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This paper provides a discussion of challenges of neural netadaptive flight control and an examination of
stability and convergence issues of adaptive control algorithms. Understanding stability and convergence issues
with adaptive control is important in order to advance adaptive control to a higher technology readiness level.
The stability and convergence of neural net learning law areinvestigated. The effect of unmodeled dynamics
on learning law is examined. Potential improvements in the learning law and adaptive control architecture
based on optimal estimation are presented. The paper provides a brief summary of the future research of the
Integrated Resilient Aircraft Control (IRAC) in the area of adaptive flight control. The paper also discusses
challenges and future research in verification and validation.

1 Introduction

While air travel remains the safest mode of transportation,accidents do occur on rare occasions with catastrophic con-
sequences. For this reason, the Aviation Safety Program under the Aeronautics Research Mission Directorate (ARMD)
at NASA has created the Integrated Resilient Aircraft Control (IRAC) research project to to advance the state of aircraft
flight control and to provide onboard control resilience forensuring safe flight in the presence of adverse conditions
such as faults, damage, and/or upsets [1]. These hazardous flight conditions can impose heavy demands on aircraft
flight control systems in their abilities to enable a pilot tostabilize and navigate an aircraft safely. The flight control
research to be developed by the IRAC project will involve many different disciplines including aerodynamics, aircraft
flight dynamics, engine dynamics, airframe structural dynamics, and others. During off-nominal flight conditions, all
these conditions can couple together to potentially overwhelm a pilot’s ability to control an aircraft. The IRAC re-
search goal is to develop vehicle-centric multidisciplinary adaptive flight control approaches that can effectively deal
with these coupled effects.

Modern aircraft are equipped with flight control systems that have been rigorously field-tested and certified by the
Federal Aviation Administration. Functionally, an aircraft flight control system may be decomposed into an inner-loop
and an outer-loop hierarchy. The outer-loop flight control is responsible for the aircraft guidance and navigation. It
generates flight path or trajectory of the aircraft positionbased on pilot’s inputs to the Flight Management System
(FMS). The FMS provides pilots with capabilities for performing pre-flight planning, navigation, guidance, and per-
formance management using built-in trajectory optimization tools for achieving operational efficiencies or mission
objectives. The inner-loop flight control has a dual responsibility in tracking the trajectory commands generated by
the outer-loop flight control and, more importantly, in stabilizing the aircraft attitude in the pitch, roll, and yaw axes.
Because the aircraft must be stabilized rapidly in an off-nominal event such as upsets or damage, the inner-loop flight
control must have a faster response time than the outer-loopflight control.

In a damage scenario, some part of a lifting surface may become separated and, as a result, may cause an aircraft’s
center of gravity (C.G.) to shift unexpectedly. Furthermore, changes in aerodynamic characteristics can render a
damaged aircraft unstable. Consequently, these effects can lead to a non-equilibrium flight that can adversely affect
the ability of a flight control system to maintain aircraft stability. In other instances, reduced structural rigidity of
a damaged airframe may manifest in elastic motions that can interfere with a flight control system, and potentially
can result in excessive structural loading on critical lifting surfaces. Thus, in a highly dynamic, off-nominal flight
environment with many sources of uncertainty, a flight control system must be able to cope with complex and uncertain
aircraft dynamics.
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The goal of the IRAC project is to arrive at a set of validated multidisciplinary integrated aircraft control design
tools and techniques for enabling safe flight in the presenceof adverse conditions [1]. Aircraft stability and maneu-
verability in off-nominal flight conditions are critical toaircraft survivability. Adaptive flight control is identified as
a technology that can improve aircraft stability and maneuverability. Stability of adaptive control remains a major
challenge that prevents adaptive control from being implemented in human-rated or mission-critical flight vehicles.
Understanding stability issues with adaptive control, hence, will be important in order to advance adaptive control
technologies. Thus, one of the objectives of IRAC adaptive control research is to develop metrics for assessing sta-
bility of adaptive flight control by extending the robust control concept of phase and gain margins to adaptive control.
Furthermore, stability of adaptive control and the learning algorithms will be examined the presence of unmodeled
dynamics and exogenous disturbances. Another objective ofthe IRAC research is to advance adaptive control tech-
nologies that can better manage constraints placed on the aircraft. These constraints are dictated by limitations of
actuator dynamics, aircraft structural load limits, frequency bandwidth, system latency, and others. New concepts of
adaptive control will be developed to address these constraints.

2 Convergence and Stability of Neural Net Direct Adaptive Flight Control

Over the past several years, various adaptive control techniques have been investigated [4, 5, 7, 8, 9, 10, 13, 15, 11].
Adaptive flight control provides a possibility for maintaining aircraft stability and performance by means of enabling
a flight control system to adapt to system uncertainties. Meanwhile, a large area of research in intelligent control has
emerged and spans many different applications such as spacecraft and aircraft flight control. An essential element of
an intelligent flight control is a neural network system designed to accommodate changes in aircraft dynamics due
to system uncertainties. Neural network is known to be a gooduniversal approximator of many nonlinear functions
that can be used to model system uncertainties. In the implementation of an intelligent flight control, the neural
network is usually incorporated within a direct adaptive control architecture to provide an augmentation to a pilot
command. The neural network estimates the system uncertainties and outputs directly a command augmentation
signal that compensates for changes in aircraft dynamics.

Research in adaptive control has spanned several decades, but stability robustness in the presence of unmodeled
dynamics, parameter uncertainties, or disturbances as well as the issues with verification and validation of adaptive
flight control software still pose as major challenges[5, 2]. Adaptive control laws may be divided into direct and
indirect approaches. Indirect adaptive control methods typically compute control parameters from on-line learning
neural networks that perform plant parameter estimation [6]. Parameter identification techniques such as recursive
least-squares and neural networks have been used in indirect adaptive control methods [7]. In recent years, model-
reference direct adaptive control using neural networks has been a topic of great research interest [8, 9, 10]. Lyapunov
stability theory has been used to test theoretical stability of neural network learning laws.

NASA has been developing an intelligent flight control technology based on the work by Rysdyk and Calise [8].
An architecture of the intelligent flight control is as shownin Fig. 1.

Fig. 1 - Neural Net Adaptive Flight Control Architecture

Recently, this technology has been demonstrated on an F-15 fighter aircraft [12]. The intelligent flight control
uses a model-reference, direct adaptive, dynamic inversion control approach. The neural network direct adaption
is designed to provide consistent handling qualities without requiring extensive gain-scheduling or explicit system
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identification. This particular architecture uses both pre-trained and on-line learning neural networks and a reference
model to specify desired handling qualities. Pre-trained neural networks are used to provide estimates of aerodynamic
stability and control characteristics. On-line learning neural networks are used to compensate for errors and adapt to
changes in aircraft dynamics. As a result, consistent handling qualities may be achieved across flight conditions.

Recent flight test results demonstrate the potential benefits of adaptive control technology in improving aircraft
flight control systems in the presence of adverse flight conditions due to failures [19]. The flight test results also point
out the needs for further research to increase the understanding of effectiveness and limitations of the direct adaptive
flight control.

One potential problem with the neural net direct adaptive flight control is that high gain control used to facililate
aggressive learning to reduce the error signal rapidly can potentially result in a control augmentation command that
may saturate the control authority or excite unmodeled dynamics of the plant that can adversely affect the stability of
the direct adaptive learning law.

