
The Perils of Discrete Resource Models

William Cushing and David E. Smith

Abstract

Finding and expressing a computationally tractable abstrac-
tion of the real world, for the purpose of plan synthesis, is
extremely challenging — even when the scope of inquiry is
severely limited. In the case of modeling complex behavior
on resources, such as fuel or battery charge, Fox and Long
propose an intuitive methodology: pessimistically discretize
access. This methodology is satisfactory in many situations,
however, its limits are not truly well understood.
We show that naive attempts to enforce capacity constraints
are prone to failure: the technique tracks a lower-bound, and
so is inappropriate for enforcing an upper-bound. We present
two extensions that allow enforcing upper-bounds in a prin-
cipled fashion. The first idea is to discretize the resource op-
timistically, yielding an upper-bound on the actual resource
profile. The second idea is to pessimistically track a dual vari-
able.
The conditions necessary for the naive approach to succeed
are quite strong, which motivates our extensions. At the
same time, it is desirable to simplify domain models when-
ever possible. We suggest modeling in the most general, least
error-prone, manner possible, and subsequently optimizing
by compiling in knowledge (ideally, automatically). In pur-
suit of this we define the domain abstraction/approximation
problem in quite general terms and present our analysis as
motivation for general modeling techniques and automatic
domain simplification tools.

Introduction
A resource is a useful thing to have, typically the greater the
quantity the better. Effectively modeling the behavior of re-
sources is surprisingly tricky though. It is first of all difficult
to precisely predict the exact behavior of the world. Even
when that is possible, current planning technology cannot
handle change over time. Instead, one must discretize all
behavior into “instantaneous changes”. Admittedly, even
with the ability to directly specify change over continuous
intervals of time, one would still be interested in approx-
imating, perhaps discretizing, the actual behavior both for
the sake of computational efficiency and to cope with lack
of knowledge about the actual behavior. Regardless of what
the future may bring, we are still faced with the problem of
modeling for the next competition, that is, the problem of
effectively discretizing behavior.

actual profile

t

lower envelope

endstart

l

n

Figure 1: Modeling a lower-bound (Fox & Long 2003)

Fox and Long suggest a lower-bound paradigm for mod-
eling resources (see Figure 1), based on this intuition (for
resources) that “more is better”. That is, preconditions of
actions are assumed to always be lower-bound checks on
the fluent encoding the behavior of the resource. The tech-
nique is simple: delay all production to AT-END, and hasten
all consumption to AT-START. This encodes a lower-bound
on the actual behavior: the actual resource profile will be
everywhere at least as large as in the model. In other words,
the model preserves correctness (since preconditions are “al-
ways” lower bounds).

However, there is a significant obvious weakness: encod-
ing upper bounds. Typically, we are only interested in lower
bounds on a resource, but it is also entirely normal for a
resource to have a capacity. A capacity constraint is, of
course, an upper bound on a resource. The naive idea is
to directly enforce the capacity constraint against the model;
however, the model only tracks a lower-bound, so that the
model may be less than the capacity while the actual be-
havior exceeds it. Nonetheless, the naive approach has the
desired result if some special conditions apply to ones do-
main. While such conditions must be quite strong, many
real-world resources do exhibit such special behavior.

In less special circumstances, enforcing capacity requires
a more general solution. The solution is to encode the re-

source using two fluents: one for enforcing lower bounds
and the other for enforcing upper bounds. In fact, we dis-
cuss two extensions, which may be understood as taking a
dual in time or in state.1 The first extension explicitly tracks
an upper bound on the resource by delaying consumption to
the end and hastening production to the beginning (the oppo-
site in time). The second extension tracks a lower-bound on
the dual of the resource itself: the amount of available stor-
age (the opposite in state). The actual effects on the dual are
the negation of the primal effects, which are then discretized
into a lower-bound in the normal fashion.

Hastening consumption and delaying production does not
alter the net usage of an action, nor, therefore, of a plan. In-
stead, the sacrifice in all of these approaches to discretization
is that access to resources is slowed — a concurrent produc-
tion and consumption could succeed in the real world, but
the model may require delaying the consumption activity
to after the production. This apparent sacrifice is a bless-
ing in thin disguise: while plans with tight schedules are
lost in the discretization, delayed versions of these plans are
not. In other words, a loosely coupled planning and schedul-
ing approach can find these delayed plans very rapidly, and
then reschedule: recovering completeness (a.k.a. “anytime-
optimality”). This will be a huge win over searching a de-
tailed model directly; unless delaying such consumptions is
impossible. For example, if a consumption must happen
during daylight or a production will overfill storage without
concurrent consumption, then delaying consumption could
be impossible. Even in this worst case, one can still recover
completeness by taking the limit of increasingly precise dis-
cretizations — moreover, we conjecture that in most situa-
tions even fairly imprecise discretizations will suffice.

Background
We stay within the general scope of PDDL, that is, a dura-
tive action based perspective on change (Fox & Long 2003).
However, we do not adhere to any specific restrictions of
that language, e.g., we allow effects in the middle of ac-
tions (Smith 2003), for that matter, we have no problem with
effects as arbitrary functions of time and state. The figures
define our meaning precisely enough; we limit ourselves to
a short definition of effect:

Definition 1 (effect) An effect e changes a fluent f over an
interval of time I(e). It may be one of two kinds of change:

1. An additive-effect
2. An assignment-effect

Two effects are mutually exclusive if they attempt to cause
change to the same fluent at the same time and either one
is an assignment-effect. A set of concurrent additive-effects
yields the same result as applying each sequentially, i.e., the
summation of all of them.

