as

/tiG)G)TquJ— /tieé”dr
= = Jo 2
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Let

tq
Rflz/ ~ 00'd
0 m2 T

Then

tq
R*lqnz/ = 087
0 m2 € T

Upon differentiation

R 1b+ %eefqa = %e@”

and solving ford, the RLS indirect adaptive law is obtained as

o= —$Re (ean— é*T)

Also, we note that _ _
RIR=1=RIR+RR=0

Solving forRyields

: 51 1 T
R=—-RR "R= —WRGO R
The RLS formula has a very similar form to the Kalman filter whEq. (23) is a differential Riccati equation for a
zero-order plant dynamics aiiis called a covariance matrix. In the RLS indirect adaptaw, R acts as an adaptive
learning rate with its own update law. With large enoljtthe ideal producﬂD*TO can be shown to converge to the
estimated modeling err@*'® so that

an*Te—é* <M

whereM > 0 is some small positive constant. Then, the time derivatitee weight variatiorb is equal to

I 1 ~
d=—-—ROO'D
me
The RLS indirect adaptive law can now be shown to be stableemdt in bounded signals. Consider the following
Lyapunov candidate function

V = e Pettr (v"vdTrfl\Tvd + c"DTRflcb)

The time rate of change of the Lyapunov candidate functi@omputed as
. - ~ - ~ ~ 1 - ~
V < —e"Qe+2e"Pb (W By + &0+ ) + 2t {—WJ [ HeTPbH (W +Vi) - —d7007d

where
Do — supHWd*Tﬁd ny H
Bd
We note that now the neural net direct adaptive law only néedancel out the residual recursive least-squares
error which should be small enough that the learning rats doehave to be set to a large value, thereby reducing the
effect of high-gain learning
Upon simplification, one obtains

2
1 -7 7=
— il <
2tr< >P OO0 <D> <0

Thus, the hybrid adaptive law with the recursive least-segiandirect adaptive law is stable provided that the
tracking error is bounded from below by
)

V< —eTqe-2e"mo] |u? (5 i)

P (P) lA|l
2p(Q)

- 1 *
infe] - (el + 2w
d
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[ll.  Bounded Linear Stability Analysis

A key challenge with neural net adaptive flight control is taka the learning algorithm sufficiently robust. Ro-
bustness relates to the stability and convergence of tmeitepalgorithm. Stability is a fundamental requirement of
any dynamical system that ensures a small disturbance wmtligrow to a large deviation from an equilibrium. For
systems with high assurance such as human-rated or misstmal flight vehicles, stability of adaptive systems fs o
paramount importance. Without guaranteed stability, addptive control algorithms cannot be certified for opera-
tion in high-assurance systems. Unfortunately, the staloif adaptive controllers in general and neural net adepti
controllers in particular remains unresolved. The notiba self-modifying flight control law using an artificial nealr
net learning process whose outputs may be deemed as nomiteséic is a major huddle to overcome.

Another criterion for robustness is the convergence of thea net learning algorithm. Neural networks are used
as universal nonlinear function approximators. In the c#she adaptive flight control, the networks approximate
the unknown modeling error that is used to adjust effegtitteé control gains to maintain a desired handling quality.
Convergence requires stability and a proper design of thighvepdate law. It is conceivable that even though a
learning algorithm is stable, the neural net weights maycoaterge to correct values. Thus, accurate convergence is
also important since this is directly related to the flighttrol performance.

The neural net weight update laws in Egs. (15), (17), and §22nonlinear due to the product terms involving
B4, €, ®, and®. Stability of nonlinear systems is usually analyzed by thaedunov method. However, the concept of
phase and gain margin for linear systems cannot be extendwuhtinear adaptive control. The linear control margin
concept can provide understanding stability margin of eidapontrol that enables more robust adaptive learning law
to be synthesized. This is only possible if the neural negiveupdate laws are linearized at a certain point in time
with the neural net weights held constant. As adaptatiom@ssehe neural net weights vary with time. Hence, the
time at which to freeze the neural net weights (for calcalgtmust correspond to a worst-case stability margin. This
can be a challenge. This paper introduces a method for anglgtability and convergence of nonlinear neural net
adaptive laws using error bound analysis, which enablesidnginant linear components of the nonlinear adaptive
laws to be extracted from Eqgs. (15), (17), and (22) withmgdirization of the adaptive laws at an instance in time.

