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Most complex aerospace systems involve large numbers of text reports relating to safety,
maintenance, and associated issues. Some have thousands of reports, spanning decades.
The Space Shuttle has over 100,000 reports from just the last two decades. Similarly, the
Aviation Safety Reporting System (ASRS) database spans several decades and contains
over 600,000 reports.

These information repositories contain valuable information about system health, par-
ticularly about trends and recurring problems. However, repository volume and complexity
can make human analysis difficult. Current methods for identifying recurring anomalies
rely on a divide-and-conquer strategy. A system is decomposed into subsystems, and ex-
perts on those subsystems read and monitor current reports. Thus problems and anomalies
can be tracked and trended.

This methodology requires experts who can recall and integrate reports spanning po-
tentially long time scales. Current reports are often related to ones from months and years
past. Recall is aided by categorizing reports into specific anomaly categories. Tracking and
trending are aided by monitoring category totals over time. Category utility, however, re-
lies on the experts to correctly and consistently categorize reports. With multiple experts,
inter-rater reliability must somehow be assured.

Clearly, human reading, comprehension, and association with relevant prior reports,
is essential to system health assurance. The weak point is in identification and recall of
relevant prior reports. A decision support system that automatically analyzes reports
and provides consistent discovery, characterization, and categorization would be extremely
useful.

This paper discusses recent innovations in the field of text mining that enable the auto-
matic discovery of anomalies in such text repositories, using statistical and content-based
clustering techniques, and the characterization and categorization of these anomalies using
advanced classification algorithms. The first innovation discovers recurring anomalies using
content-based and statistical clustering techniques. The system, known as the Recurring
Anomaly Detection System (ReADS) performs comprehensive analysis of an entire infor-
mation repository to discover recurring anomalies and presents the results in an intuitive
interactive visualization for further investigation by experts. The second innovation, known
as Mariana, automatically classifies documents into predetermined categories using an ad-
vanced classifier, known as a Support Vector Machine, along with a Markov Chain Monte
Carlo simulation to find the best hyperparameters for the model. Another approach to
finding predetermined categories, base on Non-negative Matrix Factorization, is also show-
ing promising results. We discuss the application of these to the problems of discovering
recurring anomalies and categorizing anomalies in space and aeronautics domains.
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I. Introduction

Most complex aerospace systems have large numbers of reports relating to requirements, design, man-
ufacturing, operation, maintenance, safety, and associated issues. Importantly, these systems also usually
have a formal problem reporting system. Problem reporting systems can be quite large, containing thou-
sands of reports, spanning many years, and could even bridge several databases. The Space Shuttle problem
reporting system has accumulated over 100,000 reports from the last two decades alone. The Aviation Safety
Reporting System (ASRS), despite its constrained scope, spans several decades and contains over 600,000
reports.1 These two examples probably represent the upper end of system report library sizes; numbers
around 1000 are much more common. But even in smaller datasets, the sheer number of reports tends
to reduce the amount of knowledge that can easily be extracted from these reports, thereby limiting their
utility.

Such information repositories contain much valuable information about many aspects of both the subject
system and any similar systems. However, repository volume and complexity makes human analysis difficult.
Our primary concern is system health and safety, particularly system trends and recurring anomalies for
prediction, amelioration and prevention of ongoing and future system problems. This entails particular
difficulties for human analysts. Current methods for identifying recurring anomalies rely on a divide and
conquer strategy. A system is decomposed into subsystems, and experts of those subsystems read and
monitor reports. With very small datasets, subsystem problems and anomalies can be directly tracked and
trended, though subsystem interactions may still remain a problem area.

For trend and recurring anomaly detection on large datasets or across multiple datasets, this methodology
requires experts who can recall and integrate information from reports spanning potentially long time scales.
Current reports are often related to ones from months and years past. Recall is aided by categorizing reports
into specific anomaly categories, such as ”Propulsion Anomaly” or ”Ground Proximity Warning System
Anomaly”. Tracking and trending are aided by monitoring category totals over time. Category utility relies
foremost on having an informative set of categories, one that will highlight known potential problem areas
without hiding unknown ones. Category utility relies almost equally on having experts who can correctly
and consistently categorize reports. With multiple experts, inter-rater reliability must somehow be assured
and rating “drift,” the tendency for analysts to morph their ratings over time, must be carefully monitored.

While it is clear that system health assurance depends on human comprehension and association with
relevant prior reports, a weak point is in identification and recall of relevant prior reports. A decision
support system that automatically analyzes reports and provides consistent discovery, characterization, and
categorization would be extremely useful.

The scenarios described above can be broken down into two sets of problems: those types of systems
with well-defined problem categories, as found in the aviation community; and those whose nature does not
yet lend itself to classification and must therefore depend on unsupervised techniques, such as those in the
aerospace community. Both types will be addressed in this paper.

II. Related Work and Research

Unsupervised text mining methods, such as document clustering and nearest neighbor approaches are well
suited for monitoring multiple large datasets. Several clustering techniques were explored in the early-stage
of development of the Recurring Anomaly Identification System (ReADS). As explained in the Srivastava
et al. paper, a modified version of von Mises Fisher clustering was ultimately selected for the unsupervised
clustering component. A similar comparison study was done to determine an appropriate method for deter-
mining recurring anomalies. Several methods were quite comparable, though cosine similarity was decided
upon.2

Initial excitement over non-negative matrix factorization’s (NMF) potential was spurred by an application
to facial image data3 , where the basis images formed recognizable components of faces. However, subsequent
applications to similar data sets did not fare nearly so well. It is now thought that the original result was due
to a combination of unusually consistent image acquisition, and to the human facility for facial recognition.
This led several researchers to look into ways to enforce additional constraints on NMF multiplicative update
algorithms,4 with mixed success.
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III. ReADS - Unsupervised Learning

The Recurring Anomaly Detection System (ReADS) was developed in response to a need to identify
recurring anomalies which may be indicators of larger systemic problems in a complex system. We define a
recurring anomaly as any of the following:

1. A repetitive problem on either the same or different hardware,

2. A set of similar problems that are described in multiple problem reports, or

3. A set of problems that appear across subsystems or components but have the same root cause.

This section of the paper will describe the data and methods used, present the results, and discuss the
capabilities and features of the ReADS tool.

