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This paper provides a discussion of challenges of neural netaptive flight control and an examination of
stability and convergence issues of adaptive control algahms. Understanding stability and convergence issues
with adaptive control is important in order to advance adaptive control to a higher technology readiness level.
The stability and convergence of neural net learning law arénvestigated. The effect of unmodeled dynamics
on learning law is examined. Potential improvements in thedarning law and adaptive control architecture
based on optimal estimation are presented. The paper provigs a brief summary of the future research of the
Integrated Resilient Aircraft Control (IRAC) in the area of adaptive flight control. The paper also discusses
challenges and future research in verification and validatn.

1 Introduction

While air travel remains the safest mode of transportationidents do occur on rare occasions with catastrophic con-
sequences. For this reason, the Aviation Safety Programriine Aeronautics Research Mission Directorate (ARMD)
at NASA has created the Integrated Resilient Aircraft CorftRAC) research project to to advance the state of aitcraf
flight control and to provide onboard control resilience émisuring safe flight in the presence of adverse conditions
such as faults, damage, and/or upsets [1]. These hazardghtscthinditions can impose heavy demands on aircraft
flight control systems in their abilities to enable a pilotstabilize and navigate an aircraft safely. The flight cantro
research to be developed by the IRAC project will involve gndifferent disciplines including aerodynamics, aircraft
flight dynamics, engine dynamics, airframe structural ayita, and others. During off-nominal flight conditions, all
these conditions can couple together to potentially ovetmta pilot’s ability to control an aircraft. The IRAC re-
search goal is to develop vehicle-centric multidisciplinadaptive flight control approaches that can effectivelgld
with these coupled effects.

Modern aircraft are equipped with flight control systems treve been rigorously field-tested and certified by the
Federal Aviation Administration. Functionally, an airftriéight control system may be decomposed into an inner-loop
and an outer-loop hierarchy. The outer-loop flight contsalésponsible for the aircraft guidance and navigation. It
generates flight path or trajectory of the aircraft positi@sed on pilot’s inputs to the Flight Management System
(FMS). The FMS provides pilots with capabilities for perfing pre-flight planning, navigation, guidance, and per-
formance management using built-in trajectory optim@atiools for achieving operational efficiencies or mission
objectives. The inner-loop flight control has a dual respulity in tracking the trajectory commands generated by
the outer-loop flight control and, more importantly, in sliang the aircraft attitude in the pitch, roll, and yaw axe
Because the aircraft must be stabilized rapidly in an offiimal event such as upsets or damage, the inner-loop flight
control must have a faster response time than the outerfligbp control.

In a damage scenario, some part of a lifting surface may besmparated and, as a result, may cause an aircraft's
center of gravity (C.G.) to shift unexpectedly. Furthermochanges in aerodynamic characteristics can render a
damaged aircraft unstable. Consequently, these effentiead to a non-equilibrium flight that can adversely affect
the ability of a flight control system to maintain aircraféisility. In other instances, reduced structural rigidify o
a damaged airframe may manifest in elastic motions that mt@nfére with a flight control system, and potentially
can result in excessive structural loading on criticalddtsurfaces. Thus, in a highly dynamic, off-nominal flight
environment with many sources of uncertainty, a flight colrtystem must be able to cope with complex and uncertain
aircraft dynamics.



The goal of the IRAC project is to arrive at a set of validatedtidisciplinary integrated aircraft control design
tools and techniques for enabling safe flight in the presefeglverse conditions [1]. Aircraft stability and maneu-
verability in off-nominal flight conditions are critical taircraft survivability. Adaptive flight control is identdd as
a technology that can improve aircraft stability and mareability. Stability of adaptive control remains a major
challenge that prevents adaptive control from being impelet®d in human-rated or mission-critical flight vehicles.
Understanding stability issues with adaptive control,deerwill be important in order to advance adaptive control
technologies. Thus, one of the objectives of IRAC adaptomtiol research is to develop metrics for assessing sta-
bility of adaptive flight control by extending the robust txah concept of phase and gain margins to adaptive control.
Furthermore, stability of adaptive control and the leagréhgorithms will be examined the presence of unmodeled
dynamics and exogenous disturbances. Another objectitleedfRAC research is to advance adaptive control tech-
nologies that can better manage constraints placed on ittraféi These constraints are dictated by limitations of
actuator dynamics, aircraft structural load limits, fregay bandwidth, system latency, and others. New concepts of
adaptive control will be developed to address these cdntdra

2 Convergence and Stability of Neural Net Direct Adaptive Hght Control

Over the past several years, various adaptive control igaba have been investigated [4, 5, 7, 8, 9, 10, 13, 15, 11].
Adaptive flight control provides a possibility for maintaig aircraft stability and performance by means of enabling
a flight control system to adapt to system uncertainties.rivibdle, a large area of research in intelligent control has
emerged and spans many different applications such as@pécnd aircraft flight control. An essential element of
an intelligent flight control is a neural network system dasid to accommodate changes in aircraft dynamics due
to system uncertainties. Neural network is known to be a goudersal approximator of many nonlinear functions
that can be used to model system uncertainties. In the ingi&tion of an intelligent flight control, the neural
network is usually incorporated within a direct adaptivattol architecture to provide an augmentation to a pilot
command. The neural network estimates the system undiégtasnd outputs directly a command augmentation
signal that compensates for changes in aircraft dynamics.

Research in adaptive control has spanned several decadesability robustness in the presence of unmodeled
dynamics, parameter uncertainties, or disturbances dsag/éhe issues with verification and validation of adaptive
flight control software still pose as major challenges[5, 2daptive control laws may be divided into direct and
indirect approaches. Indirect adaptive control methogectly compute control parameters from on-line learning
neural networks that perform plant parameter estimatidn &rameter identification techniques such as recursive
least-squares and neural networks have been used in inddaptive control methods [7]. In recent years, model-
reference direct adaptive control using neural networkdieen a topic of great research interest [8, 9, 10]. Lyapunov
stability theory has been used to test theoretical stgluifineural network learning laws.

NASA has been developing an intelligent flight control tealogy based on the work by Rysdyk and Calise [8].
An architecture of the intelligent flight control is as shoinrfig. 1.
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Fig. 1 - Neural Net Adaptive Flight Control Architecture

Recently, this technology has been demonstrated on an Fiteffiaircraft [12]. The intelligent flight control
uses a model-reference, direct adaptive, dynamic inversimtrol approach. The neural network direct adaption
is designed to provide consistent handling qualities withequiring extensive gain-scheduling or explicit system



identification. This particular architecture uses bothfpatned and on-line learning neural networks and a refaren
model to specify desired handling qualities. Pre-trainegral networks are used to provide estimates of aerodynamic
stability and control characteristics. On-line learnireyiral networks are used to compensate for errors and adapt to
changes in aircraft dynamics. As a result, consistent limgdualities may be achieved across flight conditions.