A. Lyapunov-Based Direct Adaptive Law

For the direct adaptive law in Eq. (15), we note that it cani@essed as
d T TR,al T T AT
= (BIWa) = =T (B Bae™Po+ 1 |[e"Pb| BT Wa ) -+ A W (26)
We define an error bound on the neural net adaptive signal as
Dy, = SBUpr; Ba—u|[e"Po| Wi | (27)
d

Then, the time derivative of the variation in the neural riegat adaptive signal is bounded by

(W Ba) < T (coBJ Pe+ W Ba) + g, (28)

where
y= sngeTPbH (29)

andag > 0 is defined as a level of persistent excitation (PE) suchtieefollowing.£2-norm PE condition is satisfied

|sigd =2 [ B pudr < g (30)

for B € 4.

Thus, without sufficient persistent excitation and if thenedification parameten is not present, the neural net
weights will not necessarily converge. The persistenttaiion essentially means that inputs to the neural network
must be sufficiently rich in order to excite system dynamicsriable a convergence to take place.
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If the error bound is small, then the linear behavior of thégiveupdate law becomes dominant. Therefore, this
enables the stability and convergence to be analyzed irarlsense using the following equation

d —
ilwra 1= roere e ira 1] A @Y
dt | Wy By —Tagh'P —Tuy | | Wy By Ay,
LetA be the transition matrix. Wis negative definite, then the rate of convergence is estadaliby the eigenvalues
of A since

& |<en| e _pt| DBe (32)
Wd B Wd (O) B (O) i A\/N\/d
The equilibrium is therefore uniformly asymptotically sk and converges to
. e 1 [ Ae
limsup|| - =||A (33)
t—o0 By WdTBd | I AWd H
By Holder’s inequality, the convergence radius can be esgae as
. e -1 Ae
lim sup|| - <p(A (34)
t—oo By WJBd ( ) Awd |

Thus, Ae and Ay, should be kept as small as possible for the tracking errorthedeural net weight matrix
variation to converge as close to zero as possible.

In order to obtain a convergence, stability of the trackirrgieand neural net adaptive law must be established by
the negative-definiteness of the eigenvalues.ofhe characteristic equation of A is established by slet A), which
can be computed using the Schur complement

det(sl — A) = (s+ T py)det[sl +K+b(s+Tpy) "Fagb' P (35)
Upon expansion, the characteristic equation is obtained as
&+ KpS + Kis+ T [1ys + (UyKp + 0oP22) S+ UYK; + doPr2] =0 (36)
This equation represents the characteristic equatiorediffowing open-loop transfer function
H(s) = (s +K)'C(9) (37)
whereC (s) is the transfer function of the direct adaptive control

)+ HYKi + agPr2

S (38)

C(s) =T |uys+ (uyKp+ aoPs2

Thus, the direct adaptive control is a proportional-ingglerivative (PID) controller that adjusts the original
proportional and integral gain&, andkK;, as illustrated in Fig. 2.