1Neither dual is especially similar to the dual of integer pro-
gramming, which is a transpose between constraints and variables.
The direct connection would be a dual in causality: to rewrite the
domain so that state-space of the dual model would be plan-space
of the primal model.

Models that are accurate and precise in continuous time
are too complicated for current planners. The important
practical limitations for effects are:

1. Constant except at endpoints

2. Independent of state, except at those endpoints

So, for practical reasons, one must discretize effects, fur-
ther getting rid of any dependence on intermediate values of
the state trajectory (getting rid of integrals, for example).

actual profile

t

lower envelope

endstart

l

n

Lower-bound
Additive (at start (+= fl l))

(at end (+= fl (− n l))
Assignment (at start (= fl l))

(at end (= fl n))

Figure 2: Modeling a lower-bound

Capacity in lower-bound modeling
Discretizing effects requires knowledge of what values or
ranges of values are important in achieving conditions of ac-
tions; for example, reasonable discretizations of movement
and position are possible, but often one needs to be at least
somewhat adaptive (so that areas with more clutter are dis-
cretized finer). We focus on the special case of resources,
which are easier than arbitrary fluents to handle: the “only”
useful thing about a resource is that one have more of it.
In particular, the conditions necessary for action success are
“always” lower-bounds: f ≥ v.

When this assumption holds, one can discretize changes
to the resource by tracking only a lower-bound. Figure 2 de-
picts the basic approach to modeling resources (as given by
Fox and Long). There is a fluent f being effected by either
an additive or assignment effect e(t), which is a function
of time in the real world. The final value, e(end), is the net
change in the fluent, and the one that persists. So for sequen-
tial planning, it would be enough to discretize all changes by
simplifying every effect from e(t) to just “(at end (<op> f
e(end)))”. To allow concurrency, one ensures a lower-bound
by transitioning to the minimum AT-START, and returning to
the net effect AT-END. Note that two discrete effects are
used to simulate one continuous effect, so that in the case of
additive-effects, the second effect has to undo the first effect.
Also note that monotonic effects have extrema at their end-
points; for such cases, the approach given in Figure 2 simpli-

fies: these will either have an AT-START change by 0 (for a
production) or an AT-END change by 0 (for a consumption).

However, the assumption that it is always better to have
more of a resource does not quite hold. In particular, a re-
source may have a capacity, and respecting this constraint
requires enforcing a global upper-bound. Ensuring that the
lower-bound of a trajectory does not violate the capacity still
does not prevent the actual trajectory from violating the ca-
pacity, which could have disastrous consequences. How-
ever, in at least some situations, it is possible to get away
with enforcing capacity restrictions only against a lower-
bound. Observe that the lower bound, fl, equals the actual
behavior whenever all change has ceased. In general, one
needs to prove that, for each effect of a plan in the model:

1. If the lower-bound is less than the capacity at the end,
2. then the actual behavior is less than the capacity over the

whole duration

In particular, consider applying some effect, by itself, in
a situation that results in fl(end) = c. If, as in Figure 2, the
actual behavior exceeds the net change, then a discretization
has no hope of correctly enforcing a capacity constraint. So
a critical property that a domain must satisfy for the lower-
bound approach to succeed is: the maxima of effects must be
bounded by the starting and ending values.

Definition 2 (endpoint-bounded) A set of effects is
endpoint-bounded if applying them always yields a
trajectory with extrema only at its endpoints.

Discretized effects, applied in isolation or in concurrent
sets, are endpoint-bounded if the extrema of actual trajecto-
ries are bounded by the extrema of the modeled trajectories
(which occur at the endpoints in a discretization).

Observation 1 Every discretized effect, applied to a state
by itself in the model, must be endpoint-bounded for there
to be any hope of correctly enforcing capacity constraints
against it. The minimum is guaranteed for free; the impor-
tant extra property is that the maximum is bounded.

That, alone, is not enough, because concurrent effects do
not inherit the property of endpoint-boundedness. In the fol-
lowing we consider a variety of sufficient conditions that
allow naive enforcement of capacity constraints even when
some change is concurrent.

Alternating Consumption and Production
A production action monotonically increases a fluent, and a
consumption action monotonically decreases a fluent. Con-
current sets of production actions are endpoint-bounded, as
are concurrent sets of consumption actions (follows imme-
diately from monotonicity).

If, in addition, every consumer is mutually exclusive with
every producer, then a plan consists of periods of production,
consumption, and persistence — that is, actual behavior is
endpoint-bounded, and so enforcing capacity at endpoints is
sufficient.

Theorem 1 If:
1. Every discretized effect is endpoint-bounded in isolation,

and

2. Every actual effect is montonic, and
3. Every consumption is mutually exclusive with every pro-

duction

then enforcing a capacity constraint against a discretized
lower-bound correctly prevents actual behavior from violat-
ing the capacity constraint.