Recent flight test results demonstrate the potential bengffiadaptive control technology in improving aircraft
flight control systems in the presence of adverse flight damdi due to failures [19]. The flight test results also point
out the needs for further research to increase the unddimstaaf effectiveness and limitations of the direct adagtiv
flight control.

One potential problem with the neural net direct adaptigghflcontrol is that high gain control used to facililate
aggressive learning to reduce the error signal rapidly cdeargially result in a control augmentation command that
may saturate the control authority or excite unmodeled dyosof the plant that can adversely affect the stability of
the direct adaptive learning law.

2.1 Direct Adaptive Control Approach

Adaptive flight control is designed to accommodate paramatrd system uncertainties in the presence of adverse
conditions such as upset, failures, and damage. The treratiidynamics may be described by a linear model about
its trim point in a flight envelope

W=0"+Aw=Fiw+F,0+Gd Q)

wherew=|[p q r ]T is the aircraft angular rate; = [ Aa AR A@ }T is an incremental trim state vector to
maintain trim conditionAd is the unknown aircraft dynamics due to parametric unagtitss, andv* is the nominal
aircraft dynamics described by

W' =Fiw+F;0+G"d 2

whereFj, F5, andG* as the nominal plant matrices which are assumed to be known.
The input to the dynamic inversion controller is a desireckteration command

Wy = Fiw+F;0+G*0 3)
The difference in the aircraft dynamics gives rise to the aliogd errore which is defined as
£=W— Wy =AF10+AF,0 +AGS (4)

The modeling error that exists in the controller causes troeadt states to deviate from its desired states. This
results in a tracking error dynamics which are described by

e=Ae+B(Uy—¢€) (5)

wheree = [ fé wedT e ]T is a proportional-integral tracking error withe = wm — w defined as the rate error
signal which is the difference between a reference modelwat and the actual aircraft rateyq is the neural net
direct adaptive signal, anl andB are matrices defined as

SERAEEL

The reference model ratey, is described by a first order model that gives the flight cdigira suitable handling
characteristic. To compensate for the parametric unceigai the neural net direct adaptive signg| uses a linear-
in-parameter sigma-pi network proposed by Rysdyk and €& This network is further modified [18] to include
additional inputs as shown in Fig. 2.
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Fig. 2 - Sigma-Pi Neural Network

Associated with the neural network is a set of weights thagaijusted on-line in order to enable the flight control
system to adapt to changes in aircraft dynamics. The neatalirect adaptive signal and the weights are computed
by

Uad = WTB (7)

W =T (ﬁeTPB+uHeTPBHW) @)

whererl is the learning ratey is the e-modification term@ is a basis function comprising neural net inp@s
i=1,...,6, andP is the solution of the Lyapunov equation

ATP+P'A=-Q 9)

whereQ is a positive-definite matrix.

2.2 Stability and Convergence

A key challenge with neural net adaptive flight control is taka the learning algorithm sufficiently robust. Robustness
relates to the stability and convergence of the learningralygm. Stability is a fundamental requirement of any
dynamical system that ensures a small disturbance woulgnost to a large deviation from an equilibrium. For
systems with high assurance such as human-rated or misstma flight vehicles, stability of adaptive systems fs o
paramountimportance. Without guaranteed stability, sulaptive control algorithms cannot be certified for operati

in high-assurance systems. Unfortunately, the stabilitadaptive controllers in general and neural net adaptive
controllers in particular remains unresolved. The notiba self-modifying flight control law using an artificial nealr
net learning process whose outputs may be deemed as namuohéstic is a major huddle to overcome.

Another criterion for robustness is the convergence of thea net learning algorithm. Neural networks are used
as universal nonlinear function approximators. In the acdg¢he adaptive flight control, the networks approximate
the unknown modeling error that is used to adjust effegtitied control gains to maintain a desired handling quality.
Convergence requires stability and a proper design of thghv@pdate law. It is conceivable that even though a
learning algorithm is stable, the neural net weights maycoaverge to correct values. Thus, accurate convergence is
also important since this is directly related to the flightirol performance.

Referring to Eqg. (5), if the direct adaptive signa}; could perfectly cancel out the modeling erigrthen the
tracking error would tend to zero asymptotically. Therefadeally the desired acceleratian would perfectly track
the reference model acceleratiap,. In practice, there is always some residual modeling err¢hé adaptation, so
asymptotic stability of the tracking error is not guarantemstead, a weaker uniform stability of the tracking error
can be established by the Lyapunov stability theory. Thektrey error dynamics is then bounded from below by

e<Ae+BW B +Ae (10)

whereW is the neural net weight matrix variation aAdis the approximation error defined as

se=sygs (w5 o) <78 ay
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whereW* is the ideal weight matrix which is equal to
W =W —-W (12)

It can be shown by the Lyapunov analysis [18] that there gxi8tneighborhood that the tracking error is attractive

to and remains bounded from below
s =infllel = 55 o7 (4l18el +uWeI?) (13)
wherep denotes the spectral radius of a matrix.

Thus, if d is sufficiently small, then the tracking error will be reaably close to zero. This means that the neural
net approximation error is also small and the tracking perémce is good.

The neural net weight update law in Eq. (8) is nonlinear duta¢oproduct term of the basis functighand the
tracking errore. Stability of nonlinear systems is usually analyzed by thedunov method. However, the concept of
phase and gain margin for linear systems cannot be extendwexhtinear adaptive control. The linear control margin
concept can provide understanding stability margin of &dagontrol that enables a more robust adaptive learning
law to be synthesized. This is only possible if the neurawmght update law is linearized at a certain point in time
with the neural net weights held constant. As adaptation@ssehe neural net weights vary with time. Hence, the
time at which to freeze the neural net weights (for calcalgtmust correspond to a worst-case stability margin. This
can be a challenge. Therefore, this paper introduces a netochéor analyzing stability and convergence of the
nonlinear neural net weight update law using error boundyaisa which enables the dominant linear component of
the nonlinear neural net weight update law to be extractad f£q. (8) without linearizing the adaptive control law at
an instance in time. Towards that end, we note that Eq. (8peaxpressed as

% (B"W) =-r (B"pe’PB+u e PB|BTW)+B'W (14)

We define an error bound on the neural net adaptive signal as
A\;v:supHVN\/TB—FuHeTPBHW*TBH (15)
B
Then, the time derivative of the variation in the neural riagtive signal is bounded by

%(V\/TB) <-r (aBTPe—l—uHeTPBHVN\/TB)—i-AW (16)

wherea > 0 is defined as a level of persistent excitation (PE) suchtligafollowing PE condition is satisfied

|878] = %/thTBdT <a (17)

for B € %.