.
C (s) Wa Pq (sI+K)™*

Fig. 2 - Adaptive Pl Gain

The roots of the characteristic equation are the closep-pmdes which can be examined by factorization with
residue. Consider the following cases:
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aoKp 1Pz gk tPr,
)

1. If g is small andu < min ( y v

>, then Eq. (36) can be factored as

(s+Ta) [+ (Kp+Tuy—Ta)s+Ki+TuyKp+TagPo—Ta(Kp+Fpy—ra)] +r=0 (39)
wherea and the residue are defined as
a= (Ki+ T uyKp+aoPs2) (LYK + aoPr2) (40)

r =T (UYKi+ aoP12) — Fa[Ki + T (UyKp + aoPe) —Ta(Kp+ Ty —Ta)] (41)
Consider two cases:

(a) For small”, which corresponds to slow adaptation, we see that

a~ fy+ aoK Py (42)
r~0 (43)
Neglecting second-order terms of The approximate roots of the characteristic equationtae found
to be
1 2 %
Kp—TaoK P Kp—TaoK, 1P
S~ _%ij Ki+ o (Pra— K tP1oKo) — (Ko Z Jit) (44)
s~ —T (uy+ aoK *P1p) (45)
From the complex-valued roots, the effect of the direct &dagontrol is to adjust the PI gains according
to
Kp = Kp— F oK 1Py, (46)
Ki = Ki + ' ao (Pa2— K *P1aKop) (47)
where the bar denotes the adaptive PI gains.
The convergence radius for slow adaptation is then equal to
oK, tPy)
lim sup ~$ | < (IJV+ oy 12) ‘ AW | (48)
t—oo By Wd Bd I Awd
Thus, slow adaptation results in a large convergence radfiael” is small.
(b) Forlargd™, which corresponds to fast adaptation or high-gain legrnire see that
M~ —P£21P12 (49)
r~-laKi—la(Ky+Tuy—rajj (50)

Sinceu is small anda is finitely small even though is large, then the residueis also finitely small
compared tswhich is large. The approximate roots of the characteréjication are obtained as

_pt Kp+ Ty — P3,P1)
Sz_Kp'i‘rlJy P22 P12 ( pt I HY—F,; 12) (51)

+]j {Ki +T [aoPoz+ py (Kp— Poy Pio) | —

2 4
s~ —Py,'Prs (52)
The adaptive Pl gains accordingto
Kp = Kp+T Uy —Psy'Pra (53)
Ki = Ki +T [a0P22 — py (Kp — Py *P1o)] (54)
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The convergence radius for high-gain learning is equal to

De
iy

The effect of high-learning can be discerned from the ada®il gains. Increasing learning causes both
the K, andK; gain to increase accordingly. The high gain will result in a high frequency oscillation
in the adaptive signdl. This high frequency oscillation can result in excitationupimodeled dynamics
that may be present in the system and therefore can lead tssébpity of instability since the effects of
unmodeled dynamics are not accounted in the Lyapunov dsaf/the neural net weight update law.

lim sup
t—oo
Bd

| < PPy

€ 55
- | (55)

aoKp P2 oK 1P
)

2. If pis sufficiently large and and >> max< > , then the characteristic equation can be reduced

y y
to
S+ KpS*+ Kis+ Ty (s*+Kps+Ki) =0 (56)
The roots are found to be )
Ko KBY?
s=—*] (K.—Z (57)
s=-Tuy (58)

The complex conjugate roots reveal that for a sufficientlgda., the effect of learning is zero because the PI
gains are reduced to their original value. Thus, increagirigeyond a certain value can negate the potential
benefits due to adaptive control. This can also be seen frermanhsfer functiol (s) wherep is the derivative
gain which tends to increase damping of the tracking erspaase.

The convergence radius for slow adaptation is equal to

. 1
lim sup|| . - < Be (59)
t=e N W By ruy Av"vd
The convergence radius for fast adaptation is equal to
. 1 Ae
lim supj| ~ - <K (60)
t—o0 By Wd Bd Aa\ﬂ/d

To illustrate the bounded linear stability analysis, a datian was performed for a damaged twin-engine generic
transport model (GTM§2 as shown in Fig. 3. A wing damage simulation was performetl 2% of the left wing
missing. The neural net direct adaptive control is implet@ério maintain tracking performance of the damaged
aircraft. A pitch doublet maneuver is commanded while tHiearad yaw rates are regulated.