The general situation, then, is plans that have concurrent
production and consumption activities. Consider the simple
example of a resource with capacity C, a producer with a
net effect of +C, and a consumer with a net effect of −C.
Suppose one starts off at C. Then producing and consuming
over the same interval, in the discretization, transitions from
C, to 0, and back to C. However, suppose (in the real world)
that production and consumption happen linearly, with pro-
duction 5 times as fast as consumption. Then it is clear that
one would exceed the capacity if one starts the production
anywhere close to the beginning of the consumption. In par-
ticular, this example demonstrates that a domain must satisfy
fairly strong conditions in order for us to allow concurrent
production and consumption while still enforcing a capacity
constraint directly against fl.

Slow, Cautious, and Sequential Production
We can allow concurrent production and consumption, un-
der a number of restrictions. First of all we need that produc-
tion occurs sequentially: at any given time, at most one pro-
duction occurs. Second we need that each such production is
cautious, which means that it refuses to start if it would lead
to a violation of capacity without future intervention. In par-
ticular, each production of f by v has a precondition of the
form: “(at start (≤ (+ fl v) c))”. Finally we need that each
such production is slow — if a consumption is executing,
regardless of whether a production is occurring, the instan-
taneous rate of change is everywhere non-positive. That is,
producing while consuming only serves to slow down the
rate at which the resource is depleted.

Then the actual trajectory is not precisely endpoint-
bounded, but, it is increasing only when all consumption has
ceased (because production is slow). If only production is
occurring, then the activity is unique (because production is
sequential) and the actual trajectory can exceed the lower-
bound by at most the net effect of the single production, and
this is upper-bounded by the capacity since each production
is cautious.

Theorem 2 If:

1. Every discretized effect is endpoint-bounded in isolation,
and

2. Every production is slower than the slowest possible con-
current consumption

3. Production cannot start if future consumption is required
to avoid exceeding capacity

4. Productions are not concurrently executable

then enforcing a capacity constraint against a discretized
lower-bound correctly prevents actual behavior from violat-
ing the capacity constraint.

Productions must be cautious in addition to slow because
otherwise one could just delay starting any concurrent con-
sumptions until just before a capacity-exceeding production
ends. In the discretization, all of the consumption happens
immediately before all of the production, so that the capac-
ity constraint remains, erroneously, satisfied — in the actual
trajectory, all but an arbitrarily tiny amount of the produc-
tion has already occurred, so the capacity is already vio-
lated before the consumption even begins. By forbidding
productions that can be predicted to exceed capacity with-
out future intervention, one ensures that concurrent produc-
tion and consumption have predictable relative rates, allow-
ing exploitation of slowness to prove correctness.

Productions must be slow in addition to cautious: con-
sider starting a quick production of the entire capacity in
the middle of a long consumption of the entire capacity. At
the beginning of the production, the prediction of the final
amount is based on the prediction of the current amount,
which is based on hastening all of the consumption to the
beginning of its interval (before the production starts). So
the production can proceed, in the model, despite being cau-
tious. In the actual trajectory not all of the consumption will
have in fact happened when the production ends, so the ca-
pacity will be exceeded.

Productions must be sequential in addition to all the
other properties because otherwise one could start two slow
capacity-filling productions concurrently, neither of which
is capable of predicting the presence of the other (to notice
that the summation is exceeding the capacity). If one starts
a quick consumption to burn off the excess production, near
the end of these two productions, the actual behavior will
exceed the capacity but the discretization will not.

So this kind of model allows exploiting concurrent pro-
duction and consumption to get faster plans, but only if do-
ing so (executing production and consumption concurrently)
isn’t actually necessary for respecting the capacity con-
straint. In particular, modeling a factory/refinery/machine-
shop is still difficult: one may wish to model large produc-
tions and consumptions on the same, small, tank/storage-
area. In this scenario, sequential plans fail, but concurrent
plans can balance the rates of filling and emptying.

Decrease + Reset
Enforcing a capacity constraint is a trivial matter if it can
never be violated under any circumstances, that is, if capac-
ity is not so much a constraint but rather an emergent phe-
nomenon. A good example is if every production is actually
a reset, then there is no need to check the capacity constraint
because it cannot be violated.

Theorem 3 If every additive-effect is a net-decrease with
maximum at most 0, and the maximum of any executable
assignment-effect does not violate the capacity, then violat-
ing capacity is impossible.

That is, if every additive-effect is a consumption, then the
only productions are assignment-effects (i.e., resets), which
are mutually exclusive with everything else. It is then a
relatively straightforward matter to only model such non-
capacity-violating productions. Capacity can only ever be

violated by increasing, so clearly capacity cannot be violated
in this kind of model.

In PDDL, one should take care to model such resets so
that they are, in fact, mutually exclusive with other changes.
This is a little more challenging than it sounds: effects are
always instantaneous and effects at distinct times cannot be
mutually exclusive. One solution is to introduce a ternary
lock for each resource, with modes assigning, adding, con-
stant, with the appropriate preconditions and effects on all
actions modifying the resource.

A preferable solution is to explain the mutual exclusion in
terms of the domain physics. For example, when produc-
tion and consumption of a resource are mutually exclusive
because they require the same conduit, for example a tank
with one access pipe, then modeling access of the pipe intro-
duces a mutual exclusion between production and consump-
tion (of the material in the tank). In this particular situation
the explanation is only preferable in that the source of the
mutual exclusion is correctly named: in other situations the
same physical object/phenomenon may be responsible for
many mutual exclusions.