Thus, without sufficient persistent excitation and if thmedification parametetgr is not present, the neural net
weights will not necessarily converge. The persistenttakon essentially means that inputs to the neural network
must be sufficiently rich in order to excite system dynamicsriable a convergence to take place.

If the error bound is small, then the linear behavior of thégiveupdate law becomes dominant. Therefore, this
enables the stability and convergence to be analyzed irearlgense using the following equation

d e A B e AW
dt { WB ] = { ~raB'P —rullePB| ] [ Wp F [ By } (18)

The stability of the learning law thus requires the leadirgin® to be negative definite. This can be established
by computing its eigenvalues from the following charastiziequation

(A—N) (—FuHeTPBHI —/\)+raBBTP:o (19)



This is a matrix quadratic equation whose solution can oelgdmputed numerically since a general quadratic
matrix equation
x?+bx+c=0 (20)

wherex, b, c € [C" x C"] does not have the following solution

1
=] - 21
(3) ] (21)
where the square root is a matrix operator that operatessosiglenvalues of the radicand.

However, ifb andc are commutative, then Eq. (21) is the solution [24]. One sitiat Eqg. (19) is bounded from
above by

__2,
X=73

N2 — (A— Mu HeTPBH |) A—Tu HeTPBHA—H'a HBBTPHI -0 (22)

which satisfies the commutative property. Therefore, thatiom of this characteristic matrix equation is equal to

A

_A-Tule™PBl1 , [(A-Tp|leTPB1)*
- 2 4

2
+FuHeTPBHA—FaHBBTPHI] (23)

There exists a constapt> 0 such that the learning rate is bounded by

~vfasruferesn?|

4a|BBTP| 24)

Then it follows that
A<

A—Tul|le™PB|[I  A+Tul|le"PB|I
5 +

5 V1-y (25)
If A\ is negative definite, then the rate of convergence is estadiby the eigenvalues Afsince

-1
} < oML [ . e(0) } B { A B ] { De ] (26)

e
[v"vTB W (0)" B(0) ~raB™P —Tu|le"PB| A,

where® is a matrix of right eigenvectors of the leading matrix.

The equilibrium is therefore uniformly asymptotically lska and converges to

lim sup
t—oo B

e | A B T ne
(AN H_ H —raB™P —Tulle"PB|| ] [A~ H| 27)

By Holder’s inequality, the convergence radius can be esga@ as

Ae
Ay

. e _
tIir‘]osup’ Wp H <p(A 1) ‘ (28)

B
Thus, Ae and Ay, should be kept as small as possible for the tracking errorthadheural net weight matrix
variation to converge as close to zero as possible.
In order to obtain a convergence, stability of the trackimgreand neural net weight update law must be established
by the negative-definiteness of the eigenvalueA.afonsider the following cases:

1.yl
This corresponds to a small learning rate or slow adaptatitsing the first two terms of the Taylor series of
v/1—yand retaining linear terms &f, we have

4

A (Ag) ~ (1——

4)/\ (A) ~ A (A—raA*BBTP) (29)



|4

A(A2) < ~Tu e P + S Ara(A) = ¥ (Amaxm) (30)

_ meTPB[|A%]
4

a||BBTP||
whereA is the eigenvalue operator of a matrix.

The eigenvalues d%, correspond to the neural net weight update law which indgtitat the neural net learning
is very slow. The eigenvalues 6f; correspond to the tracking error dynamics. SiKge> 0 andK; > 0, then

A is Hurwitz, i.e., A possesses negative eigenvalues. Thus, the tracking gmamdcs are stable and the
eigenvalues ol\; are

2

MMM%L%ﬂ J%i(m—%ﬁz (31)

whereupon, to achieve good loop gains, the integral gainldhme set such that the negative real part of the
maximum eigenvalue is greatest or

K2
Ki> TP (32)
The convergence radius is then approximately equal to
. e 4 A
lim sup|| ~+ H < H ¢ H (33)
toe g || WP vIA (A)_w Dy
mex al[BBTP|

Sincey is small, the convergence radius is large and thus the neerabrk would not achieve a good conver-
gence.

It should be noted that a large valuerohas the same effect as slow adaptation since this correspoadsmall
value ofy. Thus, whileu tends to provide robustness to the adaptive control alguritt also slows down the
speed of learning of the neural network, thereby leadingtar ponvergence.

Y>> 1

This corresponds to a large learning rate or fast adaptatiynwhenu = 0. When the learning rate is large
andu # 0, the effect is equivalent to that with smalas discussed previously. Fpr= 0, the eigenvalues of the
tracking error dynamics and neural net weight update law Hezome more complex-valued

A :
A=A (5)asiv (34)
The convergence radius is then approximately equal to
. e 2 JaY
lim sup|| \~ <— © 35
| s | < | oy | %)

Sincey is large, the convergence radius is small and thus the neetabrk would have a good convergence.
If u 0, then in the limit for a very large learning rate, the nemetlweights in theory would converge to

-
nmmﬂﬁz—iﬁ;ﬂi (36)
e HllePB|
and the tracking error dynamics would become
. aBB'P
e<|A——— | e+A 37

Thus, in theory, a large learning rate would improve stgbilnd convergence. However, in practice there exists
a potential problem with a large learning rate. Equatior) &¥ws that increasing the learning rate to a large
value with g = 0 will result in a high frequency oscillation in the adaptsignal [20]. This high frequency



oscillation can result in excitation of unmodeled dynantizt may be present in the system and therefore can
lead to a possibility of instability since the effects of umeled dynamics are not accounted in the Lyapunov
analysis of the neural net weight update law [6]. Whe# 0, increasing the learning rate does not lead to a
high frequency oscillation which tends to improve robustédut the convergence is poorer. Thus, high-gain
learning should be avoided in adaptive control.

Another source of instability is measurement noise which also influence high-gain controllers to make
over-corrections. Stated loosely, the neural network thaps the spurious noise signals to small changes in
the control commands, leading to a loss of true learning asthbility. For this reason, learning is typically
disabled when the error falls below a certain value by apgly dead band.

To illustrate the effects of learning rate, a simulation ypasformed for a damaged twin-engine generic transport
model (GTM) [3], as shown in Fig. 3. A wing damage simulatioaswerformed with 25% of the left wing missing.
The neural net direct adaptive control is implemented tontadn tracking performance of the damaged aircraft. A
pitch doublet maneuver is commanded while the roll and yaesrare regulated near zero.