2.1 Direct Adaptive Control Approach

Adaptive flight control is designed to accommodate parametric and system uncertainties in the presence of adverse
conditions such as upset, failures, and damage. The true aircraft dynamics may be described by a linear model about
its trim point in a flight envelope

ω̇ = ω̇∗ + ∆ω̇ = F1ω +F2σ +Gδ (1)

whereω =
[

p q r
]>

is the aircraft angular rate,σ =
[

∆α ∆β ∆φ
]>

is an incremental trim state vector to
maintain trim condition,∆ω̇ is the unknown aircraft dynamics due to parametric uncertainties, andω̇∗ is the nominal
aircraft dynamics described by

ω̇∗ = F∗
1ω +F∗

2σ +G∗δ (2)

whereF∗
1, F∗

2, andG∗ as the nominal plant matrices which are assumed to be known.
The input to the dynamic inversion controller is a desired acceleration command

ω̇d = F∗
1ω +F∗

2σ +G∗δ (3)

The difference in the aircraft dynamics gives rise to the modeling errorε which is defined as

ε = ω̇ − ω̇d = ∆F1ω + ∆F2σ + ∆Gδ (4)

The modeling error that exists in the controller causes the aircraft states to deviate from its desired states. This
results in a tracking error dynamics which are described by

ė= Ae+B(uad − ε) (5)

wheree =
[
∫ t

0 ωedτ ωe
]>

is a proportional-integral tracking error withωe = ωm −ω defined as the rate error
signal which is the difference between a reference model rate ωm and the actual aircraft rate,uad is the neural net
direct adaptive signal, andA andB are matrices defined as

A =

[

0 I
−K I −K P

]

, B =

[

0
I

]

(6)

The reference model rateωm is described by a first order model that gives the flight controller a suitable handling
characteristic. To compensate for the parametric uncertainties, the neural net direct adaptive signaluad uses a linear-
in-parameter sigma-pi network proposed by Rysdyk and Calise [8]. This network is further modified [18] to include
additional inputs as shown in Fig. 2.
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Fig. 2 - Sigma-Pi Neural Network

Associated with the neural network is a set of weights that are adjusted on-line in order to enable the flight control
system to adapt to changes in aircraft dynamics. The neural net direct adaptive signal and the weights are computed
by

uad = W>β (7)

Ẇ = −Γ
(

βe>PB+ µ
∥

∥

∥
e>PB

∥

∥

∥
W
)

(8)

whereΓ is the learning rate,µ is the e-modification term,β is a basis function comprising neural net inputsCi,
i = 1, . . . ,6, andP is the solution of the Lyapunov equation

A>P+P>A = −Q (9)

whereQ is a positive-definite matrix.

2.2 Stability and Convergence

A key challenge with neural net adaptive flight control is to make the learning algorithm sufficiently robust. Robustness
relates to the stability and convergence of the learning algorithm. Stability is a fundamental requirement of any
dynamical system that ensures a small disturbance would notgrow to a large deviation from an equilibrium. For
systems with high assurance such as human-rated or mission-critical flight vehicles, stability of adaptive systems is of
paramount importance. Without guaranteed stability, suchadaptive control algorithms cannot be certified for operation
in high-assurance systems. Unfortunately, the stability of adaptive controllers in general and neural net adaptive
controllers in particular remains unresolved. The notion of a self-modifying flight control law using an artificial neural
net learning process whose outputs may be deemed as non-deterministic is a major huddle to overcome.

Another criterion for robustness is the convergence of the neural net learning algorithm. Neural networks are used
as universal nonlinear function approximators. In the caseof the adaptive flight control, the networks approximate
the unknown modeling error that is used to adjust effectively the control gains to maintain a desired handling quality.
Convergence requires stability and a proper design of the weight update law. It is conceivable that even though a
learning algorithm is stable, the neural net weights may notconverge to correct values. Thus, accurate convergence is
also important since this is directly related to the flight control performance.

Referring to Eq. (5), if the direct adaptive signaluad could perfectly cancel out the modeling errorε, then the
tracking error would tend to zero asymptotically. Therefore, ideally the desired accelerationω̇d would perfectly track
the reference model accelerationω̇m. In practice, there is always some residual modeling error in the adaptation, so
asymptotic stability of the tracking error is not guaranteed. Instead, a weaker uniform stability of the tracking error
can be established by the Lyapunov stability theory. The tracking error dynamics is then bounded from below by

ė≤ Ae+BW̃>β + ∆e (10)

whereW̃ is the neural net weight matrix variation and∆e is the approximation error defined as

∆e = sup
β

∥

∥

∥
B
(

W∗>β − ε
)
∥

∥

∥
≤ sup

β

∥

∥

∥
W∗>β − ε

∥

∥

∥
(11)
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whereW∗ is the ideal weight matrix which is equal to

W∗ = W − W̃ (12)

It can be shown by the Lyapunov analysis [18] that there exists aδ -neighborhood that the tracking error is attractive
to and remains bounded from below

δ = inf
ω
‖e‖ =

ρ (P)

2ρ (Q)

(

4‖∆e‖+ µ ‖W∗‖2
)

(13)

whereρ denotes the spectral radius of a matrix.
Thus, ifδ is sufficiently small, then the tracking error will be reasonably close to zero. This means that the neural

net approximation error is also small and the tracking performance is good.
The neural net weight update law in Eq. (8) is nonlinear due tothe product term of the basis functionβ and the

tracking errore. Stability of nonlinear systems is usually analyzed by the Lyapunov method. However, the concept of
phase and gain margin for linear systems cannot be extended to nonlinear adaptive control. The linear control margin
concept can provide understanding stability margin of adaptive control that enables a more robust adaptive learning
law to be synthesized. This is only possible if the neural netweight update law is linearized at a certain point in time
with the neural net weights held constant. As adaptation occurs, the neural net weights vary with time. Hence, the
time at which to freeze the neural net weights (for calculation) must correspond to a worst-case stability margin. This
can be a challenge. Therefore, this paper introduces a new method for analyzing stability and convergence of the
nonlinear neural net weight update law using error bound analysis, which enables the dominant linear component of
the nonlinear neural net weight update law to be extracted from Eq. (8) without linearizing the adaptive control law at
an instance in time. Towards that end, we note that Eq. (8) canbe expressed as

d
dt

(

β>W
)

= −Γ
(

β>βe>PB+ µ
∥

∥

∥
e>PB

∥

∥

∥
β>W

)

+ β̇>
W (14)

We define an error bound on the neural net adaptive signal as

∆W̃ = sup
β

∥

∥

∥
W̃>β̇ −Γµ

∥

∥

∥
e>PB

∥

∥

∥
W∗>β

∥

∥

∥
(15)

Then, the time derivative of the variation in the neural net adaptive signal is bounded by

d
dt

(

W̃>β
)

≤−Γ
(

αB>Pe+ µ
∥

∥

∥
e>PB

∥

∥

∥
W̃>β

)

+ ∆W̃ (16)

whereα > 0 is defined as a level of persistent excitation (PE) such thatthe following PE condition is satisfied

∥

∥

∥
β>β

∥

∥

∥
=

1
T

∫ t+T

t
β>β dτ ≤ α (17)

for β ∈ L2.
Thus, without sufficient persistent excitation and if the e-modification parameteterµ is not present, the neural net

weights will not necessarily converge. The persistent excitation essentially means that inputs to the neural network
must be sufficiently rich in order to excite system dynamics to enable a convergence to take place.