Summary
The lower-bound methodology is not adequate for modeling
resources in general, in particular resources with capacity
present difficulties that straightforward extensions are un-
able to overcome in general, and require the domain in ques-
tion to satisfy fairly strong properties when the techniques
do work — properties that tend to vanish if the agent or
agents gain even mild extensions to capability. Nonethe-
less, when such properties are known to hold, such simpli-
fications to the model could produce some gains in perfor-
mance for planning systems, if only by decreasing the time
it takes to generate children (due to decreasing the size of
a state description). The principled approach would be to
model the domain using a general, less-error-prone, frame-
work, and then to produce a related optimized model (that
can be verified with respect to the original, and perhaps au-
tomatically deduced using domain analysis tools). This of
course requires having (and adhering to) a general frame-
work: we present two such methods for modeling resources
with capacity.

Upper bound modeling
The key difficulty in enforcing a capacity constraint is a vio-
lation of our basic assumption about a resource: that “more
is always better”. When producing, we must take care not
to violate a capacity constraint: in this particular situation,
less is better. One way to support such upper-bound condi-
tions is to simply repeat the manner in which lower-bound
conditions are supported: track an upper-bound trajectory
(in addition to a lower-bound trajectory). So for any given
resource f we can track the normal lower-bound, fl, as well
as an upper-bound, fu. Figure 3 shows the details. Basi-
cally, every increase should happen AT-START, and every
decrease should happen AT-END. Then any arbitrary upper-
bound constraint, including a global capacity constraint, can
be checked against fu.

t

upper envelope
endstart

actual profile

n

u

Upper-bound
Additive (at start (+= fu u))

(at end (+= fu (− n u)))
Assignment (at start (= fu u))

(at end (= fu n))

Figure 3: Modeling an upper-bound

If one is more careful, as we are in the figure, one need
not even use the assumption that isolated actual trajectories
are endpoint-bounded. The reason endpoint-boundedness
for isolated effects was important in the preceding is that we
were inferring an upper-bound from fl, which is normally
just a lower-bound. However, at the endpoints of changes, fl

regains equality with f , thereby becoming an upper-bound
(as well as lower-bound). It was this property that was ex-
ploited to enforce capacity, but one must have some addi-
tional means of bounding intermediate values in terms of
values at endpoints if such an approach is to succeed.

In this general framework, such complex arguments are
unnecessary; fu is always an upper-bound, so it is sufficient
to enforce fu ≤ c over the duration of the plan. The
approach is clearer if we specialize the presentation in the
following way — consider the actual trajectory induced by
an additive-effect and a starting value (or just the trajectory
of an assignment-effect). Find the starting, final, minimum,
and maximum values over that interval and discretize using
4 effects:

1. (at start (-= fl (starting - minimum)))

2. (at end (+= fl (final - minimum)))

3. (at start (+= fu (maximum - starting)))

4. (at end (-= fu (maximum - final)))

These are more or less equivalent to the effects given in
the figure, but closer to the intuition: “for a lower-bound:
consumption at start, production at end; for an upper-bound:
production at start, consumption at end”. The above descrip-
tion adds the insight that general resource effects are simu-
taneously production and consumption events. For pure pro-
duction/consumption effects, half of the above effects sim-
plify to addition or subtraction by 0 (no-ops).

This method easily supports capacity constraints, in fact,
even dynamically changing upper bounds can be verified, so

that in fact this methodology is appropriate even for numeric
fluents that are not really resources (like, say, the position of
a robot). Viewed in this way, it is clear that what is being
modeled is the uncertainty in the intermediate state of a de-
terministically known transition, when that uncertainty is re-
stricted to intervals. If, for example, one wanted to state the
precondition that a robot be within a certain distance of a tar-
get position (in one dimension, say), it would be enough to
check that the lower and upper bounds on the uncertainty in
its position were within that distance. Viewed from this per-
spective, one could further extend this method to relax the
restriction that fl(t) = fu(t) = f(t) whenever all change
has ceased — to support the modeling of domains where
one does not in fact know the actual behavior any more ac-
curately than interval-valued uncertainty around the actual
value.

Dual resource modeling
An alternative approach is to stick to the philosophy that it is
always better to have more of a resource, in particular, one
insists that only lower-bounds are permissible. How, then, to
handle capacity? The idea is that capacity is always an emer-
gent phenomena of the world: a summary of ones physical
limits (Fox & Long 2003). Such limits are resources, too,
of course. For example, it is always good to have more fuel.
The only reason I cannot have as much fuel as I like (on a
given plane) is that there is insufficient space to store the
fuel in. As another example, consider a bathtub. One way
of describing the water in a bathtub is as a resource, with a
capacity (say currently there are 10 gallons, and the capacity
of the tub is 50 gallons). An alternative perspective is that
there are two resources: the water in the tub (10 gallons), and
the free space available for storing water (40 gallons). Natu-
rally, the actual amount of resource and the actual amount of
free space for storing that resource at any moment sum to a
constant: the capacity of that resource. Instead of modeling
such a constant directly, one can instead separately model
the effects on the two resources. Then every effect is both a
production and a consumption: a conversion of units of one
resource into another.