Fig. 3 - Generic Transport Model

Figure 4 illustrates the effect of learning rate without thenodification term, i.ey = 0. Without adaptation,
the performance of the flight control is very poor as signiftcavershoots occur. With adaptation, good tracking
performance can be obtained. As the learning rate incretisegracking error becomes smaller but high frequency
signals also appear that is consistent with the analysigeabo
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Figure 5 is a plot of selected neural net weights for vari@asring rates. As can be seen, large learning rate
causes high frequency oscillations in the weights. The emance of the neural net weightg 4 andW,, 5, associated
with linear elementg| and & for the pitch rate are poor. Neither of these weights wouldalty converge to their

correct values. Thus, convergence accuracy is not denavedtr
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Figure 6 illustrates the effect of the e-modification parteng. As u increases, the high-frequency amplitude
reduces but the tracking error becomes worse. Eventuailly, large enough value ofi, the learning essentially
ceases. Figure 7 is the plot of selected neural net weighesirig, with increasingu, the weights are driven to zero,
thereby reducing the learning of the neural network. Thisoissistent with the analysis above which shows the for
learning rate withu £ 0, the effect is essentially the same as that with small iegnrate.



2.3 Unmodeled Dynamics

Unmodeled dynamics are secondary dynamics that are igfmotad system dynamics. Usually, the small effects of
unmodeled dynamics can be quite important, but sometingesatrexplicitly accounted for in a control design due to
the complexity of the physical modeling. An example of setany dynamics is the structural dynamics of the airframe
undergoing elastic deformation in flight. Typically, if teentroller possesses sufficient gain and phase margins, the
the controller can be verified during validation to ensum this sufficiently robust to safeguard against potentiall
destabilizing effects of unmodeled dynamics.

Unmodeled dynamics can have a profound effect on the dtabflithe learning algorithms for adaptive control.
Even though an adaptive control algorithm may demonsttatslgy for a dominant system dynamics, it can become
unstable when a small unmodeled dynamics is present in #ieray This can be shown by considering the following
aircraft dynamics

Ww=Fiw+F,0+Gd-z (38)

wherez is a small parasitic state that represents the effects obdefad dynamics that have a certain property which
can be described by
ez=-z—nGod (39)

whereg > 0 andn > 0 are small parameters. Additionally, let the measuremetpiud of the aircraft be the angular
rate vector

y=w (40)
Then, the unmodeled dynamics are expressed as
£7< —z—nGG**l(BTAeJrv”vTB) teh, (41)
where
GG*71 W*T _ OJ
A; = sup d ( & m) (42)
B £

The unmodeled dynamics affect the tracking error dynantceraling to

e<Ae+BW ' B+Bz+Ae (43)

The dynamics of the combined system are bounded by

d e A B B e JAVS
G| WB | < —FfaB'™P  —Tpulle'PB|| 0 WTB |+ Ay (44)
z -1cGB'A -IlcGt -1 z A,

We consider the case when= 0. The characteristic equation is obtained as

s+ (IE —A) S+ (%BGG*lBTA — % + raBBTP) s+ @ (1-nGG*YHB'P=0 (45)

Applying the Routh-Hurwitz criterion, the following matrinequalities are required for stability of the system

é—A>0 (46)

('— —A) <QBGG*1BTA _A + raBBTP> B (I-nGc*hHB'P>0 (47)
& & & &

@ (I-nGc*hHB'P>0 (48)

Inequality (46) is satisfied identically singeis Hurwitz. Inequality (48) is also satisfied sineés positive-definite
andn is small. Inequality (47) requires the learning rate tosfptihe following inequality

Fa (r]BGG*’lBTP—i— eABBTP) < %D (49)
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where
D=(I—¢A) (nBGGHBTA—A) >0 (50)

Thus, if the learning rate is sufficient large and the leftchaitle expression is positive-definite, it is conceivable
that stability requirements could be violated, therebuitagy in instability of the adaptive control algorithm. &zirly,
large learning rate can lead to a fast adaptation and langesiia statez which acts as a disturbance to the dominant
system dynamics, thereby leading to faulty adaptationddiatresultin unbounded solutions. For stability and bodnde
solutions, the learning rate should be kept small such bieaspeed of adaptation should be slow relative to the speed
of the parasitic state [6]. However, small learning ratd meisult in less than desired command-tracking performance
Therefore, a suitable learning rate is one that striveshese a reasonable balance between stability and perfa@nan
of an adaptive flight control. In essence, this means thaateptable gains for a stable neural net learning law must
be found by trial and error, yet guided by theory and knowacdtires of unmodeled dynamics, if possible.

Figure 8 illustrates the effects of unmodeled dynamics enl¢larning of the adaptive control. The unmodeled
dynamics result in a poor response when adaptation is offobce adaptation is switched on, improvements can
be immediately obtained. Comparing with Fig. 4, the highrl@gg rate excites the unmodeled dynamics, thereby
causing an increase in the undesired high frequency notbe iadaptive signals. With sufficiently large learning rate
the weight update law would become unstable.
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3 Potential Improvements

In the neural net weight update law in Eq. (8), the trackingresignale is used for adaptation. This adaptive law is
based on the stability analysis of the tracking error udired tyapunov method [8]. Examining Eq. (5), one sees that if
the adaptive signalyg could cancel out the modeling errarthen the tracking error will tend to zero asymptotically.
Thus, if the modeling errag is used for adaptation, potential improvements can be étaiVWe now introduced two
methods of alternate adaptive control in lieu of the exgstimethod.

3.1 Direct Adaptive Control with Recursive Least Squares

In this approach, we will design a neural net weight updatetfeat minimizes the non-homogeneous termin Eq. (5).
We will use the optimal estimation method to minimize thddwaing cost functional

1 rt B 112
J(W)zé/o +&)7t|wp—2[ dr (51)
where . . R
E=e-Ne=0W—Wy=w—Fiw—F;0-G*d (52)
§=B'RB (53)
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Ag is the estimation error of the modeling errorsince aircraft angular accelerationsmay not be directly
measured and thus requires to be estimated.

¢ is viewed as a weighted PE condition that is required for owpd convergence witR as a positive-definite
weighting matrix. A largeR results in a faster convergené¢e can also be viewed as a learning rate matrix.