If the error bound is small, then the linear behavior of the weight update law becomes dominant. Therefore, this
enables the stability and convergence to be analyzed in a linear sense using the following equation

d
dt

[

e
W̃>β

]

≤
[

A B
−ΓαB>P −Γµ

∥

∥e>PB
∥

∥

][

e
W̃>β

]

+

[

∆e
∆W̃

]

(18)

The stability of the learning law thus requires the leading matrix to be negative definite. This can be established
by computing its eigenvalues from the following characteristic equation

(A −Λ)
(

−Γµ
∥

∥

∥
e>PB

∥

∥

∥
I −Λ

)

+ ΓαBB>P = 0 (19)
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This is a matrix quadratic equation whose solution can only be computed numerically since a general quadratic
matrix equation

x2+bx+c= 0 (20)

wherex, b, c∈ [Cn ×Cn] does not have the following solution

x = −b
2
±
[

(

b
2

)2

−c

]
1
2

(21)

where the square root is a matrix operator that operates on the eigenvalues of the radicand.
However, ifb andc are commutative, then Eq. (21) is the solution [24]. One notes that Eq. (19) is bounded from

above by

Λ2−
(

A −Γµ
∥

∥

∥
e>PB

∥

∥

∥
I
)

Λ−Γµ
∥

∥

∥
e>PB

∥

∥

∥
A + Γα

∥

∥

∥
BB>P

∥

∥

∥
I = 0 (22)

which satisfies the commutative property. Therefore, the solution of this characteristic matrix equation is equal to

Λ =
A −Γµ

∥

∥e>PB
∥

∥ I
2

±
[

(

A −Γµ
∥

∥e>PB
∥

∥ I
)2

4
+ Γµ

∥

∥

∥
e>PB

∥

∥

∥
A −Γα

∥

∥

∥
BB>P

∥

∥

∥
I

]

1
2

(23)

There exists a constantγ > 0 such that the learning rate is bounded by

∣

∣

∣

∣

∣

∣

Γ−
γ
∥

∥

∥

(

A + Γµ
∥

∥eT PB
∥

∥ I
)2
∥

∥

∥

4α
∥

∥BB>P
∥

∥

∣

∣

∣

∣

∣

∣

≤ ε (24)

Then it follows that

Λ ≤ A −Γµ
∥

∥e>PB
∥

∥ I
2

± A + Γµ
∥

∥e>PB
∥

∥ I
2

√

1− γ (25)

If Λ is negative definite, then the rate of convergence is established by the eigenvalues ofΛ since

[

e
W̃>β

]

≤ ΦeΛtΦ−1
[

e(0)

W̃ (0)> β (0)

]

−
[

A B
−ΓαB>P −Γµ

∥

∥e>PB
∥

∥

]−1[ ∆e
∆W̃

]

(26)

whereΦ is a matrix of right eigenvectors of the leading matrix.
The equilibrium is therefore uniformly asymptotically stable and converges to

lim
t→∞

sup
β

∥

∥

∥

∥

e
W̃>β

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

[

A B
−ΓαB>P −Γµ

∥

∥e>PB
∥

∥

]−1[ ∆e
∆W̃

]

∥

∥

∥

∥

∥

(27)

By Holder’s inequality, the convergence radius can be expressed as

lim
t→∞

sup
β

∥

∥

∥

∥

e
W̃>β

∥

∥

∥

∥

≤ ρ
(

Λ−1)
∥

∥

∥

∥

∆e
∆W̃

∥

∥

∥

∥

(28)

Thus, ∆e and ∆W̃ should be kept as small as possible for the tracking error andthe neural net weight matrix
variation to converge as close to zero as possible.

In order to obtain a convergence, stability of the tracking error and neural net weight update law must be established
by the negative-definiteness of the eigenvalues ofΛ. Consider the following cases:

1. γ � 1:

This corresponds to a small learning rate or slow adaptation. Using the first two terms of the Taylor series of√
1− γ and retaining linear terms ofΓ, we have

λ (Λ1) ≈
(

1− γ
4

)

λ (A) ≈ λ
(

A −ΓαA−1BB>P
)

(29)
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λ (Λ2) ≤−Γµ
∥

∥

∥
e>PB

∥

∥

∥
+

γ
4

λmax (A) =
γ
4

(

λmax (A)− µ
∥

∥e>PB
∥

∥

∥

∥A2
∥

∥

α
∥

∥BB>P
∥

∥

)

(30)

whereλ is the eigenvalue operator of a matrix.

The eigenvalues ofΛ2 correspond to the neural net weight update law which indicates that the neural net learning
is very slow. The eigenvalues ofΛ1 correspond to the tracking error dynamics. SinceK P > 0 andK I > 0, then
A is Hurwitz, i.e.,A possesses negative eigenvalues. Thus, the tracking error dynamics are stable and the
eigenvalues ofΛ1 are

λ (Λ1) ≈
(

1− γ
4

)

λ



−K P

2
± j

(

K I −
K2

P

4

)

1
2



 (31)

whereupon, to achieve good loop gains, the integral gain should be set such that the negative real part of the
maximum eigenvalue is greatest or

K I ≥
K2

P

4
(32)

The convergence radius is then approximately equal to

lim
t→∞

sup
β

∥

∥

∥

∥

e
W̃>β

∥

∥

∥

∥

≤ 4

γ
∣

∣

∣

∣

λmax (A)− µ‖e>PB‖‖A2‖
α‖BB>P‖

∣

∣

∣

∣

∥

∥

∥

∥

∆e
∆W̃

∥

∥

∥

∥

(33)

Sinceγ is small, the convergence radius is large and thus the neuralnetwork would not achieve a good conver-
gence.

It should be noted that a large value ofµ has the same effect as slow adaptation since this corresponds to a small
value ofγ. Thus, whileµ tends to provide robustness to the adaptive control algorithm, it also slows down the
speed of learning of the neural network, thereby leading to poor convergence.

2. γ � 1:

This corresponds to a large learning rate or fast adaptationonly whenµ = 0. When the learning rate is large
andµ 6= 0, the effect is equivalent to that with smallγ as discussed previously. Forµ = 0, the eigenvalues of the
tracking error dynamics and neural net weight update law then become more complex-valued

λ (Λ) ≈ λ
(

A
2

)

(1± j
√

γ) (34)

The convergence radius is then approximately equal to

lim
t→∞

sup
β

∥

∥

∥

∥

e
W̃>β

∥

∥

∥

∥

≤ 2
(1+ γ)|λmax (A)|

∥

∥

∥

∥

∆e
∆W̃

∥

∥

∥

∥

(35)

Sinceγ is large, the convergence radius is small and thus the neuralnetwork would have a good convergence.