In particular one can model every resource f with a lower-
bound trajectory fl (of its primal value) and a lower-bound
trajectory fd of its dual value. The dual value of a resource is
just the available free space, i.e., the capacity minus the cur-
rent value. Unbounded resources can just have fd pegged at
infinity, or dropped from the model altogether. I.e., wealth
can be modeled without a dual fluent (if one so desires). Fig-
ure 4 presents the details of the technique. Then, enforcing
a “capacity constraint” is just a matter of ensuring one never
consumes more than the available space: “(≥ fd 0)”.

It is helpful to rewrite the effects in terms of the starting,
final, maximum, and minimum values of an actual trajec-
tory:

1. (at start (-= fl (start - minimum))))

2. (at end (+= fl (final - minimum))))

3. (at start (-= fd (maximum - start))))

4. (at end (+= fd (maximum - final)))

t

endstart

e(t)

e (t)
l

dual lower envelope

e(t)
quantity e(t)

t
endstart

capacity c

space e(t)
e (t)

l
dual lower envelope

Dual lower-bound
Additive (at start (-= fd u))

(at end (-= fd (− n u)))
Assignment (at start (= fd (− c u)))

(at end (= fd (− c n)))

Figure 4: Modeling a dual lower-bound

This is just two instances of an application of lower-bound
modeling: all consumption at start, and all production at
end. The subtlety is in identifying the distinction between
the consumption and production of material/resource and
the consumption and production of space for storing that re-
source.

We note that the two modeling techniques are exactly
equivalent for any numeric fluent with global upper and
lower bounds. However, separately tracking upper and
lower bounds is more powerful for numeric fluents that have
no global upper bound than the approach of using dual vari-
ables. The reason is simple; the dual variable must be
pegged at infinity if the primal variable can grow without
bound. In particular, in modeling a one-dimensional con-
tinuosly changing position, the methodology of upper and
lower bounds can enforce interval constraints on position
(even equality constraints) without further restrictions (up
to the precision of the discretization), whereas the dual vari-
able approach is equivalent to just tracking a lower-bound
(since the dual will be stuck at infinity).

The major advantage of the dual variable approach is that
it is entirely sufficient for resources, which are a highly im-
portant class of fluents, especially because resources usu-
ally participate directly in the solution metric (total fuel con-
sumed, cash left on hand, so forth). The restriction to only
lower-bounds means that the natural ordering of the domain
is the same as the ordering induced by solution utility. In
particular, effective techniques can be leveraged in heuris-
tic evaluation to efficiently compute estimates of the total
amount of the resource that will be needed to reach a goal
(and the cost in terms of other actions and resources to ac-
quire such quantities). Upper bounds can confuse such rea-
soning easily, by causing the best values of the fluent to be
at some intermediate value of the domain, or worse, to dy-
namically change with respect to what state one is in. This is

as one would expect, given that the prior methodology can,
in fact, reasonably model non-resources (like the position of
a robot), whereas the dual-variable approach is restricted to
“true” resources.

e(t)

t

= end= start t2 t4 t5t1

upper envelope e (t)
u

lower envelope e (t)
l

t3

Additive Assignment
Lower (at ti (+= fl (− li li−1))) (at ti (= fl li))
Upper (at ti (+= fu (− ui ui−1))) (at ti (= fu ui))
Dual (at ti (-= fd (− ui ui−1))) (at ti (= fd (− c ui)))

Figure 5: Precise discretization

Quality in Modeling
Lines, Triangles, and Tubes oh my!
So far we have remained within the scope of current plan-
ners, that is, discretizing effects so that they are constant
over the entire duration of actions. In fact it is not that dif-
ficult to support piecewise-constant behavior either compu-
tationally or syntactically — e.g., Prottle plans in a rich for-
malism that supports effects in the middle of actions. Using

e(t)

t
endstart

lower envelope e (t)
l

upper envelope e (t)u

(a) An approximation of airplane fuel usage.

t
endstart

lower envelope e (t)l

upper envelope e (t)u

(c) A tighter approximation of airplane fuel usage.

e(t)

t

endstart

lower envelope e (t)
l

upper envelope e (t)
u

(b) An approximation of (realistic) battery charging.

t
endstart

lower envelope e (t)l

upper envelope e (t)u

(d) A tight approximation of noisy behavior.

Figure 6: Better Approximations [than pure discretization]

piecewise-constant approximations of behavior allows sig-
nificant improvements in modeling fidelity: compare Fig-
ures 2, 3, and 5. One can further generalize from a step
function basis to any basis of functions which are syntac-
tically and/or computationally simpler to reason with than
the actual physical changes being modeled. Note that the
discretization method of upper and lower bounds computes
a box around the actual trajectory. It would be natural, in
many domains, for effects to be concave or convex. For
example, airplanes consume more fuel while climbing than
while cruising: this is a concave consumption. Conversely,
battery charging is convex: it is easy to add charge in the
beginning, but it becomes increasingly more difficult. Note
that the limits of concavity and convexity are step-functions:
see Figure 6.