III.A. Explanation of Data

A subset of the Shuttle Orbiter PRACA (Problem Reporting And Corrective Action) Data Support System
(SOPDSS) dataset was used to analyze the recurring anomaly algorithms presented in this section. The full
SOPDSS dataset is in use at NASA Johnson Space Center. The subset was randomly selected from a set of
reports ranging in date from Jan 1, 1993 to March 31, 2003. The subset contains 333 reports. The text-based
sections of all 333 reports were reviewed by subject matter experts. The experts determined that 70 of the
reports fell into 20 identifiable recurring anomalies. The 20 recurring anomaly clusters contained anywhere
from 2 to 10 reports. This is slightly under representative of the entire dataset in which 366 recurring
anomaly clusters were identified each containing anywhere from two to 48 reports. But since over 40% of
the clusters from the full dataset contain only 2 reports, it was decided that rather than forcing the larger
recurring anomaly clusters to appear in the subset the random selection was reasonably representative. The
text portion of the documents in this dataset are approximately 1-4 pages in length, and contain a large
quantity of acronyms, abbreviations, part numbers, numeric values, and unusual punctuation, as compared
to standard English text such as news reports. A PRACA report may be written over a period of time, by
multiple authors with different expertises (e.g., technical, quality assurance, and safety evaluation). Many
of the reports refer by name to other reports in the same dataset, and occasionally in other datasets.

III.B. Clustering and Anomaly Detection - Methods Used

The Recurring Anomaly Detection System (ReADS) takes advantage of two types of clustering:

1. Unsupervised clustering of the entire dataset using a modified version of the von Mises Fisher (vMF)
algorithm;2,5, 6 and

2. Identification of higher priority clusters of reports which are possible recurring anomalies. These possi-
ble recurring anomalies are identified using two techniques: (i) document-document comparison using
the cosine similarity measure algorithm,6 and (ii) documents explicitly referencing other documents.
This will be described in more detail below.

The reasoning behind implementing two distinct types of algorithms was the recognition that automated
recurring anomaly analysis consists of two components: help the analysts more easily review all of the reports,
e.g., unsupervised clustering of the dataset; and help the analysts prioritize their analysis by identifying the
potentially high-risk reports, e.g., a subset of the entire dataset which are the potential recurring anomaly
clusters. The recurring anomaly algorithms are run across the entire dataset, but as an analyst would expect,
the majority of reports are not recurring anomalies.

There are an overwhelming quantity of reports to review. The breadth of topics covered in the reports is
immense, ranging from out-of-range voltage readings to fuel injector leaks, and from incorrect laptop displays
to meteoroid strikes. Therefore, the task of reading each and every report with the goal of associating reports
with similar or related problems is a daunting one. The vMF clustering implementation clusters the entire
dataset, thus providing analysts with the ability to select clusters of interest for further perusal. In this
manner, analysts may still be required to read all of the reports, but they can focus their attention on a
single group at a time. The second set of algorithms takes the next step by actually identifying possible
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Figure 1. Let each letter represent a single report, and let each colored circle
represent either expert or ReADS recurring anomaly clusters. Left figure:
Objective (a) criteria met: One or more ReADS recurring anomaly clus-
ters (blue) completely overlapping all of the reports in the experts recurring
anomaly cluster (yellow). Right figure: Objective (a) criteria not met, report
”Q” does not fall into any of the ReADS clusters.

recurring anomalies for the analyst. This provides the analyst with exactly what they are seeking. Therefore,
the development of an automated system to extract recurring anomalies from text was considered worthwhile.

The recurring anomaly algorithm development was based on three objectives: (a) False negatives are
unacceptable; (b) Match the subject matter experts’ clusters; and (c) Possibly identify recurring anomalies
missed by the experts. To meet the first objective, the ReADS recurring anomaly clusters only have to
overlap completely with the experts clusters. Using a simple example, if an expert’s recurring anomaly
cluster contains three reports and those three reports fall into one, two or three ReADS recurring anomaly
clusters, the objective is still met, see Figure 1. Of course, the case of identifying all reports as recurring
anomalies is trivial and uninteresting.

The second objective is more challenging than it might initially seem. Individuals may not cluster reports
in the same way as others, e.g., some will group smaller clusters together, others will not. And they may
not even use the same measure of similarity for all of the reports that they cluster. The same cannot be said
for the algorithms. The threshold defines the measure of similarity, thus the same level of similarity is used
across the dataset. This disconnect results is a higher likelihood of overlapping the expert’s results rather
than matching the experts exactly. Since the tool is intended only to identify possible recurring anomalies,
false positives are expected. Therefore if subject experts choose to break up, or combine, recurring anomaly
clusters, this is considered acceptable. As illustrated in Figure 2, it is preferable for ReADS to overly
combine, rather than overly separate expert clusters. Clusters that have been broken up by ReADS can
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a) Separated Clusters b) Combined Clusters

Figure 2. Illustration of separated and combined clusters.

be a problem. Instead of expecting experts to read and combine appropriate reports, this situation expects
experts to read all of the reports categorized as recurring anomalies and combine appropriate clusters. Since
recurring anomaly clusters are made up of reports, this situation contains nearly the same issues that the
experts started with, save the ability to ignore all of the reports that do not make the full recurring anomaly
list. Overly combined clusters, on the other hand, do not add additional complexity to the task. A subject
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expert may choose to break up the bloated cluster, but in so doing, the expert was not required to hunt
through any other clusters to decide how to break it up. All of the knowledge they need to make the decision
exists within the one cluster.

The cosine similarity algorithm uses agglomerative clustering to identify reports which are similar within
a set threshold. These reports are explicitly identified by ReADS as possible recurring anomalies. The
approach is straightforward.

1. The dataset is reduced to a bag-of-words matrix. In this matrix, each row represents a single report
and the columns represent the union of all unique terms in the dataset. The elements of the matrix
are the word frequencies in each report.

2. Using a bag-of-words matrix, a document-to-document cosine similarity measure is calculated.

3. After calculating the distance between each document, the algorithm applies single linkage, i.e., nearest
neighbor, to create a hierarchical tree representing connections between documents. Single linkage also
generates an inconsistency coefficient which is a measure of the relative consistency of each link in the
tree.8

4. The hierarchical tree is partitioned into clusters by setting a threshold on the inconsistency coefficient.

A high threshold on the inconsistency coefficient implies that the reports could be very different from
each other and still be sorted into the same recurring anomaly cluster. Our preference has been to set the
threshold low, thereby returning many smaller clusters of very similar reports. The threshold was determined
qualitatively by comparing the results with the subject matter experts’ results. There is no guarantee that
this approach will determine an appropriate global threshold value across any assembled dataset. This is
listed as future work. For completeness in the description of the algorithm, clusters consisting of only one
document are excluded from the recurring anomaly results.