If µ 6= 0, then in the limit for a very large learning rate, the neuralnet weights in theory would converge to

lim
Γ→∞

W̃>β = − αB>Pe
µ
∥

∥e>PB
∥

∥

(36)

and the tracking error dynamics would become

ė≤
(

A − αBB>P
µ
∥

∥e>PB
∥

∥

)

e+ ∆e (37)

Thus, in theory, a large learning rate would improve stability and convergence. However, in practice there exists
a potential problem with a large learning rate. Equation (34) shows that increasing the learning rate to a large
value with µ = 0 will result in a high frequency oscillation in the adaptivesignal [20]. This high frequency
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oscillation can result in excitation of unmodeled dynamicsthat may be present in the system and therefore can
lead to a possibility of instability since the effects of unmodeled dynamics are not accounted in the Lyapunov
analysis of the neural net weight update law [6]. Whenµ 6= 0, increasing the learning rate does not lead to a
high frequency oscillation which tends to improve robustness, but the convergence is poorer. Thus, high-gain
learning should be avoided in adaptive control.

Another source of instability is measurement noise which will also influence high-gain controllers to make
over-corrections. Stated loosely, the neural network thenmaps the spurious noise signals to small changes in
the control commands, leading to a loss of true learning and instability. For this reason, learning is typically
disabled when the error falls below a certain value by applying a dead band.

To illustrate the effects of learning rate, a simulation wasperformed for a damaged twin-engine generic transport
model (GTM) [3], as shown in Fig. 3. A wing damage simulation was performed with 25% of the left wing missing.
The neural net direct adaptive control is implemented to maintain tracking performance of the damaged aircraft. A
pitch doublet maneuver is commanded while the roll and yaw rates are regulated near zero.

Fig. 3 - Generic Transport Model

Figure 4 illustrates the effect of learning rate without thee-modification term, i.e,µ = 0. Without adaptation,
the performance of the flight control is very poor as significant overshoots occur. With adaptation, good tracking
performance can be obtained. As the learning rate increases, the tracking error becomes smaller but high frequency
signals also appear that is consistent with the analysis above.
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Fig. 4 - Pitch Rate(µ = 0)

Figure 5 is a plot of selected neural net weights for various learning rates. As can be seen, large learning rate
causes high frequency oscillations in the weights. The convergence of the neural net weightsWq,q andWq,δe associated
with linear elementsq andδe for the pitch rate are poor. Neither of these weights would actually converge to their
correct values. Thus, convergence accuracy is not demonstrated.
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Fig. 5 - Neural Net Weight Learning(µ = 0)
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Fig. 6 - Pitch Rate withµ 6= 0 (Γ = 1000)
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Fig. 7 - Neural Net Weight Learning(Γ = 1000)

Figure 6 illustrates the effect of the e-modification parameter µ . As µ increases, the high-frequency amplitude
reduces but the tracking error becomes worse. Eventually, with large enough value ofµ , the learning essentially
ceases. Figure 7 is the plot of selected neural net weights. Clearly, with increasingµ , the weights are driven to zero,
thereby reducing the learning of the neural network. This isconsistent with the analysis above which shows the for
learning rate withµ 6= 0, the effect is essentially the same as that with small learning rate.
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2.3 Unmodeled Dynamics

Unmodeled dynamics are secondary dynamics that are ignoredin the system dynamics. Usually, the small effects of
unmodeled dynamics can be quite important, but sometimes are not explicitly accounted for in a control design due to
the complexity of the physical modeling. An example of secondary dynamics is the structural dynamics of the airframe
undergoing elastic deformation in flight. Typically, if thecontroller possesses sufficient gain and phase margins, then
the controller can be verified during validation to ensure that it is sufficiently robust to safeguard against potentially
destabilizing effects of unmodeled dynamics.

Unmodeled dynamics can have a profound effect on the stability of the learning algorithms for adaptive control.
Even though an adaptive control algorithm may demonstrate stability for a dominant system dynamics, it can become
unstable when a small unmodeled dynamics is present in the system. This can be shown by considering the following
aircraft dynamics

ω̇ = F1ω +F2σ +Gδ −z (38)

wherez is a small parasitic state that represents the effects of unmodeled dynamics that have a certain property which
can be described by

ε ż = −z−ηGδ (39)

whereε > 0 andη > 0 are small parameters. Additionally, let the measurement output of the aircraft be the angular
rate vector

y = ω (40)

Then, the unmodeled dynamics are expressed as

ε ż≤−z−ηGG∗−1
(

B>Ae+ W̃>β
)

+ ε∆z (41)

where

∆z = sup
β

∥

∥

∥

∥

∥

ηGG∗−1
(

W∗>β − ω̇m
)

ε

∥

∥

∥

∥

∥

(42)

The unmodeled dynamics affect the tracking error dynamics according to

ė≤ Ae+BW̃>β +Bz+ ∆e (43)

The dynamics of the combined system are bounded by

d
dt





e
W̃>β

z



≤





A B B
−ΓαB>P −Γµ

∥

∥e>PB
∥

∥ 0
−η

ε GG∗−1B>A −η
ε GG∗−1 − 1

ε









e
W̃>β

z



+





∆e
∆W̃
∆z



 (44)

We consider the case whenµ = 0. The characteristic equation is obtained as

s3 +

(

I
ε
−A

)

s2 +

(

η
ε

BGG∗−1B>A − A
ε

+ ΓαBB>P
)

s+
ΓαB

ε
(

I −ηGG∗−1)B>P = 0 (45)

Applying the Routh-Hurwitz criterion, the following matrix inequalities are required for stability of the system

I
ε
−A > 0 (46)

(

I
ε
−A

)(

η
ε

BGG∗−1B>A − A
ε

+ ΓαBB>P
)

− ΓαB
ε
(

I −ηGG∗−1)B>P > 0 (47)

ΓαB
ε
(

I −ηGG∗−1)B>P > 0 (48)

Inequality (46) is satisfied identically sinceA is Hurwitz. Inequality (48) is also satisfied sinceP is positive-definite
andη is small. Inequality (47) requires the learning rate to satisfy the following inequality

Γα
(

ηBGG∗−1B>P+ εABB>P
)

<
1
ε

D (49)
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where
D = (I − εA)

(

ηBGG∗−1B>A −A
)

> 0 (50)

Thus, if the learning rate is sufficient large and the left hand side expression is positive-definite, it is conceivable
that stability requirements could be violated, thereby resulting in instability of the adaptive control algorithm. Clearly,
large learning rate can lead to a fast adaptation and large parasitic statez which acts as a disturbance to the dominant
system dynamics, thereby leading to faulty adaptation thatcan result in unbounded solutions. For stability and bounded
solutions, the learning rate should be kept small such that the speed of adaptation should be slow relative to the speed
of the parasitic state [6]. However, small learning rate will result in less than desired command-tracking performance.
Therefore, a suitable learning rate is one that strives to achieve a reasonable balance between stability and performance
of an adaptive flight control. In essence, this means that theacceptable gains for a stable neural net learning law must
be found by trial and error, yet guided by theory and known structures of unmodeled dynamics, if possible.

Figure 8 illustrates the effects of unmodeled dynamics on the learning of the adaptive control. The unmodeled
dynamics result in a poor response when adaptation is off, but once adaptation is switched on, improvements can
be immediately obtained. Comparing with Fig. 4, the high learning rate excites the unmodeled dynamics, thereby
causing an increase in the undesired high frequency noise inthe adaptive signals. With sufficiently large learning rate,
the weight update law would become unstable.
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Fig. 8 - Pitch Rate with Unmodeled Dynamics(µ = 0, ε = 0.1, η = 0.1)

3 Potential Improvements

In the neural net weight update law in Eq. (8), the tracking error signale is used for adaptation. This adaptive law is
based on the stability analysis of the tracking error using the Lyapunov method [8]. Examining Eq. (5), one sees that if
the adaptive signaluad could cancel out the modeling errorε, then the tracking error will tend to zero asymptotically.
Thus, if the modeling errorε is used for adaptation, potential improvements can be obtained. We now introduced two
methods of alternate adaptive control in lieu of the existing method.