If we in fact knew that one or the other case held, instead
of bounding the change using upper and lower step func-
tions, one could instead bound the actual trajectory inside
of a triangle. In fact, supporting piecewise constant func-
tions seems no harder than supporting linear functions — so
that if one has the latter one may as well assume that it is
possible to model piecewise-linear bounds around the actual
behavior, i.e., very precise “tubes” (see Figure 6). While
the limit of increasingly precise tube and box approxima-
tions are identical (both can represent arbitrary functions if
allowed infinite precision), it is clear that piecewise-linear
bounds converge faster. Moreover, for actually linear behav-
ior, a linear approximation approach is exact: and one can
construct problems, using only linear behavior, that no finite
precision piecewise-constant model can solve (though such
solutions must necessarily be infinitely non-robust). For ex-

ample, if action A produces twice the capacity in two time
units, and action B consumes twice the capacity in a single
time unit, both doing so linearly, then there is a solution to
executing both — but the actions must end at exactly the
same time.

Lines and step functions are not the only computation-
ally tractable basis set of functions; in some applications,
one could know an approximate Fourier decomposition of
the behavior, where the sum of all uncovered amplitude was
bounded by a small constant. One could impose upper and
lower bounds on the actual trajectory using such a decompo-
sition (plus or minus the error constant, respectively). The
possibilities are quite diverse, but the basic point remains
the same: at the level of planning, some sacrifice in model-
ing fidelity must be made for the sake of computational ef-
ficiency. The techniques discussed may be used to mitigate
such losses up to a point, as reasoning with the suggested
functions is not that much more computationally difficult
than discrete effects (just more difficult to implement). Fur-
ther, doing something is better than nothing — so any com-
putationally tractable model is better than no model. Still,
as compared to an oracle, such sacrifices in modeling fidelity
ultimately lead to a loss in quality. Fortunately, one can often
recover such losses using a hybrid planning and scheduling
approach — employing scheduling against a detailed model
to optimize otherwise inefficient abstract plans.

Rescheduling
Consider Figure 7 — a simplified version of the problem
faced by an aging planetary rover every day: avoid over-
charging the (degrading) battery. In this example, recharg-

Dig action
Recharge action

Recharge production

Dig consumption0

100

200

capacity combined

combinedDig consumption

capacity
lower bound

upper bound

lower bound

upper bound
0

100

200

-100

capacity

Dig Action

combined upper bound

0

100
combined

combined lower bound

Dig consumption

Recharge production

Figure 7: Discretizing at half-capacity

ing will exceed capacity twofold, so that regardless of any
science objectives it is important to burn off the excess en-
ergy. The dig action does precisely that, and has a reason-
ably large window of opportunity within which to start in
order to achieve this goal. Any discretization approach, if
it can encode any solutions, will certainly miss some of the
potential start times of the dig, in turn likely leading to a
loss in quality (of course, this depends on exactly what the
quality metric is).

Let us suppose we discretize so that every change con-
sumes or produces half of the capacity (as in the fig-
ure). Then there is a solution — exactly one. Yet even
though this solution is quite unlikely to be optimal, we can
still be quite pleased with the discretization, because one
could take this plan and reschedule it (Bäckström 1998;
Do & Kambhampati 2003). That is, given the plan shown
on the right of Figure 7, one could use the detailed model
on the left to infer all the possible start times of the dig ac-
tion. Note that performing inference in the detailed model
can be tractable for the purpose of rescheduling even if the
model is inappropriate for planning; an important restriction
in rescheduling is that the overall plan remains fixed, so that
from the point of view of a planner, rescheduling is a local
search.

Formally, we say a the domain modeling problem is the
task of finding a computationally tractable abstraction of the
real world, and procedures for mapping between the real
world and the abstraction. In particular, the inverse proce-
dure — mapping abstract plans to concrete plans — can be
quite complex, involving, among other things, rescheduling.

Definition 3 An abstraction (D̂, T, T−1) of a domain D

consists of a domain D̂ and procedures T and T−1 for trans-
lating between the domains; T maps problems from D to D̂

and T−1 maps solutions from D̂ to D. T−1 may be non-
deterministic, i.e., a local search.

An abstraction is correct if:

∀P ∈ problems(D),∀π̂ ∈ plans(T (P)),
∀π ∈ T−1(π̂), π ∈ plans(P)

An abstraction is complete if:

∀P ∈ problems(D),∀π ∈ plans(P),
∃π̂ ∈ plans(T (P)), π ∈ T−1(π̂)

An abstraction is optimal if any optimal abstract solution
contains an optimal concrete solution in its neighborhood:

∀P ∈ problems(D),∀π̂ ∈ optimal(T (P)),
∃π ∈ optimal(P), π ∈ T−1(π̂)

In terms of discretizing resources, the key observation is
that the discretization continually returns to the actual val-
ues — so the only sacrifice is in slowing down access to the
resource. If such delays can be tolerated, then a hybrid ap-
proach to planning will succeed — a planner in a very coarse
abstraction of the domain can solve the action selection and
action ordering problems, and a scheduler in a refined model
of the domain can solve the dispatch (i.e. scheduling) prob-
lem by rescheduling the abstract plan.

In terms of notation, when such delays can be tolerated,
then for every actual plan π of some problem P , there is an
abstract plan π̂ (of the abstract problem T (P))) that covers
it: π ∈ T−1(π̂). Viewing problems as sets of solutions, one
could say P = T−1(T (P)). In this perspective, the loss of
a particular abstraction can be quantified: |P \T−1(T (P))|.
Definition 4 Let R denote a rescheduling procedure: a lo-
cal search in the space of alternative schedules of its input.
Let I be the trivial mapping: I(π) = π for all π.