The document-referencing technique uses regular expression searches to identify reports which reference
other reports by name. These referenced reports can be considered recurring anomalies, at least the author
of the report believes that this is the case. Of course there could be a case where a report is referenced
in the negative (e.g., “...report ABC is nothing like the problem we are experiencing...”). ReADS would
incorrectly claim that the two reports are possible recurring anomalies, thus this is a false positive. But, as
described below, the minimization of false positives is not the intent of this tool, nor is it required for the
recurring anomaly detection task. Most problem report datasets provide authors a way to identify a given
problem with other similar problems, and this approach takes advantage of that knowledge. The algorithm
searches the document term list for matches to a regular expression. Once a match is identified, the algorithm
confirms that a filename exists with the matched expression. Then the algorithm identifies the two reports
as a recurring anomaly. The method has proven itself to be useful, and is such an obvious step to take, the
ReADS tool would be lacking if it did not do so.

III.C. Clustering and Anomaly Detection - Results

Figure 3 shows the results of the cosine similarity component of the recurring anomaly detection system
analyzed on the SOPDSS dataset discussed above. Items highlighted in light green are recurring anomaly
clusters identified by ReADS using the cosine similarity technique which exactly match a cluster identified by
subject experts. This is, of course, the ideal case and meets our stated second objective. Color-highlighted
elements in the last row are recurring anomaly clusters identified by the cosine similarity technique in
ReADS and not identified by the subject experts. These recurring anomaly clusters meet the third objective
- identification of possible recurring anomalies missed by the experts. These clusters were handed over to
a second set of subject experts who identified 8 of the 17 new clusters as legitimate recurring anomaly
clusters, these are highlighted in pink. Six of the blue elements are recurring anomaly clusters which the
secondary review deemed incorrect or trivial clusters. The remaining two blue elements were ReADS clusters
where some of the reports in the cluster might qualify as a recurring anomaly, but the cluster also contained
reports which did not qualify. The 8 newly minted recurring anomaly clusters meet the third objective
and are examples of why this tool was developed. Four of the 8 newly identified recurring anomalies were
discovered using only the cosine similarity technique. The other 4 were identified by both the cosine similarity
measure and by the regular expression technique. The regular expression technique also solely identified even
more possible recurring anomalies, but because this technique is not novel, these results are not included.
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Figure 3. Confusion Matrix of subject expert identified recurring anomaly clusters vs. ReADS identified recurring
anomaly clusters. RAs = Recurring Anomalies

Non-highlighted elements in the last row were identified by ReADS as possible recurring anomalies, but were
not reviewed by the subject experts because a portion of the recurring anomaly cluster did match with one
or more expert clusters, therefore it was decided that “extra” reports in a true cluster are acceptable. These
extra reports may have value or they may not, but they cause little extra work for the analysts. Elements
identified in light brown (the 34th column) are recurring anomaly clusters identified by experts but missed
by the cosine similarity algorithm in ReADS, but which, luckily, were caught by the regular expression
technique. The one report that was missed by both recurring anomaly identification algorithms (highlighted
in purple) is a legitimate report in a recurring anomaly cluster, and it is not known at this time why it was
missed.

The overall result of this analysis is that out of the 65 reports which fell into one of the 20 recurring
anomaly clusters identified by the experts, ReADS caught all but 1, plus ReADS identified 13 more possible
clusters. And this is the conservative perspective. A more liberal view of the results would state that out
of 333 reviewed reports, ReADS caught all reports which belong in a recurring anomaly cluster, except 1
single report. And it is worthwhile to note that ReADS caught all of the other reports in that cluster. Plus,
ReADS correctly identified at least eight other previously unidentified recurring anomaly clusters, containing
a total of twenty-two reports.

III.D. ReADS - The Tool

The algorithms discussed above were integrated into an existing secure online search system which accessed
several databases and provided search capabilities across the databases. When the users of this system
complete their search and have the data that are of interest to them, they can choose to perform text mining
on the reports. Due to the computational power and time it can take to perform text mining on large
datasets, ReADS runs on local servers. Once the text mining is complete, the user is sent an email with a
link back to the system to the location that their results are posted. The user has the option of viewing
the results in two ways, tabular and visual. The tabular view has limitations, including ambiguity caused
by reports referencing each other and therefore overly combining clusters. On the other hand, the visual
representation developed using Tom Sawyer Softwarea nicely displays the data, using boxes to represent
each report, and lines and arrows to indicate types of recurring anomalies. The visualization shows the vMF

ahttp://www.tomsawyer.com
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clusters for the entire dataset, such as is shown in Figure 4. At this distant view, each report appears as a
single point clustered with other reports. Using lines and arrows, ReADS also displays recurring anomaly
clusters including the method of identification: referenced reports are connected with arrows; similar reports
are connected with a solid line, groups of similar reports are assigned a hub to reduce the amount of lines
drawn. Figure 5 is a closeup of one of the clusters of Figure 4. This visualization shows several things: similar
reports, referenced reports, and a unique case of reports which reference reports which do not happen to be
a part of the original dataset, i.e., the initial search did not contain the report in question.

Figure 4. ReADS visualization of vMF clusters. Each small
dot represents a single document.

Figure 5. The closeup view of a vMF cluster shows
several types of recurring anomaly clusters. Each col-
ored box represents a single document

ReADS is a fully functional system. There are currently ten datasets available for text mining on ReADS.
And the system provides the capability to search and text mine across multiple datasets, which opens up
some interesting possibilities for discovering recurring anomalies.

IV. Mariana - Supervised Learning

The existence of a large set of preclassified data allowed for a different approach than the one used in
ReADS. Supervised learning takes precategorized data, in this case narrative reports, as the learning dataset,
and from those data build models which identify the distinctions between categories. The models are then
used to categorize new, non-classified reports. There are many different supervised learning methods, several
of which are discussed in this paper, and each have their own strengths and weaknesses.

There were two goals that we set out to achieve:

1. While acknowledging that there are no guarantees that the developed models will perform equally well
on all datasets, our intent is still to build a generic tool with algorithms which have not been inherently
designed to excel in the aviation domain.

2. A disadvantage of supervised learning techniques is that they are only as good as the learning data.
Though the aviation report reviewers are experts and work hard to be consistent, fair and equable,
they are human, and there is frequent disagreement between reviewers on the proper classification(s)
of a report. Therefore, we decided that our minimum requirement would be to correctly classify a set
of reports 75% of the time. Since the dataset is multi-category, categorizing a report into the wrong
category is considered acceptable, as long as it is also categorized into the proper category.