Fig. 3 - Generic Transport Model
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Figure 4 illustrates the effect of learning rate without thenodification term, i.ey = 0. Without adaptation,
the performance of the flight control is very poor as signiftcavershoots occur. With adaptation, good tracking
performance can be obtained. As the learning rate incretsefracking error becomes smaller but high frequency
signals also appear. This is consistent with the bounde@iianalysis results which show that high-gain learning

leads to high-frequency adaptive signals.
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Fig. 4 - Pitch Rate Response with Direct Adaptive Lgw= 0)
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Fig. 5 - Neural Net Weight Learning with Direct Adaptive Lgw = 0)

Figure 5 is a plot of selected neural net weights for vari@asring rates. As can be seen, large learning rate
causes high frequency oscillations in the weights. The emance of the neural net weightg 4 andW,, 5, associated
with linear elementg| and & for the pitch rate are poor. Neither of these weights wouldalty converge to their
correct values. Thus, convergence accuracy is not denabedtr

Figure 6 illustrates the effect of the e-modification paremg. As u increases, the high-frequency amplitude
reduces but the tracking error becomes worse. Eventuailly, lerge enough value ofi, the learning essentially
ceases.

Figure 7 is the plot of selected neural net weights witi¥ 0. Thus, with increasing, the weights are driven to
zero, thereby reducing the learning of the neural netwokiis iE consistent with the linear analysis results whiclwsho
that a sufficient larger value does not improve the adaptation. However, the redeffectiveness of the adaptation
is traded with more tolerance to unmodeled dynamics duestetimodification scheme.
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Fig. 7 - Neural Net Weight Learning with Direct Adaptive Lawdyu # 0 (F = 103)

Figure 8 is the root locus plot of the open-loop transfer fiomcH (s) for u = 0. The root locus plot agrees with
the analysis by showing the higdy gain with increasing the learning rate.

Figure 9 is the root locus plot of the open-loop transfer fiomcH (s) for 1 = 10. The effect of high-gain learning
results in only a small change in thg andK; gains according to the analysis.

Root Locus

10 “

Imaginary Axis

| Increasing I

-15 -1 -0.5 0 0.5
Real Axis

Fig. 8 - Root Locus of Pitch Axis Pl Gain with Direct Adaptivaw (¢ = 0)
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Fig. 9 - Root Locus of Pitch Axis Pl Gain with Direct Adaptivaw (¢ = 10)

B. Lyapunov-Based Indirect Adaptive Law with Normalization

Without normalization, i.e.R = 0, the indirect adaptive law in Eq. (17) has a similar behaa®the direct adaptive
law in Eq. (15). High-gain learning will cause a high-frequg oscillation in the parameter estimation using the
Lyapunov-based indirect adaptive law. However, high-fiesecy oscillations can be reduced with normalization. For
convenience, leff = 0 andR € R, Eq. (17) is equivalent to

d /- az
— (') <-A b'Pe+ Ag 61
HGOE 11Ra, C10é (61)

wherea; > 0 is a level of PE due t®

t+T

HeTeH - % o’e<a (62)
t
The characteristic equation is obtained as
ax

det(sl —A) = 2+ Kp + Kis+ A——— (Pys+Pj2) =0 63
et( ) =8+ Kps™ +Kis+ 1JrRO,1(225+ 12) (63)

Expressing in terms of the open-loop transfer functiors thiequivalent to

- a P
H(s) = (52+Kps+Ki) A 10{ <P22+ %) (64)
The effect of adaptive control is to add a zero in the opertafts-plane
s=—P,'Ppp (65)

High-gain learning will cause the real-valued closed-Igmbe to cancel this open-loop zero. The remaining
complex conjugate poles are found by factorization withdes

:
S= —%Zzlplzij Ki +/\1+a|1Qalp22_ (KP_P4221P12)2 ? )
The adaptive Pl gains are B
Kp =Kp— Py, P12 (67)
l<_i:Ki+/\1+aI1?01P22 (68)
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If Ray > 1, then the adaptiv@i gain becomes

Thus, the normalization reduces the high-gain learning factor R, thereby attenuating high-frequency oscilla-
tions. The adaptiv&; gain is then independent of the PE condition. HoweRearan not be too much larger than the
learning rate\ because it will essentially result in the adapti€tegain to revert back to the origin& gain, thereby

reducing the effect of adaptation.