To minimize the cost functional, we compute its gradienhwispect to the neural net weight matrix and set it to
zero, thus resulting in

m{,:/:(ns)*lﬁ(BTw—éT)dr:o (54)
Equation (54) is then written as
/t(1+ gr)*lmfolrwz/t (1+ &) tpeTdr (55)
0 0
Let
t
R = [ (14 ppTdr (56)
0
We then note that _ .
RIR=1=RIR+RR=0 (57)
Solving forR yields _ _
R=-RRR=-—(1+&)'RBB'R (58)

Differentiating Eq. (55) yields
RIW+(1+&) 18B™W=(1+&) 1B’ (59)

Solving forW yields the neural net weight update law
W=—(1+&) "RE(BTW-2T) (60)

Equation (60) is a gradient-based recursive least-squaasl net weight update law that minimizes the neural
net approximation error. In the process, the tracking eshamuld decrease optimally to some minimum convergence
radius. Comparing this neural net weight update law to thé&g. (8), it is seen that the estimated modeling efrisr
used for adaptation instead of tracking error. MoreoverJéarning rate is also adaptive in that the weighting matrix
R also needs to be updated by Eq. (58).

The recursive least-squares neural net weight update lavwe&ahown to be stable and result in bounded signals.
To show this, leW = W* -+ W with the asterisk and tilde symbols denoting ideal neuraiweght matrix and neural
net weight matrix deviations, respectively. The followingapunov candidate function is chosen

L—e Pettr (v”vTRflv”v) (61)
The time rate of change of the Lyapunov candidate functi@omputed as
L=e'Pete Pe+tr (ZVN\/TR*1V~\/+\/~VTF'%*1\I~V) (62)

With large enouglR, the ideal neural net weight mat¥* can be shown to converge to the estimated modeling
erroré€ [6] so that . 3
W=—(1+&) 'RBB'W (63)

Upon simplification, one obtains
L=—eQe—(1+&) tr (v”vTBBTv”v) <0 (64)

which requires @-neighborhood that the tracking error is attractive to ardains bounded from below

2p (P) [[Ae|

o =inf|le| = 0Q

(65)
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SinceL is negative semi-definite, the recursive least-squareladés uniformly asymptotically stable.
LetR =TT, then the system dynamics of the recursive least-squar®ohare bounded by the following equation

d e A B B e Ag
5 WTB | < 0 —(1+&7ral 0 WTB | + | my (66)
z ~1ee~1BTA -lcG1 -1 z A,

The characteristic equation of this system is obtained as

S+ IE—A+(1+E)1FGI] L4 {(M—I>A+(l+f)lra (IE—A)} s

-1
+7(1+5€) ra (nBGG" BT ~1)A=0 (67)

Without the effects of unmodeled dynamics, this charastierequation yields two roots, both of which are on the
left half s-plane
si=A(A) (68)
MNa
1+Ta

Sinces, is a negative real root corresponding to the neural net wergtirix variation, increasing the learning
rate would simply drives, farther to the left on the real axis of tiseplane. Therefore, unlike the current neural net
direct adaptive control approach, large learning rate dotgenerate high frequency oscillations with the recersiv
least-squares method. Also, the rate of convergence tendsty for large learning rate.

Applying the Routh-Hurwitz criterion, the stability reqaments due to the effects of unmodeled dynamics result
in the following matrix inequalities

2=-1+& Ta~- (69)

IE—A+(1+E)’1I'01I >0 (70)

lg—A+(1+E)1I'aI] [(@—I)A—F(Hf)lra (IE—A)}

-1
- w (nBGG" BT ~1)A>0 (71)

-1
w (1BGG" BT ~1)A >0 (72)

It can be shown that these inequalities are satisfiedfar0, P > 0, and smalk andn. Therefore, the recursive
least-squares method would tend to be less sensitive todeletbdynamics than the current neural net direct adaptive
control.

Figures 9, 10, and 11 illustrate the potential improvemedusto the direct adaptive control with the recursive
least-squares neural net weight update law. As can be semrHig. 9, the recursive least-squares learning provides
a significant improvement in the tracking performance ofatiaptive control. Moreover, increasing the learning rate
does not cause high frequency oscillations as in the cadeedfurrent direct adaptive control approach. This is in
agreement with the analysis which shows that the saabrresponding to the neural net weight update law does not
have an imaginary part.

Figure 10 is the plot of the selected neural net weights. Téighis exhibit a nice convergence behavior. Increasing
the learning rate causes the weight to move closer to thevaiues of the system parameters for which the adaptive
control is compensating. In contrast, the neural net wsighthe current adaptive control approach do not converge
correctly to their true values, as shown in Fig. 5.

Figure 11 shows the recursive least-squares learning iprgence of unmodeled dynamics. In contrast with
the current method as shown in Fig. 8, the recursive leastrsg learning is able to handle unmodeled dynamics
much better. Increasing the learning rate does not causeaised high frequency oscillations. So the sensitivity to
unmodeled dynamics is much less of an issue with the re@ilesst-squares learning. This behavior is in agreement
with the analysis.
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3.2 Hybrid Direct-Indirect Adaptive Control with Recursiv e Least-Squares

Another adaptive control architecture that has recengnlpgroposed is hybrid adaptive control [18]. This architeet
is as shown in Fig. 12. The hybrid adaptive control blends loliriect and indirect adaptive control methods together
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to provide a more effective control strategy. The indiregagtive control is responsible for updating the dynamic
inversion controller with a more accurate plant model whgchstimated by the recursive least squares method. Any
residual tracking error as a result of the dynamic inversamthen be handled by the neural net direct adaptive control

Adaptive Parameter
Estimation

Wy

| P! Controller
We | Ypar |wp ~w
S+ wpq.r -4
Reference Model

Model yinversion

-1
f Aircraft ©. g

A,

[=Y1

U,g Direct Adaptation
Signal

/
Neural Net _' 0

Fig. 12 - Hybrid Adaptive Flight Control

The dynamic inversion controller is updated by the estichptant model at every time step according to

5=G"1(wy—Fiw—Fp0) (73)
whereF; = F; + AFy, Fo = F3+AF,, G = G* +AG are the estimated plant matrices of the true plant modeGaisd
assumed to be invertible.

The hybrid adaptive control performs explicit parametenidfication of the plant model to account for changes
in aircraft dynamics. The parameter identification proéegerformed by the recursive least-squares method

b=—(1+&) 'Ro (6702 (74)

whered” = [ W/, W/} W] ]is aneural net weight matrix argi’ = [ w'B, o'BS 5B } is an input
matrix
The estimated plant matrices are then updated as

F1=Fi+WgB, (75)
Fo=F5+WIB, (76)
G=G"+WJB; (77)

The performance of the hybrid adaptive control is very samib the recursive least-squares direct adaptive control
with large values oR. At smaller values oR, the adaption is shared between the neural net direct aned@bd
adaptive control blocks. Thus, the learning rate of the aleugt direct adaptive control can be turned down to reduce
potential excitation of unmodeled dynamics as discusseiged he advantage of the hybrid adaptive control method
is the ability to be able to estimate plant model parametestine. Direct adaptive control approaches accommodate
changes in plant dynamics implicitly but do not provide apl&it means for ascertaining the knowledge of the
plant dynamics. By estimating the plant model parametepdictty using the recursive least-squares neural net
learning law, an improved knowledge of the plant dynamiasloa obtained that can potentially be used to develop

fault detection and isolation (FDI) strategies, and emeegdlight planning to provide guidance laws for energy
management in the presence of hazards.
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4 \ferification and Validation Challenges for Adaptive Systens

Creating certifiable adaptive flight control systems repnésa major challenge to overcome. Adaptive control system
with learning algorithms will never become part of the fitunless it can be proven that this software is highly safe
and reliable. Rigorous methods for adaptive software watiftn and validation must therefore be developed by
NASA and others to ensure that control system softwarer&slwvill not occur, to verify that the control system
functions as required, to eliminate unintended functibpadnd to demonstrate that FAA certification requirements
can be satisfied.