IV.A. Classification of Safety Reports

The Aviation Safety Reporting System (ASRS) was created 30 years ago as a joint effort by the FAA
and NASA.1 The program was established to collect data and information about aviation events which
could lead to unsafe situations, or non-standard procedures. This could be used to identify deficiencies and
discrepancies in the National Aviation System so that appropriate solutions may be implemented. ASRS
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reports are written by pilots, flight controllers, technicians and occasionally passengers. In general, the
reports are filed in response to a specific event, but concerns and complaints are also filed. ASRS reports
include factual information about the aircraft, location, parties involved and a narrative in which the author
describes the event(s) and/or situation. These narratives are specific to aviation, filled with acronyms and
abbreviations that only those with a working knowledge of the industry are likely to understand. Each report
is read by at least two aviation experts who identify both hazardous conditions and underlying causes of
the reported events. As of June 2006, there were over 600,000 documents in the ASRS data base with more
than 3000 reports added each month. Many air carriers also have their own internal safety reporting system
which may or may not be linked to the ASRS. The existence of these independent, or partially independent,
systems led to the development of a master version of the categorizations which all organizations could
reference. This version is known as the Distributed National ASAP Archive (DNAA).

Since this important dataset is growing at such a fast pace, human review will soon become the bottleneck
in the system and therefore it is crucial to identify alternative techniques for identifying the potential safety
hazards and causal factors. The field of information retrieval and statistical learning has developed many
successful methods for classifying text and extracting subject information.2 This has been a very active
research topic in recent years and text classification algorithms are now commonly used in a wide variety
of web and computer applications, such as search engines and spam filters. This section will describe how
these methods were evaluated and modified to solve a unique problem in text mining. The outcome of
this effort is an automatic classifier of aviation safety reports, known as Mariana. Mariana is a collection
of tools to preprocess preclassified documents, build models (e.g., support vector machines or NMF) using
those preclassifications, classify non-classified documents and present the results to the analyst. The system
provides a quick, consistent and unbiased classification of the documents, thus improving the process by
increasing the throughput, and reducing inter-operator differences.

IV.B. Multicategory and Sparse Data

Aviation and aerospace documents are quite different from existing data sets, such as Reuters-21578 and
20 Newsgroups.18 Industry specific terms, references to equipment and positions, and the use of acronyms
differentiate the reports from the text the public is commonly exposed to. The intended audience of aviation
reports are expected to have a working knowledge of the industry so the reports are often void of descriptive
or background material. The Reuters and 20 Newsgroups data sets are much more verbose and the verbiage
is more representative of everyday common language.

To ensure the development and research of text clustering and categorization algorithms for the aeronau-
tics domain we have built a data set specific to aviation safety. Since the Aviation Safety Reporting System
(ASRS) narratives are a publicly available database, we identified a subset of the ASRS reports which are
representative of the entire data set and used this subset for our analysis. The subset contained reports from
60 ASRS event categories. Srivastava et al. list several of these event categories.2 The subset contained a
few categories into which nearly half of the reports fall, as well as rare event categories in which experts
would expect to see relatively few qualifying reports out of the entire dataset of 28,000+ reports. Due to
the uneven distribution of reports, certain categories are overrepresented and can make classification of rare
events difficult. A learning dataset was extracted in which 3,200 reports were categorized into 32 DNAA
event categories. Due to the severely limited number of reports available in some of the rarer categories, our
analysis focused on 22 of those 32 DNAA categories.

Table 1 demonstrates both the non-exclusive nature of the subject matter expert’s assigned categories
and the great imbalance between category populations, with ratios up to 37:1. Class 2 is assigned to better
than half the narratives, classes 6 and 19 to more than a quarter each, while 12 of the 22 have populations
under 6% of the total.

Table 2 highlights the exceedingly non-exclusive distribution of the subject matter expert’s assigned
DNAA categories. On average, the narratives are assigned to 2.16 categories, with assigned category counts
ranging up to 10. Less than a third are assigned to single categories, more than a third have 2 categories,
while the remaining third have 3 or more categories.

This dataset went through a text normalization and natural language processing program called PLADS.
PLADS expands acronyms and collapses phrases to match differences of expressions with exactly the same
meaning (e.g., ‘FL’ vs. ‘flight level’) and it sets nouns and verbs to the singular tense. This data set can be
used for research purposes and can be downloaded from the NASA Ames Research Center’s Intelligent Data
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Table 1. Non-Exclusive Category Populations

Distribution of the set of 28596 ASRS documents, with respect to the

22 DNAA categories.

Cat# #Docs %Docs - Cat# #Docs %Docs

1 1876 6.56 12 4275 14.95

2 16173 56.56 13 2849 9.96

3 615 2.15 14 1654 5.78

4 610 2.13 15 508 1.78

5 3915 13.69 16 1249 4.37

6 7663 26.80 17 556 1.94

7 2230 7.80 18 1490 5.21

8 2844 9.95 19 8534 29.84

9 573 2.00 20 876 3.06

10 1456 5.09 21 441 1.54

11 514 1.80 22 807 2.82

total 61708 215.78

Table 2. Non-Exclusive Categoriza-
tion

Distribution of the full
document set with respect to
the number of categories per
document.a

#Cats #Docs %Docs
1 9032 31.585
2 9926 34.711
3 6915 24.182
4 1911 6.683
5 565 1.976
6 154 0.539
7 68 0.238
8 16 0.056
9 8 0.028

10 1 0.004

aWith 28,596 documents and 22
categories.

Understanding group website.b

Table 3 illustrates the unusually severe asymmetry of the PLADS processed ASRS narrative’s term
occurrences. Fully one third of the extracted terms are only found in single documents, and so are completely
useless for statistical text mining. Similarly, terms that are only found in small numbers of documents can
provide little information about the set. Fully 90% of terms could be eliminated while retaining 90% of the
counts and the count sums, which constitute the information used in statistical text mining. On the other
hand, almost 1% of the terms are each found in over 14% of the documents. Unless their distributions have
strong statistical properties, these terms also provide little information, and so become candidates for an
ASRS domain specific stopword list.

Figure 6 illustrates the 22 DNAA categories’ binary population correlations, i.e., the relative degree of
co-occurrence. The strongest correlations, which are still quite weak, involve the three largest population
categories. The largest correlations involve categories 2, 6, and 10 with correlations ranging from 0.47
to 0.33. There are also a fair number of 3-way correlations, but the number of significant higher level
correlations decreases rapidly. High correlations between large and small population categories would imply
that essentially all instances assigned to the smaller category are also assigned to the larger.

Since there are no obviously strong correlations between the different categories, we assumed category
independence. So, instead of building one large multi-category classifier we treated each category individually
and set up a series of binary (e.g., ‘in the class’ or ‘out of the class’) classification problems. This gave us
some extra flexibility, but by treating each report as being either “in” or “out” of a category we added to
the imbalance problem of the data by increasing the number of reports considered “out” of each category.

All of these factors work against the direct applicability of most conventional statistical text mining
techniques, which have largely been developed for data sets having significantly different statistical properties.
This was the primary motivation for this work.