3.1 Direct Adaptive Control with Recursive Least Squares

In this approach, we will design a neural net weight update law that minimizes the non-homogeneous term in Eq. (5).
We will use the optimal estimation method to minimize the following cost functional

J (W) =
1
2

∫ t

0
(1+ ξ )−1

∥

∥

∥
W>β − ε̂

∥

∥

∥

2
dτ (51)

where
ε̂ = ε −∆ε = ˙̂ω − ω̇d = ˙̂ω −F∗

1ω −F∗
2σ −G∗δ̂ (52)

ξ = β>Rβ (53)
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∆ε is the estimation error of the modeling errorε since aircraft angular accelerationsω̇ may not be directly
measured and thus requires to be estimated.

ξ is viewed as a weighted PE condition that is required for improved convergence withR as a positive-definite
weighting matrix. A largerR results in a faster convergence.R can also be viewed as a learning rate matrix.

To minimize the cost functional, we compute its gradient with respect to the neural net weight matrix and set it to
zero, thus resulting in

∇J>W =

∫ t

0
(1+ ξ )−1 β

(

β>W − ε̂>
)

dτ = 0 (54)

Equation (54) is then written as

∫ t

0
(1+ ξ )−1β β>dτW =

∫ t

0
(1+ ξ )−1 β ε̂>dτ (55)

Let

R−1 =

∫ t

0
(1+ ξ )−1 β β>dτ (56)

We then note that
R−1R = I ⇒ Ṙ−1R+R−1Ṙ = 0 (57)

Solving forṘ yields
Ṙ = −RṘ−1R = −(1+ ξ )−1Rβ β>R (58)

Differentiating Eq. (55) yields

R−1Ẇ +(1+ ξ )−1 β β>W = (1+ ξ )−1 β ε̂> (59)

Solving forẆ yields the neural net weight update law

Ẇ = −(1+ ξ )−1Rβ
(

β>W − ε̂>
)

(60)

Equation (60) is a gradient-based recursive least-squaresneural net weight update law that minimizes the neural
net approximation error. In the process, the tracking errorshould decrease optimally to some minimum convergence
radius. Comparing this neural net weight update law to that in Eq. (8), it is seen that the estimated modeling errorε̂ is
used for adaptation instead of tracking error. Moreover, the learning rate is also adaptive in that the weighting matrix
R also needs to be updated by Eq. (58).

The recursive least-squares neural net weight update law can be shown to be stable and result in bounded signals.
To show this, letW = W∗ +W̃ with the asterisk and tilde symbols denoting ideal neural net weight matrix and neural
net weight matrix deviations, respectively. The followingLyapunov candidate function is chosen

L = e>Pe+ tr
(

W̃>R−1W̃
)

(61)

The time rate of change of the Lyapunov candidate function iscomputed as

L̇ = ė>Pe+e>Pė+ tr
(

2W̃>R−1 ˙̃W + W̃>Ṙ−1W̃
)

(62)

With large enoughR, the ideal neural net weight matrixW∗ can be shown to converge to the estimated modeling
errorε̂ [6] so that

˙̃W = −(1+ ξ )−1Rβ β>W̃ (63)

Upon simplification, one obtains

L̇ = −e>Qe− (1+ ξ )−1 tr
(

W̃>β β>W̃
)

≤ 0 (64)

which requires aδ -neighborhood that the tracking error is attractive to and remains bounded from below

δ = inf ‖e‖ =
2ρ (P)‖∆ε‖

ρ (Q)
(65)
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SinceL̇ is negative semi-definite, the recursive least-squares method is uniformly asymptotically stable.
Let R = ΓI , then the system dynamics of the recursive least-squares method are bounded by the following equation

d
dt





e
W̃>β

z



≤





A B B
0 −(1+ ξ )−1 ΓαI 0

−η
ε GG∗−1B>A −η

ε GG∗−1 − 1
ε









e
W̃>β

z



+





∆ε
W̃

∆z



 (66)

The characteristic equation of this system is obtained as

s3 +

[

I
ε
−A +(1+ ξ )−1 ΓαI

]

s2 +

[(

ηBGG∗−1B>

ε
− I
)

A +(1+ ξ )−1 Γα
(

I
ε
−A

)]

s

+
(1+ ξ )−1 Γα

ε

(

ηBGG∗−1B>− I
)

A = 0 (67)

Without the effects of unmodeled dynamics, this characteristic equation yields two roots, both of which are on the
left half s-plane

s1 = λ (A) (68)

s2 = −(1+ ξ )−1 Γα ≈− Γα
1+ Γα

(69)

Sinces2 is a negative real root corresponding to the neural net weight matrix variation, increasing the learning
rate would simply drives2 farther to the left on the real axis of thes-plane. Therefore, unlike the current neural net
direct adaptive control approach, large learning rate doesnot generate high frequency oscillations with the recursive
least-squares method. Also, the rate of convergence tends to unity for large learning rate.

Applying the Routh-Hurwitz criterion, the stability requirements due to the effects of unmodeled dynamics result
in the following matrix inequalities

I
ε
−A +(1+ ξ )−1 ΓαI > 0 (70)

[

I
ε
−A +(1+ ξ )−1 ΓαI

][(

ηBGG∗−1B>

ε
− I
)

A +(1+ ξ )−1 Γα
(

I
ε
−A

)]

− (1+ ξ )−1 Γα
ε

(

ηBGG∗−1B>− I
)

A > 0 (71)

(1+ ξ )−1Γα
ε

(

ηBGG∗−1B>− I
)

A > 0 (72)

It can be shown that these inequalities are satisfied forA < 0, P > 0, and smallε andη . Therefore, the recursive
least-squares method would tend to be less sensitive to unmodeled dynamics than the current neural net direct adaptive
control.

Figures 9, 10, and 11 illustrate the potential improvementsdue to the direct adaptive control with the recursive
least-squares neural net weight update law. As can be seen from Fig. 9, the recursive least-squares learning provides
a significant improvement in the tracking performance of theadaptive control. Moreover, increasing the learning rate
does not cause high frequency oscillations as in the case of the current direct adaptive control approach. This is in
agreement with the analysis which shows that the roots2 corresponding to the neural net weight update law does not
have an imaginary part.

Figure 10 is the plot of the selected neural net weights. The weights exhibit a nice convergence behavior. Increasing
the learning rate causes the weight to move closer to the truevalues of the system parameters for which the adaptive
control is compensating. In contrast, the neural net weights in the current adaptive control approach do not converge
correctly to their true values, as shown in Fig. 5.