Figure 10 illustrates the effect of normalization on the iyaov-based indirect adaptive law. With no normaliza-
tion and high-gain Iearning/\ = 104), a high frequency oscillation appears in the pitch rateoasp. For a small
value ofR (R = 102), this high frequency oscillation is attenuated. HoweveR acreases, the tracking performance
progressive worsens. Whéh= A, the tracking performance is essentially the same as thiowut adaptation. This

— A
Ki~Ki+gP2

observation is in good agreement with the linear stabilitglgsis.
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Fig. 10 - Pitch Rate Response with Normalized Lyapunov-B#éséirect Adaptive Lavx(/\ = 104)

Figure 11 is the plot of selected neural net weights with redizaed indirect adaptive law. With a small value of
R, the oscillations in the weights are reduced, but furtherdases in the value & cause the weights to approach to

t, sec

zero, thereby reducing the effect of learning of the neueaiork.

t, sec

@W
o
N
o

Fig. 11 - Neural Net Weight Learning with Normalized LyapurBased Indirect Adaptive La\M\ = 104)

Figure 12 is the root locus plot of the open-loop transferctiom H (s) for R= 10 Its characteristic is quite
similar to non-normalized adaptive law, except that forshee learning rate, tH§ gain is not as large. The zero-
pole cancellation occurs at= '|T2’21P12 corresponding to the pitch rate.
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o
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Fig. 12 - Root Locus of Pitch Axis Pl Gain with Normalized Lyamwv-Based Indirect Adaptive LafR = 10%)

C. Hybrid Recursive Least-Squares Adaptive Law

The RLS indirect adaptive law is based on the optimal estonapproach rather than the Lyapunov method. The
squares of the modeling error are minimized in the RLS imdiaglaptive law. Using the bounded error analysis, Eq.
(22) is expressed as

d /- Ray
—(dTO)<——D'O+Az 70
dt( )— 1+ Ray 0 (70)
whereR s a learning rate and
. MRa;
N = oo ——— 71
® = SUP 1+Ra; (71)

whereM > 0 is a small constant equal to the convergence radids 60 to the modeling errog*.

The Lyapunov-based direct adaptive law and the normaligaginov-based indirect adaptive law are essentially
the same with the only difference in the learning rate. Timagationally, we can simply replacdeBd with ®7e.
Then, the hybrid RLS adaptive law witlhh= 0 is described by

d e —K b e Ne
— | = ~ + 72
@i | &70 | [ TP - || e || a 72
The characteristic equation is
_ , Ray Ray Ray B
det(sl — A) = s>+ Kps? + Kis+ L+ Ra1s2+ (1+ R, Pt raopzz) S+17 RalKl + raoP12:| =0  (73)

If Ray > 1, then the equation is approximately equal to
(s+1) (S + Kps+Ki) +Tag (PozS+ Pip) =0 (74)
Consider the following cases:

1. For smalll’, which corresponds to slow adaptation, the charactegsti@tion yields the following roots

Kp K3
~— Ki — 75
S~ 2 < i 2 (75)
s~ —1 (76)

The radius of convergence is equal to
e Ae
lim su 77
t—o0 p T@ Aa) H ( )
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An interesting observation is made concerning the radiw®ofergence. Comparing with Eq. (48), the radius
of convergence for the hybrid RLS adaptive law is indepehdgthe learning rate. So, for a small learning rate,
the radius of convergence for the Lyapunov-based diregitagalaw is large, but for the hybrid RLS adaptive
law, it is finitely small. Moreover, the error bounds are netessarily small for the Lyapunov-based direct
adaptive law if convergence accuracy is not achieved. Owttier hand, the RLS indirect adaptive law can be
shown to provide good convergence accuracy. Thereforeathies of convergence for the hybrid RLS adaptive
law is expected to be smaller for the same small learning Tt would mean that the Lyapunov-based direct
adaptive law does not have to be a high-gain controller.