IV.C. Dimension Reduction

In order to improve classification rates, dimension (i.e., term) reduction is often used to eliminate terms that
add “noise” to documents. These terms can be terms that occur very frequently or very rarely and are not
associated with particular categories. Human readers are able to ignore these terms and identify the relevant
information to extract concepts and infer meaning extremely effectively, but it is much more difficult to train

bhttp://datamining.arc.nasa.gov/
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Table 3. Assymetry in Term Distributions

Distribution of the dataset with stopword filtered 2+character terms
with respect to the minimum number of documents where term
occurs.a

#Doc #Term %Term #Count %Count Sums %Sum
1 25729 100.00 1714931 100.00 2615965 100.00
2 17603 68.42 1706805 99.53 2605072 99.58
4 12560 48.82 1694903 98.83 2588504 98.95
8 8991 34.94 1676237 97.74 2563263 97.99

16 6103 23.72 1644694 95.90 2521891 96.40
32 4065 15.80 1599497 93.27 2464005 94.19
64 2685 10.44 1537551 89.66 2384040 91.13

128 1731 6.73 1452340 84.69 2273663 86.91
256 1068 4.15 1331842 77.66 2113264 80.78
512 609 2.37 1164957 67.93 1891332 72.30

1024 351 1.36 978935 57.08 1638920 62.65
2048 162 0.63 707972 41.28 1267763 48.46
4096 69 0.27 445444 25.97 868293 33.19
8192 14 0.05 151219 8.82 364014 13.91

16384 1 0.00 17070 1.00 51928 1.98

aWith 25,729 terms from 28,596 documents.

a computer to do the same. Preprocessing of the data is often necessary to reduce the number of terms to
only the most informative.

Simple statistical methods like Chi-Squared, TFiDF, and Information Gain can be used to find a small
set of terms that describe a single category, but because of the restricted vocabulary used within the field of
aviation and the limited number of terms within each document these sets often overlap many, if not all, of
the categories, i.e., very similar terms can describe more than one category.19 It is often a combination of
terms and common use words that are the most informative within the document.

An alternative approach to the methods mentioned above is to use Natural Language Processing (NLP)
to extract phrases and sets of terms to help reduce the noise within the text and, thus, improve classification.
This is a very effective method but most NLP systems are rule based and require a significant amount of
effort to build and evaluate. For specialized documents like Aviation Safety Reports this would also require
subject expert involvement. Since our first goal is to build a classifier that is robust against the the common
language variations seen in the reports and requires minimal maintenance and human involvement to build,
we decided against using NLP and instead focused our attention on classification methods.

IV.D. Support Vector Machine (SVM)

To develop a system which would require little interaction, we looked at several multicategory techniques
such as Naive-Bayes, Neural Networks, ADABOOST, and SVM as well as several other methods.6 Both raw
text and PLADS preprocessed text was compared. The terms were ranked by Information Gain and the bag
of words matrix was reduced to the top 500, 1000, 2000, and 5000 terms. To evaluate the performance of
the classifiers we used the area under the ROC curve.

As can be seen in Figure 7, standard SVM consistently matched or outperformed the other methods
across all categories. SVM also gave us some flexibility for improving the results and adapting the algorithm
to match the data set being classified. Recently, comparable results were demonstrated using non-negative
matrix factorization (NMF). In this paper we present our advancements of both SVM and NMF and demon-
strate our ability to automatically categorize aviation safety reports.
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Figure 6. Binary correlations of the dataset categories. Computed as cij = (n2
ij/(ni ∗ nj))

1/2, for ni, nj , and nij the
respective populations. Diagonal elements, all with value 1.0, have been suppressed.

Support Vector Machines were initially developed by Vladimir Vapnik in 1979.17 SVMs are a statistical
learning method based on Structural Risk Minimization (SRM). In SRM, we choose a set of classification
functions or hypotheses that classifies a set of data. A risk functional measures the expected error rate for
the set of classification functions. By minimizing this functional we are putting bounds on the empirical
risk.17

The simplest example of a Support Vector Machine is a linear hyperplane trained on data that is perfectly
separable as shown in Figure 8. Given a set of input vectors, xi ∈ Rd, and labels, yi ∈ {−1, 1}, SVM finds a
hyperplane described by its normal vector, w, and distance from the origin, b, that divides the data perfectly
and is equidistant from one point in each class that is closest to the hyperplane. This hyperplane is a decision
boundary and the classification of an unknown input vector is determined by the sign of the vector operation

xi ·w − b = d (1)

If d ≥ 0 (d < 0) then the input is likely in the class y = +1 (y = −1).
If the data is not perfectly separable this method can be adapted to compensate for instances that occur

on the wrong side of the hyperplane. In that case a slack variable, ξ, is introduced that measures the error
of misclassified instances of the training data. SVMs find a hyperplane that best separates the data and
minimizes the error, ξ.

V (w, b, ξ) = min(‖ w ‖ +C
∑

ξ) (2)

where C is a user defined parameter of the slack variable. If C is large, the classifier puts a large penalty on
errors. If C is small, then the classifier is more general. If the number of inputs in and out of the class are
not balanced, as is the case for the aviation safety reports, it is sometimes necessary to factor the errors of
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Figure 7. Performance of different classification algorithms on 60 ASRS categories

one class more than the other. An additional parameter, µ, is added to weight one class error over another.

V (w, b, ξ) = min(‖ w ‖ +µyiC
∑

ξ) (3)

The decision hyperplane can only be linear which is not suitable for many types of data. To overcome this
problem a kernel function can be used to map the data into a higher or infinite dimensional space and run
SVM on this new space.

Φ : R 7→ H (4)

There are many kernel functions available and new kernels can be built from the data itself. The kernels only
need to meet Mercer’s Conditions to be used in SVM.16 For our classifier we chose a radial basis function,

K(xi,xj) = e−γ‖xi−xj‖2 (5)

where γ is a parameter input by the user.

W

b

W

b

m/2

!

m/2
!

Figure 8. Optimum Hyperplane for Separable and Non-Separable case.

IV.D.1. Hyperparameters

For the set of aviation safety documents, we have found that the values of the hyperparameters, C, µ, and γ,
greatly affect the performance of the classifier. The number of dimensions or terms, unknown relationships
between categories, and the different ratios of documents in each class make it difficult to build a general set
of parameters. So, they are either determined from basic tests on the input data or found by a simple grid
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search.14 In practice, C and γ are determined by starting with a course mesh and repeating several passes at
increasingly finer scales. This can take hundreds of evaluations for just two hyperparameters. When adding
the µ parameter to compensate for the unbalanced data, it can take thousands of iterations to complete even
a coarse grid. Instead of using a brute force grid, we used a Simulated Annealing search to determine the
optimum hyper-parameters.