Observation 2 If production and consumption are mutu-
ally exclusive in D, then naive enforcement of capacity in a
lower-bound discretization D̂ is correct and complete with-
out rescheduling — everything else being equal, (D̂, T, I) is
a correct and complete abstraction.

Theorem 4 If production and consumption are never re-
quired to be concurrent in (solutions to problems of)
D, then forcing a mutual exclusion and naively enforc-
ing capacity in a lower-bound discretization D̂ is correct
and complete-under-rescheduling — everything else being
equal, (D̂, T, R) is a correct and complete abstraction.
Caveat: There exist domains which do not require concur-
rency and yet possess concurrent plans which cannot be se-
quentialized (Cushing et al. 2007). However, such domains
are odd in that these unrecoverable concurrent plans have
no distinguishing side-effects. Otherwise, by assumption
solutions exist despite the discretization, and the solutions
which are lost can be recovered using scheduling techniques,
see (Do & Kambhampati 2003; Cushing et al. 2007).

In many real world domains, agents producing and con-
suming shared resources would make reservations ahead of
time to ensure there were no conflicts. That is, in such do-
mains there is some form of global management where each
producer and consumer reserves the appropriate amount of
space or material before making changes. The technique
of upper-bound and lower-bound modeling is equivalent to
such conservative management of the resource, as is dual-
resource and lower-bound modeling.
Observation 3 If production and consumption are conser-
vatively managed in D, then a discretization D̂ by upper-
bound and lower-bound modeling, or dual-resource and
lower-bound modeling, is correct and complete — (D̂, T, I)
is a correct and complete abstraction, with respect to this
resource.
Theorem 5 If production and consumption are never re-
quired to be concurrent in D, then a discretization D̂ by
upper-bound and lower-bound modeling, or dual-resource
and lower-bound modeling, is correct and complete-under-
rescheduling — (D̂, T,R) is a correct and complete abstrac-
tion, with respect to this resource.
Caveat: This holds for the same basic reasons, and with the
same caveat, as Theorem 4.

The advantage of the latter approach is that one does not
force a mutual exclusion — it is still possible to concurrently
modify the resource. This can allow recovering solutions
even if concurrency is required between production and con-
sumption, but because of side-effects, not because of global
bounds on the resource itself.

In fact, there is a further advantage: one can relax conser-
vativeness while preserving all the relevant theoretical prop-
erties: consider Figure 5. In this approach, each update is
modeled conservatively, but the action as a whole is given
multiple internal updates. In particular, the action can be-
gin even if the action as a whole will require future inter-
vention, just so long as it does not require future interven-
tion before the next update. Within this kind of framework
one can model individual productions and consumptions that
exceed capacity (in absolute quantity), perhaps many times
over. Planners that can handle only discrete changes can
still find the plans requiring concurrency of such large pro-
ductions and consumptions, by interleaving many smaller
discrete changes (see Figure 7). Formally:

Observation 4 There exists a sufficiently precise discretiza-
tion of any domain that is complete-under-rescheduling.

This holds with a caveat: there are domains that require
infinite precision in order to execute successfully. Normally
one assumes that agents do not have such perfect control,
and must execute plans that would succeed equally well if
start times of actions were perturbed just slightly. In discrete
models of the world it is fine to allow planners to synthesize
plans requiring exact simultaneity, as in Figure 7, because
the very fact that one has discretized implies that there is a
non-empty interval of alternative schedules of any plan one
finds in the discrete model. The caveat is in the other di-
rection: when the real model, not the discretization, requires
simultaneity, one can justify refusing to deem such plans ex-
ecutable.

Conjecture 1 Sampling every effect twice as frequently as
the minimum window of opportunity in concrete solutions
is complete-under-rescheduling; if a discretization fails to
achieve a given level of quality at a given frequency, it re-
quires an agent with access to the real model at least half as
much precision in dispatch-time control to do any better.

Sampling every resource effect at half-capacity changes is
complete-under-rescheduling “most of the time”.

In general, the amplitude of the square wave of the dis-
cretization has to fit within the bounds in order to find a
plan in the abstraction; if external influences force one to
consume when the resource is low or produce when the re-
source is high, then the discretization must sample changes
frequently enough that the amplitude of such changes fits
within the remaining space. When the bounds are the only
cause for forced concurrency, one could usually delay con-
sumption until the resource is above the half-capacity mark
and/or delay production until the resource is below the half-
capacity mark. The counterexample is when neither can be
delayed because both production and consumption signifi-
cantly exceed the capacity, with very slightly different rates
(so that one cannot just make the actual trajectory a constant
at half capacity with a square wave around it consuming the
whole space).

In an explicit hybrid approach to finding plans and sched-
ules, we note that it could be helpful to relax correctness
at the planning level. Specifically, allowing the global and
upper bounds to be violated during concurrent modification
— so that “0” ≤ f ≤ c might be violated — as long as
the invariant holds everywhere that no modification is being
performed could be quite helpful. Rescheduling against the
detailed model then faces the problem of picking dispatch
times to put the concurrent modification within bounds,
given that the net effect remains within bounds (so it is at
least plausible that it is possible). This requires a tighter inte-
gration of planner and scheduler to allow backtracking when
such rescheduling is impossible; but the approach could al-
low much coarser abstractions (and thus more efficient syn-
thesis) at the level of planning while still exploiting compli-
cated concurrent access to resources.