2. For largd™, which corresponds to high-gain learning, the charadiegsjuation can be factored as

(s+Ta)[s*+ (Kp+1-Ta)s+Ki+Kp+TagPo—Ta(Kp+1-Ta)+r=0 (78)
where for largd
Fa=Py,'Pr, (79)
_ . 2 _
r =Ki — (Ki + Kp) Py Pra+ (P Pr2)” (Kp+1— Py,'Pr) (80)

For large learning rate, is finitely smaller thars, so the approximate roots are

1

_ _ 2y 2
Kp+1—PpPp . - _ Kp+1—PylPpo
s= -2 {Ki +Kp— P3p P12 (Kp+ 1~ Py'Pro) + MaoPoz — (5 i ) (81)
S= —P2721P12 (82)
The adaptive gains are _
Kp = Kp+1—Py,Pro (83)
Ki = Ki + Kp — PyytPri2 (Kp+1—Py,'Pr2) + T aoPe, (84)

On initial observation, we would see that high-gain leagnivould result in high-frequency oscillations as is

the case with the Lyapunov-based direct adaptive law. Hewéuthe convergence of the parameter estimation
is achieved with the RLS indirect adaptive law, the paramestimates then result in a dynamic inversion
controller that is better matched with the true plant dyr@nsio that the tracking error would be nearly zero.
Consequently, the resulting direct adaptive signal woelddry small so that even with high-gain learning, the
high adaptivek; gain would not inject high-frequency amplitude in the triagkerror.

Figure 13 illustrates the potential improvements due totterid RLS adaptive law. The learning rate for the
Lyapunov-based direct adaptive law is nomilﬁﬁlz 102). With just a small value oR, an improvement in track-
ing performance can be seen. As the valuRdafcreases, the tracking performance becomes more acandtte
pitch rate follows very closely to the reference model. Nghhirequency oscillation is observed with increasing the
value ofR, which is the learning rate for the RLS indirect adaptive.law

Figure 14 is the plot of the selected neural net weights vhithhtybrid RLS adaptive law. The weights exhibit a
nice convergence behavior. Increasing the value cduses the neural net weights to move closer to the truesrafue
the system parameters for which the adaptive control is emsgting. In contrast, the neural net weights in both the
Lyapunov-based direct and indirect adaptive laws do noteae to their true values as shown in Figs. 5, 7, and 11.
As a result, the tracking performance is not as accuratesdsytbrid RLS adaptive law.

Figure 15 is the root locus plot of the transfer function toe tiybrid RLS adaptive law. Increasing the learning
rate causes the adaptikg gain to increase to its asymptotic value in Eq. (83). Kheain increases with high-gain
Lyapunov-based direct adaptive law but with good convergeiccuracy as shown in Fig. 14, high-frequency contents
in the adaptive signals are expected to be well suppressethellearning rate increases, the real-valued closed-loop
pole moves towards the open-loop zero created by the Lyapbased direct adaptive law. The pole-zero cancellation
reduces the order of the system response to improve refereadel matching in the dynamic inversion controller.
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V. Conclusions

This paper has presented a hybrid adaptive control metladdtands both a direct adaptive law with an indirect
direct adaptive law to improve the performance of a dynamieiision flight controller. The indirect adaptive law is
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used to perform parameter estimation to enhance the agoof#re dynamic inversion controller so as to reduce the
tracking error. Two indirect adaptive laws are presentddiagunov-based method with normalization and a recursive
least-squares method.