IV.D.2. Simulated Annealing

Simulated Annealing is a stochastic search optimization similar to Markov Chain Monte Carlo.15 The basic
algorithm evaluates the output of the classifier for a given set of parameters and then randomly adjusts
the values of the hyperparameters for reevaluation. If the new set of hyperparameters improves the results,
the new set is kept. If it does not, then the results are kept or rejected based on the probability of how
different the current results are from the best results thus far. Modifying the hyperparameters even when
they are moving away from the current maximum reduces the probability of settling on a local maximum,
thus the final result is likely the global maximum. The data set is broken into three parts, 50% for training
the models, 25% validation to check the performance of the models, and 25% as a final test. The natural
distribution of the categories is maintained in each part. Since we are treating the multicategory problem
as a set of binary classification problems, there are significantly fewer documents in each class than not in
the class. To ensure that there are enough positive examples, the training file for each binary classification
is built by randomly selecting document vectors from the training set while maintaining a minimum 10%
documents that are in the class. The validation and test set maintain the natural percentage of the entire
corpus of documents. Once a model is built from the training set, it is used to predict the categories of the
validation set. We use the area under the ROC curve to evaluate the predictions. This process is repeated
until a maximum is found or for a predefined number of iterations. Once the optimum hyperparameters are
found for each class the model is then used for a final prediction of the validation data.

IV.D.3. Confidences

The outputs from the prediction is the distance from the hyperplane and can be any real number. This can
be misleading when comparing the outputs from different class models for the same document. It is natural
to assume that a larger number is the more correct answer, but it is not possible to directly compare the
output of two different categories. Even if the outputs are comparable in range, the distance is not a true
measure of confidence in the prediction. The categorization is determined by the sign of the output from the
SVM and it traditionally discards the distance. We combine the distance and the rates that each category
occurs in the data set to generate a model of the confidences,

Conf =
1

1− exp(−αd + β)
(6)

where α and β contain category information. The final output is a positive number between 0 and 1 and
scaled; so anything above 0.5 is considered in the class.

IV.E. SVM Results

The optimum choice of hyperparameters improves the area under the ROC curve by 10% or more in some of
the categories on raw text. It also performs equally on text that has been NLP preprocessed by the PLADS
system. As shown in Figure 9, there is little difference in performance when this process is used on raw text
and PLADS processed text, without the overhead NLP techniques tend to require.

Once convinced that the algorithms were comparing well against other techniques, we evaluated the
performance of the full tool by auto-classifying 100 randomly selected reports and having the results reviewed
by a problem report expert. The reviewed results were encouraging. Our stated goal was for the reviewer to
approve of at least one of the auto-classification selections 75% of the time. The reviewer agreed with the top
classification 73% of the time. The reviewer agreed with one or both of the top two classifications 86% of the
time, and with the top three classifications 90% of the time. A separate review of the 100 reports was done
by another subject expert. Then our reviewer reviewed their classifications, and agreed with their top (and
only) classification 89% of the time. These results not only indicate that Mariana is well within expected
classification levels, but that reviewers disagree amongst themselves. Since there is no expectation that an
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Figure 9. Comparison of Raw Text and PLADS Processed Text using Optimum Hyperparameters

automated learning system could do better than the human classifying that it learns from, the Mariana
results are considered quite positive.

IV.F. NMF for ASRS Text Categorization

Non-negative Matrix Factorization is a variation on the host of mathematically motivated techniques for
factoring large vector valued data arrays into basis and distribution matrices. The general approach is to
seek a relatively small set of basis vectors, W , and a corresponding set of distribution weight vectors, H,
such that data, X ≈ W ∗H, by minimizing some measure of the difference, X−W ∗H. The hope is that the
basis vectors will correspond to some fundamental properties of the data set, with the distributions mapping
those properties to the data.

In NMF applications, the data values are non-negative, typically counts or scalar measurements, and
the factorization is constrained to keep both W and H non-negative. This has a strong appeal lacking in
factorization methods that allow either basis or distribution values to go negative. With non-negativity, the
basis may be thought of as components, and the distributions as recipes for adding components to match
the data. Thus NMF overlaps the traditional field of statistical mixture modeling.

While non-negativity is an appealing property for factor-based data mining, constraining conventional
difference minimization algorithms to maintain non-negativity can be a serious complication. This changed
circa 2002, with spreading recognition of the potential of Lee & Seung’s multiplicative update approach.3,7, 9

For the squared Frobenius norm, the standard sum of squared matrix values, Lee & Seung’s original paper
gives the minimizing reestimation relations as:

Wab = Wab
(X ∗HT )ab

(W ∗H ∗HT )ab
(7)

Hbi = Hbi
(WT ∗X)bi

(WT ∗W ∗H)bi
(8)

where a and i index over the attributes and instances of X, respectively, and b indexes over the basis vectors.
This is actually a reformulation of the standard gradient driven norm minimizing search, augmented with a
conceptually simple step size computation that maintains the non-negativity constraint.

Starting with non-negative W and H, and applied alternately, these reestimation equations are proven to
monotonically lower the norm toward a local stationary point, while maintaining the non-negative properties
of W and H. For one accustomed to the complexities of conventional constrained function minimization
algorithms, this result is altogether remarkable. Lee & Seung also provided an alternate multiplicative
minimization for the Kullback-Liebler divergence of probability matrices. Dhillon & Sra,10 and Wang et
al.11 have since developed versions for other matrix norms. Other researchers have sought ways to enforce
additional constraints, with mixed success.4

IV.F.1. NMF Practicalities

While NMF is a potentially powerful tool for factor based data mining, it is not one that can be applied
blindly with any expectation of useful results. Every data mining project involves considerations of data
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specification, collection and preparation that will affect the results of any analytic method. The factorization
only provides a compression and reorganization that reflects the dominant statistical properties of the data
as presented. Data understanding depends on disambiguating the resulting basis and distribution, usually
in the light of much additional information.

Preprocessing considerations involve choices for data specification, acquisition, selection and preparation.
Data must be informative with respect to the focus of the analysis. Failing this, irrelevant aspects will very
likely dominate the results, and will certainly degrade sensitivity to the aspects of interest. Factor based
methods are intrinsically intolerant of unknown values. Thus incomplete data instances must either be
discarded or repaired. Likewise, data weighting to emphasize various statistical properties is subject to
ongoing research, with demonstrated but still largely unpredictable consequences for end results. Regardless
of the chosen analytic method, careful thought is needed to identify how any specific data set could be
handled to maximize end utility, and considerable experimentation to confirm what works and how well.