Figure 11 shows the recursive least-squares learning in thepresence of unmodeled dynamics. In contrast with
the current method as shown in Fig. 8, the recursive least-squares learning is able to handle unmodeled dynamics
much better. Increasing the learning rate does not cause increased high frequency oscillations. So the sensitivity to
unmodeled dynamics is much less of an issue with the recursive least-squares learning. This behavior is in agreement
with the analysis.
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Fig. 9 - Pitch Rate with RLS Method
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Fig. 10 - Neural Net Weight Learning with RLS Method
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Fig. 11 - Pitch Rate with RLS Method and Unmodeled Dynamics(ε = 0.1, η = 0.1)

3.2 Hybrid Direct-Indirect Adaptive Control with Recursiv e Least-Squares

Another adaptive control architecture that has recently been proposed is hybrid adaptive control [18]. This architecture
is as shown in Fig. 12. The hybrid adaptive control blends both direct and indirect adaptive control methods together
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to provide a more effective control strategy. The indirect adaptive control is responsible for updating the dynamic
inversion controller with a more accurate plant model whichis estimated by the recursive least squares method. Any
residual tracking error as a result of the dynamic inversioncan then be handled by the neural net direct adaptive control.

Fig. 12 - Hybrid Adaptive Flight Control

The dynamic inversion controller is updated by the estimated plant model at every time step according to

δ = Ĝ−1(ω̇d − F̂1ω − F̂2σ
)

(73)

whereF̂1 = F∗
1 +∆F̂1, F̂2 = F∗

2 +∆F̂2, Ĝ = G∗+∆Ĝ are the estimated plant matrices of the true plant model andĜ is
assumed to be invertible.

The hybrid adaptive control performs explicit parameter identification of the plant model to account for changes
in aircraft dynamics. The parameter identification processis performed by the recursive least-squares method

Φ̇ = −(1+ ξ )−1Rθ
(

θ>Φ− ε̂>
)

(74)

whereΦ> =
[

W>
ω W>

σ W>
δ
]

is a neural net weight matrix andθ> =
[

ω>β>
ω σ>β>

σ δ>β>
δ

]

is an input

matrix
The estimated plant matrices are then updated as

F̂1 = F∗
1 +WT

ωβ ω (75)

F̂2 = F∗
2 +WT

σ β σ (76)

Ĝ = G∗ +WT
δ β δ (77)

The performance of the hybrid adaptive control is very similar to the recursive least-squares direct adaptive control
with large values ofR. At smaller values ofR, the adaption is shared between the neural net direct and indirect
adaptive control blocks. Thus, the learning rate of the neural net direct adaptive control can be turned down to reduce
potential excitation of unmodeled dynamics as discussed earlier. The advantage of the hybrid adaptive control method
is the ability to be able to estimate plant model parameters on-line. Direct adaptive control approaches accommodate
changes in plant dynamics implicitly but do not provide an explicit means for ascertaining the knowledge of the
plant dynamics. By estimating the plant model parameters explicitly using the recursive least-squares neural net
learning law, an improved knowledge of the plant dynamics can be obtained that can potentially be used to develop
fault detection and isolation (FDI) strategies, and emergency flight planning to provide guidance laws for energy
management in the presence of hazards.
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4 Verification and Validation Challenges for Adaptive Systems

Creating certifiable adaptive flight control systems represents a major challenge to overcome. Adaptive control systems
with learning algorithms will never become part of the future unless it can be proven that this software is highly safe
and reliable. Rigorous methods for adaptive software verification and validation must therefore be developed by
NASA and others to ensure that control system software failures will not occur, to verify that the control system
functions as required, to eliminate unintended functionality, and to demonstrate that FAA certification requirements
can be satisfied.

The ability of an adaptive control system to modify a pre-designed flight control system is at the same time a
strength and a weakness. On the one hand, the premise of beingable to accommodate vehicle degradation is a major
selling point of adaptive control since traditional gain-scheduled control methods are viewed to be less capable of
handling off-nominal flight conditions outside their design operating points. Nonetheless, gain-scheduled control
approaches are robust to disturbances and secondary dynamics. On the other hand, as previously shown in this paper,
potential problems with adaptive control exist with regards to high-gain learning and unmodeled dynamics. Clearly,
adaptive control algorithms are sensitive to these potential problems as well as others that have not been considered
such as actuator dynamics, exogenous disturbances, etc. Moreover, a certifiable adaptive flight control law must be
able to accommodate these effects as well as other factors such as time delay, system constraints, and measurement
noise in a globally satisfactory manner.

4.1 Simulation of Adaptive Control Systems

Simulation will likely continue to play a major role in the verification of learning systems. Although many advanced
techniques, such as model checking, have been developed forfinite state systems, there application to hybrid adaptive
systems in very limited [25, 26]. Many aspects of adaptive systems learning, in particular convergenceand stability, can
only be analyzed with simulation runs that provide enough detail and fidelity to model significant nonlinear dynamics.
For example, stall upsets of an aircraft cannot be expressedas a linear model since this effect is highly nonlinear and
unsteady. Simulation provides a fairly rapid way to accomplish the following tasks:

• Evaluation and comparison of different learning algorithms.

• Tuning control gains and learning of weight update law.

• Determination of how much learning is actually accomplished at each step.

• Evaluation of the effect of process and measurement noise onlearning convergence rate.

• Determination of learning stability boundaries.

• Testing algorithm execution speed on actual flight computerhardware.

• Conducting piloted evaluation of the learning system in a flight simulator.

• Simulating ad-hoc techniques of improving the learning process, such as adding persistent excitation to improve
identification and convergence, or stopping the learning process after error is less than a specified error, or after
a specified number of iterations.

Simulations differ primarily in the fidelity with which the plant is modeled. Higher fidelity simulations require more
complicated mathematical models of the adaptive system andalso a greater use of actual (and expensive) controller
hardware. In order to be cost-effective, the lowest fidelitytestbed are usually used as much as possible. The behavior
of simple linear models are compared to that of higher fidelity nonlinear models when they are available to ensure that
analysis performed using the linear model still applies. Table 1 presents one representation of the simulation hierarchy
from lowest to highest fidelity.

The lowest fidelity simulations are usually run on a desktop computer in the Matlab/Simulink environment. This
simulation typically includes the control laws and a linearplant which accounts for the aircraft aerodynamics, mass
properties, and engine thrust model. The linear model is most often used in early control law design and analysis or to
calculate linear gain and phase margins. It is important to note that nonlinear adaptive controllers can be represented
linearly using the error bounded analysis as shown above, but the linear model may not provide results with the
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required accuracy. Nonetheless, the linear model can provide a very useful insight to the stability and convergence
of the nonlinear adaptive controllers. Changes to the plantmodel can be simulated by changing the system transfer
function from one matrix to another with varying frequency.By varying the amount of change, the stability boundaries
of the system can be determined. Concomitant with this process is an evaluation of the system tuning parameters that
are used in the learning algorithm. The desktop simulation environment provides a quick way to compare different
learning algorithms and controller architectures. Only the most promising designs need be simulated using higher
fidelity simulations.

Higher fidelity simulation testbeds use actual flight hardware (or even aircraft) in the simulation of the control
loop, and are often run in dedicated computing environmentswith a cockpit and out-the-window graphics (e.g., see
[27, 28]). These simulations may include a cockpit to interface with the pilot and can either be fixed-based or motion-
based. Motion-based simulators additionally provide the pilot with some of the physical cues of actual flight. Typically
they contain software models of nonlinear aerodynamics, engine dynamics, actuator models, and sensor models. The
most common elements of these testbeds are some of the flight processors, communication buses and a cockpit. Using
the actual aircraft flight computer is a particularly important advantage of this simulation, since all computers tend
to handle exceptions differently and may have differences in their numerical routines. Either the actual aircraft may
be tied into the nonlinear simulation, or an iron-bird aircraft may be used to provide actuators, sensor noise, actual
flight wiring, and some structural interactions. These testbeds allow for a complete check out of all interfaces to the
flight hardware, timing tests, and various failure modes andeffects analysis (FMEA) testing, which is not possible in
a simpler configuration.