Furthermore, this paper has presented a stability and cgemnee analysis of these adaptive control laws. An
error bound analysis has been introduced that enableg lily@mmics to be extracted from the nonlinear adaptive
control laws for stability and convergence analysis. Theatof the learning rate for both the existing direct adapti
law and proposed hybrid adaptive laws has been studied gUstorization method, closed-loop poles are analyzed
to demonstrate the effect of learning rate on the originatrmdler gains. Root locus plots of the closed-loop poles
are in agreement with the analytical results. With the @gstlirect adaptive law, high-gain learning results in an
increase in the integral gain, thereby causing high-fraquescillations in the adaptive signals. These high-fesupy
contents can excite unmodeled dynamics that can lead tofmitdestabilization of the direct adaptive law. The
e-modification parameter reduces the high-frequencylasoihs, but increasing this parameter further reduces the
effect of adaptation. The Lyapunov-based indirect adaptiw with normalization exhibit a similar characterist a
the e-modification parameter. With small normalizationdadcigh-frequency oscillations can be reduced, but firth
increasing the normalization causes the adaptation tosse=féective.

The hybrid recursive least-squares adaptive law exhibitsuah better convergence accuracy than Lyapunov-
based adaptive laws due to the fact that the recursive sepstres method minimizes the modeling error. In contrast,
the Lyapunov-based adaptive laws only address the bourded the tracking error. Simulations show that the
parameter estimates converge to their true values as tivérigaate for the recursive least-squares indirect adapti
law increases. As a result, high-frequency oscillatioessaippressed in the adaptive signals.

The bounded linear analysis provides a method for analyzamiinear adaptive control laws using widely avail-
able linear robust control tools. This approach represestsp towards the goal of the current research to extend the
concept of linear control margins to nonlinear adaptivetidn This method enables a nonlinear adaptive control to
be analyzed using the concept of phase and gain margin afrlsystems in the frequency domain. With this tool, an
adaptive control law can be analyzed to assess its contngimsensitivity for different learning rates. This would
then enable a suitable learning rate to be determined. Byrpocating the knowledge of unmodeled dynamics, a
control margin can be evaluated to see if it is sufficient tdmaén stability of a flight control system in the presence
of system uncertainties.

References

1Totah, J., Krishnakumar, K., and Vikien, S., “IntegratedsiRent Aircraft Control - Stability, Maneuverability, @nSafe Landing in the
Presence of Adverse Conditions”, NASA Aeronautics Re$ehftission Directorate Aviation Safety Program, April 13020

2Steinberg, M.L., “A Comparison of Intelligent, AdaptivendNonlinear Flight Control Laws”, AIAA Guidance, Navigati, and Control
Conference, AIAA-1999-4044, 1999.

SRohrs, C.E., Valavani, L., Athans, M., and Stein, G., “Rdbass of Continuous-Time Adaptive Control Algorithms ire thresence of
Unmodeled Dynamics”, IEEE Transactions on Automatic Gantol AC-30, No. 9, pp. 881-889, 1985.

4Eberhart, R.L. and Ward, D.G., “Indirect Adaptive Flight i@m| System Interactions”, International Journal of Rstband Nonlinear
Control, Vol. 9, pp. 1013-1031, 1999.

SRysdyk, R.T. and Calise, A.J., “Fault Tolerant Flight Cohtvia Adaptive Neural Network Augmentation”, AIAA GuidaacNavigation,
and Control Conference, AIAA-1998-4483, 1998.

6Kim, B.S. and Calise, A.J., “Nonlinear Flight Control Usihpural Networks”, Journal of Guidance, Control, and Dyresniol. 20, No.
1, pp. 26-33, 1997.

7Johnson, E.N., Calise, A.J., EI-Shirbiny, H.A., and RysdgkT., “Feedback Linearization with Neural Network Augrtasion Applied to
X-33 Attitude Control”, AIAA Guidance, Navigation, and Cimal Conference, AIAA-2000-4157, 2000.