In factoring the prepared data, there is the fundamental choice of what difference matrix norm shall be
minimized, with an expanding range of choices, and consequences that are not yet well understood. A basis
size must be chosen, or a range of sizes searched over and evaluated. Algorithmic details, particularly factor
initializations, may have significant effects. Since the multiplicative NMF algorithms are gradient driven,
they approach their stationary points at exponentially decreasing rates. This requires stopping criteria that
must balance the opposing requirements of computational efficiency and numerical accuracy.

Once the data has been factored, understanding the basis and distribution can be challenging. This is a
major problem for undirected data mining. Understanding is largely a matter of relating results to external
criteria, and so requires additional information, e.g., subject expertise. In supervised data mining we have
the advantage of a standard against which we can compare our results and evaluate our algorithms. Either
way, making sense of the factorization entails another level of algorithmic decisions that affect both our
understanding and our confidence in that understanding.

Since the focus of this effort has been to use statistical text mining techniques, bag of words matrices are
the mathematical basis of the work. Thus, the specified data consists of a count for each term occurrence in a
document. Settling on a definition for the word ‘term’ can be managed on a per database case. It is customary
to discard a set of ‘stop words’, terms thought to be too common to provide any useful information. Our
current system uses the standard English stopword listc. Terms unique to any single document are clearly
useless, although surprisingly common in the ASRS narratives. A variety of term count weighting schemes
have been devised, intended to emphasize some aspect of the statistics. We have found that term weightings
which improve final product quality may also greatly increase the error norm that our NMF algorithm
minimizes, and vice versa, so end-to-end testing is essential.

For our applications, we seek to associate documents with pre-determined categories, by using manually
categorized documents for training the system. This gives us a category count, and so a minimum basis size,
though this does not necessarily provide enough data on some of the rarer categories. And while manually
assigned categories provide an objective measure of factorization utility, their use requires an auxiliary
algorithms to generate categories from our factorizations.

IV.F.2. NMF Application

The work described here was inspired by the promising results shown in the Allen et al.12 paper which came
in second place in the 2007 SIAM Text Mining Competition. This effort is a follow on of that entry, aimed
first at reproducing their results, and then to explore the effects of alternatives in weighting, factorization
and classifier construction. Our classifier construction code is a Matlab memory limit adaptive matrix coded
reimplementation of that submitted by Allen et al. Predictive quality is evaluated per the SIAM competition
specification,13 basically a sum of the traditional receiver operator characteristic (ROC) curve area and a
category confidence measure. Using these, we have duplicated Allen et al.’s results, improved on that result
by approximately 25%, and investigated a range of variations on their approach to NMF based tutored
classification.

Allen et al. used their General Text Parser to extract terms, accepting any strings of 2 to 200 characters,
which appear in 2 or more reports. We used our own term extraction code, with both 2- and 3-character
minima. While placing no limit on term length, we found none that exceeded 200 characters. Both of us used
SMART’s English stoplist. We kept all terms and subsequently sifted them for several levels of minimum

cSMART’s English stoplist at ftp://ftp.ce.cornell.edu/pub/smart/english.stop
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document number occurrences, getting 15,431 2-character and 2 document minimum terms, for Allen et al.’s
15,722 terms.

We generally used Allen et al.’s entropy based term weighting. For each term t, they compute an entropy
with respect to the document set as g(t) = 1 +

∑
d(p(t, d) ∗ log2(p(t, d)))/log2(nD), where p(t, d) is the

observed proportion of term t in document d, over the nD documents. Thus g(t) ranges from 1, for a term
appearing in a single document, to 0, for one that is uniformly distributed over all documents. Their final
weight for occurrence countX(t, d) is g(t) ∗ log2(1 + X(t, d)), thus de-weighting large occurrence counts. No
within document normalization was applied.

We briefly investigated two simple alternative term weightings. Using the raw unweighted term counts
reduces the NMF approximation error norm about 30 fold, relative to the entropic weighted terms, but
degrades our final prediction quality. Using raw counts with stop words retained gives an additional 3 fold
reduction in NMF error norm, and significant reduction in prediction quality. Thus the entropic weighting
clearly amplifies the statistical properties pertinent to our categories, despite the increased cost in the
factorization objective function.

Very limited experiments with 3-character minimum terms, at several minimum document number levels,
show no significant degradation of predictor quality. This was unexpected, and is thought to be due to the
PLADS processing of the ASRS reports, which tends to generate long character sequences. We find only
219 2-character terms, when sifted at the level of minimum 2 documents per term.

We investigated the effect of moderate selection for term distribution, sifting the full term set for those
having minimum document counts of 2, 5, 10, 20 and 40. See Table 3. As alluded to in a previous section,
at a minimum of 40 documents per term, we eliminate about 90% of the original terms, while retaining
about 90% of the original term occurrence counts. Thus there are clear computational advantages to term
sifting. We find a clear response to term sifting in the NMF approximation error, with a minimum squared
error norm consistently observed at 10 documents minimum per term. This response at the NMF level
does not extend through to the quality of our predictions. Seemingly random prediction quality variations,
between otherwise identical runs, and attributed to the random NMF factor initialization, generally exceed
the variation between the document count groups’ mean quality. Group mean predictive quality increases
roughly as the log of minimum document count, with a total increase of 2-3% over the range from 2 to 40,
with about 5% within group variation.

Both of us used the original Lee & Seung algorithm for minimizing the summed squared approximation
difference, W ∗ H − X, starting from random W and H matrices. Our NMF code has evolved from the
public distribution d of Dr. Patrick Hoyer,4 but was run in the same basic mode that Allen et al. ran theirs,
with identical core computations.

Allen et al. used an NMF basis size nB of 40, almost twice the 22 categories provided, with only 5
convergence cycles for the factorization. We investigated the effect of varying the NMF basis size, choosing
nB of 33, 44, 55 and 99 as reasonable given the category count of 22. At these levels, increasing basis size
gives a small but consistent decrease in the error matrix norm and a corresponding increase of a few percent
in the prediction quality, with much larger increase in computational costs. This effect is independent of the
response to minimum document number.

We investigated the effect of increasing the number of NMF convergence cycles above the 5 used by Allen
et al., and this is the source of much of our improvement over their results. Extending the convergence cycles
from 5 to 20 gives about a 20% increase in predictive quality, with a slight further increase out to 50 cycles,
and insignificant gains beyond that.

The summed square NMF approximation error trace has always shown the exponentially decreasing rate
characteristic of difference driven algorithms. We found none of the rate variations suggestive of complex
objective function topography. This may be due to the search space’s large dimensionality. On the other
hand, it is quite clear that we are finding local minima in the objective function surface, and that these
minima generate significant variation in category predictive quality. Thus it is better to do multiple short
convergences and choose the best, rather than a few long ones, so long as random initialization is used.