Testbed Pilot Interface Fidelity Model Fidelity Test Environment

Desktop Computer Low Low
Linear/nonlinear

models using Matlab
or Simulink

Workstation Low Low to Medium
Can interface with

high-fidelity modeling
tools

Fixed-Based
Simulator

Low to Medium Medium
Dedicated aircraft

model and hardware

Hardware-in-the Loop
Simulator

Medium to High Medium to High
Actual aircraft target
flight computer and

cockpit

Aircraft-In-the-Loop
Simulator

High Medium to High
Simulator with actual
flight computer and

ground-based aircraft

Motion-Based
Simulator

High High
Nonlinear simulation
with moving cockpit

Table 1 - Simulation Environments

4.2 Approach for Adaptive System V&V

The current approach is to verify a neural net adaptive flightcontrol over an exhaustive state space using the Monte
Carlo simulation method. The state space must be carefully designed to include all possible effects that an aircraft
can encounter in flight. By sensitivity analysis, some of these effects may be considered less significant that could
be eliminate to reduce the dimensionality of the state space. For example, aeroelastic effects can be significant for
flight vehicles. However, high frequency flexible modes of aircraft structures are generally not easily excitable, thus
their effects could be discounted. Other modes, however, may be significant such as those that appear inside the flight
control bandwidth. In addition, other dynamical effects should be considered including actuator dynamics, turbulence,
sensor noise, digital signal processes that give rise to time delay, etc.

Initial simulations are usually conducted on a desktop PC inthe Matlab/Simulink environment. The objective is
to test the learning behavior using an ideal model, which maybe simply the one used by the theoretical development.
Initially, the controller should be operated without any failure nor any learning to acquire baseline performance and
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to demonstrate controller stability. Once this has been shown, the ability of the control system to learn should be
explored. This may be investigated in a two-step process:

1. Initially, a “failure” or step-change is introduced intothe system in order to test the learning under ideal condi-
tions. The change could be a change in the A matrix (damage simulation), or a change in the B matrix (actuator
failure), or both. In the initial stage, no measurement noise (sensor noise) or process noise (unmodeled dy-
namics) is introduced. In addition, the controller is allowed to give persistent excitation commands in order to
provide the ideal environment for rapid learning convergence. Hence the objective is not to demonstrate con-
troller robustness, but rather only to document how well thelearning algorithm can learn under ideal conditions.
If the simulation indicates that learning is not occurring even under ideal conditions, then effort should be made
to improve the learning by modifying the control law or the neural network architecture.

2. Once the learning under ideal conditions has been judged to be acceptable, the next phase of the learning
simulation is to test learning under non-ideal conditions.Measurement noise should be added to the simulation
to estimate the level of persistent excitation required to maintain convergent learning. As indicated above by
the theory, the learning rate will likely be a function of thelevel of persistent excitation. In some severe cases,
however, the addition of measurement noise may destabilizethe learning process even for large amounts of
persistent excitation.

Once the learning algorithm is felt to operate successfullyin a simulated environment, then the performance of the
learning system can be evaluate while using the controller to reject disturbances. These simulations may reveal the
necessity to disable learning as the adaptation errors become low. This could be done to prevent the learning algorithm
from seeking to map measurement noise to small changes in thecontrol input. The choice of learning rate and
neural net weight limits will also be evaluated in simulation to guide gain selection for actual testing. Although
higher learning gains tend to increase the speed of learning, high gains also tend to promote instability of the learning
algorithm as discussed earlier. Another problem is that defining the stability boundaries of multiple-input, multiple-
output adaptive control systems can require many test points at each of many possible operating conditions. For this
reason, analytical methods that can determine learning system stability are needed. The analysis presented in this
paper can provide an analytical method to help guide the analysis of stability boundaries.

A problem encountered in performing simulation is proving adequate test coverage. Coverage concerns with
program execution of flight control software to ensure that its functionality is properly designed. In order to help
simulation achieve greater coverage, various tools and methods are being developed to implement simulation in a
more systematic manner. One such tool is Automated Neural Flight Controller Test (ANCT) [29] which is developed
in the MATLAB environment. ANCT has been designed to help test engineers evaluate different flight conditions,
quantify performance, and determine regions of stability.ANCT is designed to analyze a MATLAB/Simulink model
using all possible combinations of the model inputs parameters. By introducing random numbers into the test inputs
and parameters, a Monte Carlo simulation can be performed toestimate the sets of model parameters and inputs that
correspond to the control system responses that are of interest. ANCT evaluates the time-series outputs during a
specified time or condition window, and then computes a performance score that represents the degree to which the
control system responses meet performance specifications.

Another simulation tool is Robustness Analysis for ControlLaw Evaluation (RASCLE) which has also been de-
veloped to help explore different combinations of learningsystem parameters and operating conditions [30]. RASCLE
can interface with existing nonlinear simulations and incorporates search algorithms to uncover regions of instability
with as few runs as possible. RASCLE uses a gradient algorithm to identify the direction in the uncertainty space along
which the stability of the control system is most rapidly decreasing. RASCLE provides an intelligent simulation-based
search capability that can be used in Monte Carlo simulationevaluations [31].

5 Future Research

5.1 Adaptive Control

Despite the extensive progress made in adaptive control research from the 1970’s until the present time, this technology
has not been adopted for use in primary flight control systemsin mission-critical or human-rated flight vehicles.The
following quote from the IRAC Project Proposal [1] highlights the challenges with adaptive control: “ In 2004 a NASA
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Aeronautics “Adaptive Controls Task Force” with representation from NASA Ames, Dryden, Glenn, and Langley
observed that existing flight control technology is not adequate to handle large uncertainties and system changes,
unknown component failures and anomalies, high degree of complexity, non-linear unsteady dynamics, revolutionary
vehicles, and novel actuators and sensors. The Task Force further observed that uncertainties and system changes can
be continuous or discrete, such as varying flight conditions, abrupt failures, and structural damage, to name a few.”

The existing approach to adaptive control synthesis generally lacks the ability to deal with integrated effects of
many different flight physics as pointed out above. In the presence of hazards such as damage or failures, flight vehi-
cles can exhibit numerous coupled effects such as aerodynamics, vehicle dynamics, structures, and propulsion. These
coupled effects impose a considerable amount of uncertainties on the performance of a flight control system. Thus,
even though an adaptive control may be stable in a nominal flight condition, it may fail to maintain enough control
margins in the presence of these uncertainties. For example, conventional aircraft flight control systems incorporate
aeroservoelastic filters to prevent control signals from exciting wing flexible modes. If changes in the aircraft config-
uration are significant enough, frequencies of the flexible modes may be shifted that render the filters ineffective. This
would allow control signals to potentially excite flexible modes which can cause problems for a pilot to maintain good
tracking control. Another example is the use of slow actuators such as engines as control effectors. In off-nominal
events, engines are sometimes used to control aircraft. This has been shown to enable pilots to maintain control in
some emergency situations such as the DHL incident involving an Airbus A300-B4 in 2003 that suffered structural
damage and hydraulic loss over Baghdad [21], and the Sioux City, Iowa accident involving United Airlines Flight 232
[22]. The dissimilar actuator rates can cause problems withadaptive control and can potentially lead to pilot-induced
oscillations (PIO) [23].