The ability of an adaptive control system to modify a preigiesd flight control system is at the same time a
strength and a weakness. On the one hand, the premise ofdid@etp accommodate vehicle degradation is a major
selling point of adaptive control since traditional gathsduled control methods are viewed to be less capable of
handling off-nominal flight conditions outside their dasigperating points. Nonetheless, gain-scheduled control
approaches are robust to disturbances and secondary dymabm the other hand, as previously shown in this paper,
potential problems with adaptive control exist with regatal high-gain learning and unmodeled dynamics. Clearly,
adaptive control algorithms are sensitive to these pakptbblems as well as others that have not been considered
such as actuator dynamics, exogenous disturbances, eteoMw, a certifiable adaptive flight control law must be
able to accommodate these effects as well as other factolnsasutime delay, system constraints, and measurement
noise in a globally satisfactory manner.

4.1 Simulation of Adaptive Control Systems

Simulation will likely continue to play a major role in the ncation of learning systems. Although many advanced
techniques, such as model checking, have been developgdiferstate systems, there application to hybrid adaptive
systems in very limited [25, 26]. Many aspects of adaptiweays learning, in particular convergence and stabilty, ¢
only be analyzed with simulation runs that provide enoughitiand fidelity to model significant nonlinear dynamics.
For example, stall upsets of an aircraft cannot be expressedinear model since this effect is highly nonlinear and
unsteady. Simulation provides a fairly rapid way to accastpihe following tasks:

e Evaluation and comparison of different learning algorighm

e Tuning control gains and learning of weight update law.

e Determination of how much learning is actually accompliéheeach step.

e Evaluation of the effect of process and measurement noigaoning convergence rate.
e Determination of learning stability boundaries.

e Testing algorithm execution speed on actual flight compudedware.

e Conducting piloted evaluation of the learning system inghflsimulator.

e Simulating ad-hoc techniques of improving the learningcpss, such as adding persistent excitation to improve
identification and convergence, or stopping the learninggss after error is less than a specified error, or after
a specified number of iterations.

Simulations differ primarily in the fidelity with which thelant is modeled. Higher fidelity simulations require more
complicated mathematical models of the adaptive systenmabsuda greater use of actual (and expensive) controller
hardware. In order to be cost-effective, the lowest fidaéstbed are usually used as much as possible. The behavior
of simple linear models are compared to that of higher figelitnlinear models when they are available to ensure that
analysis performed using the linear model still appliefl&4 presents one representation of the simulation hieyarc
from lowest to highest fidelity.

The lowest fidelity simulations are usually run on a desktomguter in the Matlab/Simulink environment. This
simulation typically includes the control laws and a linpéant which accounts for the aircraft aerodynamics, mass
properties, and engine thrust model. The linear model id pften used in early control law design and analysis or to
calculate linear gain and phase margins. It is importanbte that nonlinear adaptive controllers can be represented
linearly using the error bounded analysis as shown abovethleulinear model may not provide results with the
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required accuracy. Nonetheless, the linear model can geavivery useful insight to the stability and convergence
of the nonlinear adaptive controllers. Changes to the ptasdel can be simulated by changing the system transfer
function from one matrix to another with varying frequenBy.varying the amount of change, the stability boundaries
of the system can be determined. Concomitant with this m®iean evaluation of the system tuning parameters that
are used in the learning algorithm. The desktop simulatiosirenment provides a quick way to compare different
learning algorithms and controller architectures. Only thost promising designs need be simulated using higher
fidelity simulations.

Higher fidelity simulation testbeds use actual flight hamw@r even aircraft) in the simulation of the control
loop, and are often run in dedicated computing environmeittsa cockpit and out-the-window graphics (e.g., see
[27, 28]). These simulations may include a cockpit to irdeefwith the pilot and can either be fixed-based or motion-
based. Motion-based simulators additionally provide fla prith some of the physical cues of actual flight. Typigall
they contain software models of nonlinear aerodynamigipendynamics, actuator models, and sensor models. The
most common elements of these testbeds are some of the fligtegsors, communication buses and a cockpit. Using
the actual aircraft flight computer is a particularly im@ot advantage of this simulation, since all computers tend
to handle exceptions differently and may have differenndbéir numerical routines. Either the actual aircraft may
be tied into the nonlinear simulation, or an iron-bird aiftimay be used to provide actuators, sensor noise, actual
flight wiring, and some structural interactions. Thesehteds allow for a complete check out of all interfaces to the
flight hardware, timing tests, and various failure modesedfetts analysis (FMEA) testing, which is not possible in
a simpler configuration.

| Testbed | Pilot Interface Fidelity| Model Fidelity [ Test Environment |
Linear/nonlinear
Desktop Computer Low Low models using Matlab
or Simulink
Can interface with
Workstation Low Low to Medium high-fidelity modeling
tools
Fixed-Based Low to Medium Medium Dedicated aircraft
. model and hardware
Simulator
Actual aircraft target
Hardware-in-the Loop Medium to High Medium to High flight computer and
Simulator cockpit
Simulator with actual
Aircraft-In-the-Loop High Medium to High flight computer and
Simulator ground-based aircrafi
Motion-Based High High N‘.’”"”eaf S|mulat|qn
. with moving cockpit
Simulator

Table 1 - Simulation Environments

4.2 Approach for Adaptive System V&V

The current approach is to verify a neural net adaptive fligimtrol over an exhaustive state space using the Monte
Carlo simulation method. The state space must be carefalligded to include all possible effects that an aircraft
can encounter in flight. By sensitivity analysis, some oftheffects may be considered less significant that could
be eliminate to reduce the dimensionality of the state sp&oe example, aeroelastic effects can be significant for
flight vehicles. However, high frequency flexible modes o€ift structures are generally not easily excitable, thus
their effects could be discounted. Other modes, however lreaignificant such as those that appear inside the flight
control bandwidth. In addition, other dynamical effectewldl be considered including actuator dynamics, turbwdenc
sensor noise, digital signal processes that give rise te datay, etc.