8|dan, M., Johnson, M.D., and Calise, A.J., "A Hierarchicglpkoach to Adaptive Control for Improved Flight Safety”, A% Journal of
Guidance, Control and Dynamics, Vol. 25, No. 6, pp. 101201 @®02.

9Cao, C., Patel, V.V,, Reddy, C.K., Hovakimyan, N., Lavrgisk., and Wise, K., “Are Phase and Time-Delay Margin Alwaygversely
Affected by High Gains?”, AIAA Guidance, Navigation, andr@m| Conference, AIAA-2006-6347, 2006.

10/dan, M., Johnson, M.D., Calise, A.J., and Kaneshige, dtefligent Aerodynamic/Propulsion Flight Control ForgHt Safety: A Nonlinear
Adaptive Approach”, American Control Conference, Arliogt VA, June 2001.

Hovakimyan, N., Kim, N., Calise, A.J., Prasad, J.V.R., armth@n, E.J., “Adaptive Output Feedback for High-Bandwitntrol of an
Unmanned Helicopter”, AIAA Guidance, Navigation and Coht€onference, AIAA-2001-4181, 2001.

12Nguyen, N., Krishnakumar, K., Kaneshige, J., and NespegaDgnamics and Adaptive Control for Stability Recovery Bamaged
Asymmetric Aircraft”, AIAA Guidance, Navigation, and Cant ConferenceAIAA-2006-6049, 2006.

133acklin, S.A., Schumann, J.M., Gupta, P.P., Richard, Ren@er, K., and Soares, F., "Development of Advanced Vatifia and Validation
Procedures and Tools for the Certification of Learning Systén Aerospace Applications”, Proceedings of Infotech@sgace Conference,
Arlington, VA, Sept. 26-29, 2005.

21 0f 22

American Institute of Aeronautics and Astronautics



14Narendra, K.S. and Annaswamy, A.M., “A New Adaptive Law fartiRist Adaptation Without Persistent Excitation”, IEEEfgactions on
Automatic Control, Vol. AC-32, No. 2, pp. 134-145, 1987.

1510annu, P.A. and Sun, Robust Adaptive Control, Prentice-Hall, 1996.
18ewis, F.W., Jagannathan, S., and Yesildirak,Meyral Network Control of Robot Manipulators and Non-Linear Systems, CRC, 1998.

williams-Hayes, P.S., “Flight Test Implementation of a &t Generation Intelligent Flight Control System”, TedaiReport NASA/TM-
2005-213669.

18Bosworth, J. and Williams-Hayes, P.S., “Flight Test Resfiiom the NF-15B IFCS Project with Adaptation to a Simulagtdbilator
Failure”, AIAA Infotech@Aerospace Conference, AIAA-202318, 2007.

19National Transportation Safety Board, “United Airlinesght 232 McDonnell-Douglas DC-10-10, Sioux Gateway Aifpdioux City,
lowa, July 19, 1989”, NTSB/AAR90-06, 1990.

20 emaignan, B., “Flying with no Flight Controls: Handling @lities Analyses of the Baghdad Event”, AIAA Atmospheright Mechanics
Conference, AIAA-2005-5907, 2005.

21Gilbreath, G.P., “Prediction of Pilot-Induced Oscillai®(PIO) due to Actuator Rate Limiting Using the Open-Loops&irPoint (OLOP)
Criterion”, M.S. Thesis, Air Force Institute of Technolod¥right-Patterson Air Force Base, Ohio, 2001.

22Bailey, R.M, Hostetler, R.W., Barnes, K.N., Belcastro, C.lind Belcastro, C.M., “Experimental Validation: SubscAircraft Ground
Facilities and Integrated Test Capability”, AIAA Guidand¢avigation, and Control Conference, AIAA-2005-6433, 200

22 of 22

American Institute of Aeronautics and Astronautics