To adequately deal with these coupled effects, an integrated approach in adaptive control research should be taken.
This integrated approach will require developing new fundamental multidisciplinary methods in adaptive control and
modeling. As discussed earlier, unmodeled dynamics are a source of significant uncertainties that can cause an adap-
tive control algorithm to become unstable if high-gain learning is used. Thus, a multidisciplinary approach in adaptive
control research would be to develop fundamental understanding of the structures of these secondary dynamics which
would bring together different disciplines such as aerodynamics and structures. With a better understanding of the sys-
tem uncertainties, more effective adaptive control methods could be developed to improve robustness in the presence
of uncertainties.

Another future research goal is to extend the concept of linear control margins to adaptive control disciplines.
Adaptive control methods are generally time-domain methods since Lyapunov analysis works in time domain. Yet,
robust control is usually done in the frequency domain. Robust control requires a controller to be analyzed using
the phase and gain margin concepts in the frequency domain. With this tool, an adaptive control can be analyzed to
assess its control margin sensitivity for different learning rates. This would then enable a suitable learning rate to be
determined. By incorporating the knowledge of unmodeled dynamics, a control margin can be evaluated to see if it is
sufficient to maintain stability of a flight control system inthe presence of potential hazards.

5.2 Verification and Validation

Verification and validation research is viewed as a key research to enable adaptive control to be operational in future
flight vehicles. V&V processes are designed to ensure that adaptive systems function as intended and the consequences
of all possible outcomes of the adaptive control are verifiedto be acceptable. Software certification is a major issue
that V&V research is currently addressing. Some of the future research in software certification for adaptive control
are discussed as follows:

• Model Checking for Hybrid Adaptive System:

Over the last decade, the formal method of model checking hasbecome an important tool for the verification of
finite state automata. Model checkers have found considerable applications for outer-loop adaptive control sys-
tem verification. They have been useful for verification of autonomous systems such as NASA Remote Agent
and K9 Mars Rover [32], and by Rockwell Collins to provide verification of the mode logic of the FCS 5000
flight guidance system being developed for use in business and regional jet aircraft [33]. The outer-loop con-
troller of these programs use planners and schedulers to coordinate the actions of multiple program threads that
execute in parallel. A future challenge is to extend the technique of model checking to verification of inner-loop
control and learning adaptation. These processes are generally continuous systems, not finite state automata.
Nevertheless, some recent progress has been made attempting to apply the technique of hybrid model checking
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to continuous systems. Ref [26] describes an application ofJava PathFinder to the control of a robotic vehicle.
The vehicle dynamics are modeled in the time domain as a set offirst order differential equations. The execution
of the inner-loop controller is controlled by an outer-loopautonomous agent planner and scheduler. Although
the continuous variables could assume an infinite number of values, thereby presenting a state explosion prob-
lem for the model checker, the use of Java PathFinder is made possible through representing theses values as
discrete quantities. The use of an approximation function converts the continuous variables into discrete val-
ues. The idea is similar to rounding a decimal number to the nearest integer, only in this case, the truncation is
considerably coarser. With this abstraction of the continuous space, the variables can be made to take on rela-
tively few values. This allows for the recognition of previous “states” in the model checking sense of the word,
and hence an exploration of the continuous model checking space becomes possible. Of course, this search is
exhaustive only to the extent the approximation function isvalid. If the approximation function is too coarse,
important states will likely be missed.

• Program Synthesis Methods for Certifiable Code Generation:

In the future, it may be possible to use software tools to helpproduce certifiable code, including code for learning
systems. Although software produced by these tools would still undergo a formal certification process, the idea
is to generate certificates automatically together with thesoftware. As an example, AutoFilter is a tool being
developed at NASA Ames to automatically generate certifiable Kalman Filter code from high-level declarative
specifications of state estimation problems [34]. AlthoughKalman filters are widely used for state estimation
in safety-critical systems, the complex mathematics and choice of many tuning parameters make implementa-
tion a difficult task. The AutoFilter tool not only generatesKalman filter code automatically from high level
specifications, but also generates various human-readabledocuments containing both design and safety related
information required by certification standards. Program synthesis is accomplished through repeated applica-
tion of schemas, or parametrized code fragment templates and a set of constraints formalizing the template’s
applicability to a given task. Schemas represent the different types of learning algorithms. AutoFilter applies
rules of the logic backwards and computes, statement by statement, logical s or safety obligations which are then
processed further by an automatic theorem prover. To perform this step automatically, however, auxiliary anno-
tations are required throughout the code. AutoFilter thus simultaneously synthesizes the code and all required
annotations. The annotations thereby allow automatic verification and produces machine-readable certificates
showing that the generated code does not violate the required safety properties.

• Tools for On-line Software Assurance:

Although simulation test cases may discover problems, testing can never reveal the absence of all problems, no
matter how many high-fidelity simulations are performed. Itis for this reason that undiscovered failure modes
may lurk in the control system or be found at a test condition previously not simulated. To safeguard against
these failures, means of verifying in-flight software assurance should be developed. As one approach to this
problem, NASA Ames has developed a tool called the ConfidenceTool to analyze the probability distribution of
the neural network output using a Bayesian approach [35]. This approach combines mathematical analysis with
dynamic monitoring to compute the probability density function of neural network outputs while the learning
process is on-going. The Confidence Tool produces a real-time estimate of the variance of the neural network
outputs. A small variance indicates the network is likely producing a good, reliable estimate, and therefore,
good performance of the neural network software can be expected. The confidence tool can be used for pre-
deployment verification as well as a software harness to monitor quality of the neural network during flight. The
outputs of the Confidence Tool might be used as a signal to stopand start neural network adaptation or be used
to provide a guarantee of the maximum network error for certification purposes.

6 Conclusions

This paper has presented a stability and convergence analysis of a neural net adaptive flight control. An error bound
analysis has been introduced that enables a linear dynamicsto be extracted from the nonlinear adaptive control algo-
rithm for stability and convergence analysis of the neural net weight update law. The effect of the learning rate has
been studied by analysis and confirmed by simulations. It hasbeen shown that high-gain learning will likely result
in high frequency oscillations that can excite unmodeled dynamics. For certain classes of unmodeled dynamics, it is
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possible that a high-gain learning can become unstable. A potential improvement has been presented. This improve-
ment, the recursive least-squares learning law, is based onoptimal estimation and uses modeling error for adaptation.
The analysis shows that high frequency oscillations can be avoided with this learning law. Furthermore, the effect
of unmodeled dynamics has been shown to be less sensitive with this learning law. This paper also has presented
some thoughts on the verification and validation approach asan enabling technology that will enable adaptive flight
control to be realized in future missions. Current challenges in adaptive control and verification and validation remain
to be obstacles to realizing the goal of certifiable adaptivecontrol systems. Future research in adaptive control must
be multidisciplinary and integrated to better deal with many sources of uncertainties that arise from coupled effects
manifested in flight in the presence of hazards. In this paradigm, adaptive control methods would need to be cog-
nizant of system constraints imposed by dissimilar physical effects while maintaining robustness in the presence of
uncertainties. The future research in these disciplines can bear fruits and perhaps will enable adaptive control to be
operational someday in the near future.
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