Initial simulations are usually conducted on a desktop PthénMatlab/Simulink environment. The objective is
to test the learning behavior using an ideal model, which beagimply the one used by the theoretical development.
Initially, the controller should be operated without anifuge nor any learning to acquire baseline performance and
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to demonstrate controller stability. Once this has beemvahthe ability of the control system to learn should be
explored. This may be investigated in a two-step process:

1. Initially, a “failure” or step-change is introduced irttte system in order to test the learning under ideal condi-
tions. The change could be a change in the A matrix (damagdaiion), or a change in the B matrix (actuator
failure), or both. In the initial stage, no measurement eggensor noise) or process noise (unmodeled dy-
namics) is introduced. In addition, the controller is allmto give persistent excitation commands in order to
provide the ideal environment for rapid learning convermgerHence the objective is not to demonstrate con-
troller robustness, but rather only to document how well¢aening algorithm can learn under ideal conditions.
If the simulation indicates that learning is not occurring® under ideal conditions, then effort should be made
to improve the learning by modifying the control law or theured network architecture.

2. Once the learning under ideal conditions has been judgdmk tacceptable, the next phase of the learning
simulation is to test learning under non-ideal conditidieasurement noise should be added to the simulation
to estimate the level of persistent excitation required tontain convergent learning. As indicated above by
the theory, the learning rate will likely be a function of tlegel of persistent excitation. In some severe cases,
however, the addition of measurement noise may destaltlizdearning process even for large amounts of
persistent excitation.

Once the learning algorithm is felt to operate successfullg simulated environment, then the performance of the
learning system can be evaluate while using the contraleeject disturbances. These simulations may reveal the
necessity to disable learning as the adaptation errorsietaw. This could be done to prevent the learning algorithm
from seeking to map measurement noise to small changes inathieol input. The choice of learning rate and
neural net weight limits will also be evaluated in simulatim guide gain selection for actual testing. Although
higher learning gains tend to increase the speed of legrhigly gains also tend to promote instability of the learning
algorithm as discussed earlier. Another problem is thahigfithe stability boundaries of multiple-input, multiple
output adaptive control systems can require many test pairgach of many possible operating conditions. For this
reason, analytical methods that can determine learningrsystability are needed. The analysis presented in this
paper can provide an analytical method to help guide theyaisadf stability boundaries.

A problem encountered in performing simulation is provirtp@uate test coverage. Coverage concerns with
program execution of flight control software to ensure thaffunctionality is properly designed. In order to help
simulation achieve greater coverage, various tools andhadstare being developed to implement simulation in a
more systematic manner. One such tool is Automated NeuditRController Test (ANCT) [29] which is developed
in the MATLAB environment. ANCT has been designed to help &gjineers evaluate different flight conditions,
guantify performance, and determine regions of stabifCT is designed to analyze a MATLAB/Simulink model
using all possible combinations of the model inputs paramseBy introducing random numbers into the test inputs
and parameters, a Monte Carlo simulation can be performestimate the sets of model parameters and inputs that
correspond to the control system responses that are obgtite ANCT evaluates the time-series outputs during a
specified time or condition window, and then computes a perdmce score that represents the degree to which the
control system responses meet performance specifications.

Another simulation tool is Robustness Analysis for Contralv Evaluation (RASCLE) which has also been de-
veloped to help explore different combinations of learrépgtem parameters and operating conditions [30]. RASCLE
can interface with existing nonlinear simulations and npooates search algorithms to uncover regions of instgbili
with as few runs as possible. RASCLE uses a gradient algotitidentify the direction in the uncertainty space along
which the stability of the control system is most rapidly @esing. RASCLE provides an intelligent simulation-based
search capability that can be used in Monte Carlo simulai@huations [31].

5 Future Research

5.1 Adaptive Control

Despite the extensive progress made in adaptive contemrels from the 1970’s until the present time, this technplog
has not been adopted for use in primary flight control systennsission-critical or human-rated flight vehicles.The
following quote from the IRAC Project Proposal [1] highligtthe challenges with adaptive control; “In 2004 a NASA
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Aeronautics “Adaptive Controls Task Force” with represgion from NASA Ames, Dryden, Glenn, and Langley
observed that existing flight control technology is not adeq to handle large uncertainties and system changes,
unknown component failures and anomalies, high degreeroptaxity, non-linear unsteady dynamics, revolutionary
vehicles, and novel actuators and sensors. The Task Fatberfobserved that uncertainties and system changes can
be continuous or discrete, such as varying flight conditiabsupt failures, and structural damage, to name a few.”

The existing approach to adaptive control synthesis glipdaaks the ability to deal with integrated effects of
many different flight physics as pointed out above. In thesgnee of hazards such as damage or failures, flight vehi-
cles can exhibit numerous coupled effects such as aerodgsarehicle dynamics, structures, and propulsion. These
coupled effects impose a considerable amount of uncedaionh the performance of a flight control system. Thus,
even though an adaptive control may be stable in a nominal figndition, it may fail to maintain enough control
margins in the presence of these uncertainties. For exammeentional aircraft flight control systems incorporate
aeroservoelastic filters to prevent control signals frowitexg wing flexible modes. If changes in the aircraft config-
uration are significant enough, frequencies of the flexildeles may be shifted that render the filters ineffective. This
would allow control signals to potentially excite flexibleodes which can cause problems for a pilot to maintain good
tracking control. Another example is the use of slow actisasnich as engines as control effectors. In off-nominal
events, engines are sometimes used to control aircrafs fids been shown to enable pilots to maintain control in
some emergency situations such as the DHL incident invglaim Airbus A300-B4 in 2003 that suffered structural
damage and hydraulic loss over Baghdad [21], and the SiayxIBwa accident involving United Airlines Flight 232
[22]. The dissimilar actuator rates can cause problemsadtptive control and can potentially lead to pilot-induced
oscillations (P10O) [23].

To adequately deal with these coupled effects, an intedjegiproach in adaptive control research should be taken.
This integrated approach will require developing new fundatal multidisciplinary methods in adaptive control and
modeling. As discussed earlier, unmodeled dynamics aremaof significant uncertainties that can cause an adap-
tive control algorithm to become unstable if high-gain féag is used. Thus, a multidisciplinary approach in ada&ptiv
control research would be to develop fundamental undedstgrof the structures of these secondary dynamics which
would bring together different disciplines such as aeraaiyits and structures. With a better understanding of the sys
tem uncertainties, more effective adaptive control mestmmlild be developed to improve robustness in the presence
of uncertainties.