Modeling within proper PDDL2.1
Writing down a model that correctly enforces a capacity
constraint is quite difficult in proper PDDL. The best way
to enforce such a global constraint is to include it as a global
constraint in the model. However, PDDL only allows con-
straints on action executability, so that global constraints
must be compiled into local constraints. There are 3 ap-
proaches for performing this compilation:

1. Assert the constraint in every action
2. Prevent actions that cause violation
3. Prevent actions that undo violation

The first method is undesirable, especially so in PDDL
where the constraint must be given not only on each action,
but in fact 3 times per action (AT-START, AT-END, OVER-
ALL). One can make optimizations in this approach, such as
dropping the constraint from actions with no possible effect
upon it, but the approach remains cumbersome. Like the
third method, this also requires that one check the constraint
as part of every goal, in order to catch the case that the last
action causes a violation AT-END.

For capacity constraints, the best compilation is to check
the capacity right after any increase in the resource, that is,
the second method. However, this is impossible in PDDL
— AT-END effects occur after AT-END conditions. If one is
willing to exploit the full technical details of the PDDL spec-
ification, then one can rewrite such a constraint so that it is
the regression of the global constraint through the enclosing
action’s AT-END effects. This will be correct as far as (our
understanding of) the specification is concerned, but there
are fine technical details involved (concerning simultaneity)
that existing planners disagree on. Moreover, many planners
handle AT-END conditions poorly, e.g., by lacking effective
heuristics to cope with such conditions, or by treating them
as OVER-ALL conditions instead of AT-END conditions.

The third method is undesirable; it is completely counter-
intuitive to wait to check a constraint until it is about to be-
come un-violated. For example, in the case of a capacity
constraint, it is sufficient to check the constraint at the be-
ginning of every consumption action, and at the beginning
of every “goal action”. The problem with this approach is
the strong temptation to move all the capacity constraints
from the consumption actions to the production actions: do-
ing so breaks the model. Consider, for example, the recharge
action given in Figure 8 of the PDDL2.1 specification (Fox &
Long 2003). This model allows executing recharge twice —
even sequentially — leading to an uncaught violation of the
capacity constraint (one can follow it up with one or more
navigates to burn off energy if the constraint is included in
the goal). On the other hand, this model can be fixed by
moving the constraint from the recharge action to the navi-
gate action and including the constraint in every goal.

Needing to repeat the constraint as part of every goal is of
course very error-prone: problems and domains are separate
files in PDDL. By and large the least evil for modeling within
proper PDDL seems to be an optimized version of the first
approach:

1. Add “(not done)” as a condition on every action

2. Add “(done)” as a part of every goal (always starts false)
3. Add “(plan-end)” as an instantaneous action to the do-

main, which checks every global constraint and gives
“(done)”

4. Check every global constraint AT-START and AT-END on
every action.

This mitigates the maintenance problem between domain
and problem files, and is closest to the unattainable goal
of checking global constraints immediately after violations
may have occurred — instead, the constraint is checked at
the very next transition in state. One could drop the con-
straint from actions that cannot change the status of the con-
straint, however, this allows long non-goal-achieving, but
executable, plans, which must then be eliminated through in-
ference or search. Also, it makes maintenance of the domain
trickier; if the constraints change, but they are all copied uni-
formly across actions, they can be easily replaced wholesale
with the new constraints. If the treatment is non-uniform,
then manual inspection is required.

Conclusion
Domain modeling is a difficult problem, even when re-
stricted to the case of resources. We discuss the hidden
pitfalls of the current approach to discretizing resource be-
havior, in particular, modeling capacity requires much more
than a lower bound on the resource. We showed a number
of conditions that can hold in the real world that allow a di-
rect enforcement of capacity against a lower-bound, but ar-
gue that the exploitation of such domain knowledge should
be reserved for automatic methods. We give in-depth de-
tails on two extended forms of resource discretization that
guarantee correctness without special restrictions on the do-
main: modeling an upper bound, or modeling a dual re-
source. The ideas themselves are not new, however, various
existing benchmarks either fail to model a second fluent or
get the details wrong (Cushing et al. 2007), including ex-
amples presented within the PDDL spec itself (Fox & Long
2003, Figure 8). This motivates our in-depth treatment of
the matter, which we take further in considering a hopefully
near-term future where alternative approaches to discretiza-
tion/abstraction of complex effects can be empirically com-
pared with one another (on planning+scheduling systems).

References
Bäckström, C. 1998. Computational aspects of reordering plans.
JAIR 9:99–137.
Cushing, W.; Weld, D.; Kambhampati, S.; Mausam; and Tala-
madupula, K. 2007. Evaluating temporal planning domains. In
ICAPS.
Do, M. B., and Kambhampati, S. 2003. SAPA: A multi-objective
metric temporal planner. JAIR 20:155–194.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. JAIR 20:61–124.
Smith, D. E. 2003. The case for durative actions: A commentary
on PDDL2.1. JAIR 20:149–154.