Another future research goal is to extend the concept o&timentrol margins to adaptive control disciplines.
Adaptive control methods are generally time-domain mettgidce Lyapunov analysis works in time domain. Yet,
robust control is usually done in the frequency domain. Rbloontrol requires a controller to be analyzed using
the phase and gain margin concepts in the frequency domath.tNis tool, an adaptive control can be analyzed to
assess its control margin sensitivity for different leagniates. This would then enable a suitable learning rateto b
determined. By incorporating the knowledge of unmodelauhdyics, a control margin can be evaluated to see if it is
sufficient to maintain stability of a flight control systemthre presence of potential hazards.

5.2 \Verification and Validation

Verification and validation research is viewed as a key meset® enable adaptive control to be operational in future
flight vehicles. V&V processes are designed to ensure thagitaak systems function as intended and the consequences
of all possible outcomes of the adaptive control are veriftede acceptable. Software certification is a major issue
that V&V research is currently addressing. Some of the futesearch in software certification for adaptive control
are discussed as follows:

e Model Checking for Hybrid Adaptive System:

Over the last decade, the formal method of model checkindpbasme an important tool for the verification of
finite state automata. Model checkers have found consitteagiplications for outer-loop adaptive control sys-
tem verification. They have been useful for verification aiomomous systems such as NASA Remote Agent
and K9 Mars Rover [32], and by Rockwell Collins to provideifieation of the mode logic of the FCS 5000
flight guidance system being developed for use in businedsegional jet aircraft [33]. The outer-loop con-
troller of these programs use planners and schedulers tdioate the actions of multiple program threads that
execute in parallel. A future challenge is to extend thenénle of model checking to verification of inner-loop
control and learning adaptation. These processes areallgn@ntinuous systems, not finite state automata.
Nevertheless, some recent progress has been made atigtopioply the technique of hybrid model checking
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to continuous systems. Ref [26] describes an applicatialaed PathFinder to the control of a robotic vehicle.
The vehicle dynamics are modeled in the time domain as a §iestodrder differential equations. The execution
of the inner-loop controller is controlled by an outer-lcagonomous agent planner and scheduler. Although
the continuous variables could assume an infinite numbealokg, thereby presenting a state explosion prob-
lem for the model checker, the use of Java PathFinder is maskiljde through representing theses values as
discrete quantities. The use of an approximation functmmverts the continuous variables into discrete val-
ues. The idea is similar to rounding a decimal number to tlaeast integer, only in this case, the truncation is
considerably coarser. With this abstraction of the comtirsuspace, the variables can be made to take on rela-
tively few values. This allows for the recognition of preu“states” in the model checking sense of the word,
and hence an exploration of the continuous model checkiagespecomes possible. Of course, this search is
exhaustive only to the extent the approximation functiowakd. If the approximation function is too coarse,
important states will likely be missed.

Program Synthesis Methods for Certifiable Code Generation:

Inthe future, it may be possible to use software tools to pedpluce certifiable code, including code for learning
systems. Although software produced by these tools woilldistiergo a formal certification process, the idea
is to generate certificates automatically together withsibféware. As an example, AutoFilter is a tool being
developed at NASA Ames to automatically generate certéigdadlman Filter code from high-level declarative
specifications of state estimation problems [34]. Althogittiman filters are widely used for state estimation
in safety-critical systems, the complex mathematics amidcehof many tuning parameters make implementa-
tion a difficult task. The AutoFilter tool not only generat€alman filter code automatically from high level
specifications, but also generates various human-readablaments containing both design and safety related
information required by certification standards. Progrgmtisesis is accomplished through repeated applica-
tion of schemas, or parametrized code fragment templas &et of constraints formalizing the template’s
applicability to a given task. Schemas represent the @iffetypes of learning algorithms. AutoFilter applies
rules of the logic backwards and computes, statement nstatt, logical s or safety obligations which are then
processed further by an automatic theorem prover. To parfiois step automatically, however, auxiliary anno-
tations are required throughout the code. AutoFilter thomikaneously synthesizes the code and all required
annotations. The annotations thereby allow automatidigation and produces machine-readable certificates
showing that the generated code does not violate the rehséfety properties.

Tools for On-line Software Assurance:

Although simulation test cases may discover problemdntgsan never reveal the absence of all problems, no
matter how many high-fidelity simulations are performeds ffior this reason that undiscovered failure modes
may lurk in the control system or be found at a test conditimvipusly not simulated. To safeguard against
these failures, means of verifying in-flight software aasge should be developed. As one approach to this
problem, NASA Ames has developed a tool called the Confid@nokto analyze the probability distribution of
the neural network output using a Bayesian approach [35% djpproach combines mathematical analysis with
dynamic monitoring to compute the probability density ftioie of neural network outputs while the learning
process is on-going. The Confidence Tool produces a realg¢stimate of the variance of the neural network
outputs. A small variance indicates the network is likelpdgurcing a good, reliable estimate, and therefore,
good performance of the neural network software can be ¢éggedhe confidence tool can be used for pre-
deployment verification as well as a software harness to tooguality of the neural network during flight. The
outputs of the Confidence Tool might be used as a signal tosstdstart neural network adaptation or be used
to provide a guarantee of the maximum network error for fieation purposes.

Conclusions

This paper has presented a stability and convergence &nafys neural net adaptive flight control. An error bound
analysis has been introduced that enables a linear dynamniesextracted from the nonlinear adaptive control algo-
rithm for stability and convergence analysis of the neusdlweight update law. The effect of the learning rate has
been studied by analysis and confirmed by simulations. Itleas shown that high-gain learning will likely result
in high frequency oscillations that can excite unmodeledkayics. For certain classes of unmodeled dynamics, it is
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possible that a high-gain learning can become unstable.téngial improvement has been presented. This improve-
ment, the recursive least-squares learning law, is basegtimal estimation and uses modeling error for adaptation.
The analysis shows that high frequency oscillations canvbalad with this learning law. Furthermore, the effect
of unmodeled dynamics has been shown to be less sensititiethist learning law. This paper also has presented
some thoughts on the verification and validation approadmnasnabling technology that will enable adaptive flight
control to be realized in future missions. Current chalkEsiign adaptive control and verification and validation remai
to be obstacles to realizing the goal of certifiable adaptosmtrol systems. Future research in adaptive control must
be multidisciplinary and integrated to better deal with snaources of uncertainties that arise from coupled effects
manifested in flight in the presence of hazards. In this pgradadaptive control methods would need to be cog-
nizant of system constraints imposed by dissimilar physffacts while maintaining robustness in the presence of
uncertainties. The future research in these disciplinasbear fruits and perhaps will enable adaptive control to be
operational someday in the near future.
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