The predictor construction used by Allen et al. is fundamentally

Cp = f(HT
p ∗ (Ht ∗ Ct)) (9)

where inputs, Ht and Hp, are the NMF training and predictive distribution matrices, Ct and Cp, are binary
valued non-exclusive training and desired predictive document category indicator matrices, and ∗ denotes

dhttp://www.cs.helsinki.fi/patrik.hoyer/
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matrix multiplication. Function, f , combines a level cutoff and binary conversion from assessments to logical
predictions. In practice, the Ht and Hp are both filtered for factorization noise and normalized, while the
(Ht ∗ Ct) requires a further normalization w.r.t. Ht.

There is a clear interaction between the degree of NMF convergence and the optimum noise filter level
applied to the distribution matrices, Ht and Hp. As expected, limited convergence requires tight filtering,
while better convergence permits looser filtering. The gain in predictive quality due to the optimum param-
eter shift is small relative to that due to the better factorization. The need for this filtering is largely due to
their conversion of Ht to a binary indicator matrix, prior to computing (Ht ∗Ct). We find, for well converged
factorizations, that the filtering can be eliminated if Ht is simply normalized. This is a consequence of the
computational noise introduced by the binary conversion.

Symmetry suggests that Hp ∗Cp = Ht ∗Ct should give better predictions than equation 9, preferably as
Cp = H−1

p ∗Ht ∗Ct. Unfortunately, Ht is very far from being invertible. We are investigating ways to solve
this symmetric form. The best result obtained thus far uses the H update of the Lee & Seung NMF algorithm
for W ∗H = X, to compute Cp from known Hp and Ht ∗Ct. The resulting predictor qualities are only a few
percent better than what we get with equation 9, and obtained at considerably greater computational cost.

Allen et al.’s entropic term weight g(t) sums p(t, d)log2(p(t, d)) over all documents d. This works well
when all data are at hand and can be processed together. In a production system it will be advantageous
to train the system on initial data, and then apply it to new instances as they become available. It is then
necessary to retain g(t), possibly update it, and apply it to new instances. We have not investigated how
g(t) might evolve in such circumstances, using the fixed value from the training data for our production
mode experiments.

Getting an Hp in production mode is more difficult than getting g(t). Allen et al. factored the joint
training plus test data set, as W ∗ (Ht,Hp) = (Xt, Xp), separating Ht and Hp afterwards. This suggests
using Wt ∗Hp = Xp, which can be solved using a single sided Lee & Seung convergence code, after selecting
Wt and Xp for common terms. The predictive quality is only slightly lower than that obtained with joint
factoring. This is as expected, on account of the smaller data set used to generate Wt, which only has 3/4
the document set and 90% of the terms available in the joint calculation. There is a potential savings in
computational efforet, which we have not attempted to quantify.

IV.G. Mariana - The Tool

Now that the algorithms behind the supervised learning problem have been explored, this section will describe
the tool that was developed to support the analysis of the DNAA and ASRS reports. We have built an
interactive web tool that incorporates the SVM models and classifier with an online database of ASRS
reports. The flowchart in Figure 10 describes the process.

The subject expert analysts can log onto the website and select a set of reports to be auto-classified. Once
a set of reports are selected, Mariana will predict the categories the documents belong to and display only the
predicted categories that have a 50% confidence or more. The user can then evaluate the report and confirm
or correct the classification. Figure 11 is a screenshot of the tool displaying a sample report, and the results
of the Mariana classification algorithm. And, in fact, as can be seen in the figure, the classifications are
ranked by confidence in the prediction. The Mariana auto-classification online system will start a six-month
trial at an air carrier’s site in May 2007.

The reports can be displayed to an unlimited number of reviewers and each of the expert’s classifications
are recorded. Thus providing an ability to track both the performance of the auto-classification models and
algorithm, and the inter-operator error. New models can be easily built, using SVM or NMF, when new
data is available or the models’ performance drops.

V. Future Work

There are two topics being evaluated to improve ReADS. The first was briefly mentioned earlier in the
paper. The recurring anomaly cut-off threshold could be quite different for different datasets, and that is
not being addressed in the current version of ReADS. Research needs to be done to either identify a global
threshold for determining recurring anomalies, or to develop a technique which self-determines the threshold.
The second issue arose early in the design and development of ReADS, and that was the need to handle very
large datasets (150,000+ documents). The vMF clustering algorithm scales reasonably well, but the cosine
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Figure 10. ASAP Classification Flow in Mariana

similarity algorithm does not. This has led us to contemplate using the vMF results to help identify the non-
recurring anomaly documents, thereby reducing the amount of document-to-document comparison required
to identify recurring anomalies. The approach would take advantage of the ranking of the vMF clustering
algorithm to eliminate a significant portion of the documents prior to running the document-to-document
comparison. This might allow us to analyze larger datasets without running into computation limitations.
Early work is already showing some promising results.

The supervised learning effort also has two SVM topics that will be addressed in the near future. The
SVM method will soon be applied to the more challenging problem of addressing a more subtle classification
problem in the aviation industry. Each of the categories discussed in this paper have been further broken up
into sub-categories. Models will be developed to categorize aviation safety reports not just into the top-level
category but also the proper sub-categories. It needs to be seen whether the SVM method performs well
on the sub-category level. The second topic will be to perform a post-trial evaluation of the Mariana’s
performance at the air carrier site. It is likely that integration of non-narrative information available in
the aviation reports will be a high priority, with the expectation that this information will bring up the
classification rates on some of the rarer categories.

Since the NMF results showed promise, the non-negative matrix factorization work will also continue.
The largest single factor affecting prediction quality is the entropic weighting. It is not entirely clear why
this is true, and this needs further study. The NMF literature includes a number of alternate weightings
that should also be considered. In our investigation, the Allen et al. prediction generating algorithm proved
surprisingly effective. It is not yet clear if this is due to efficient use of information in the generator, or if
the factorization basis is a close match to the ASRS categories. This too needs further investigation.

Allen et al.’s entropic term weight g(t) sums p(t, d)log2(p(t, d)) over all documents d. This works well
when all data are at hand, as in the contest situation. For a production system, such as Mariana’s deployment
at the air carrier site, it will be advantageous to train the system on initial data, and then apply it to new
instances as they become available. It is then necessary to retain g(t), possibly update it, and apply it to
new instances. We have not investigated this evolution of g(t), using the fixed value from the training data
for our production mode experiments.

VI. Conclusion

Identifying recurring anomalies in large datasets is challenging and fraught with the possibility of missing
a set of related reports, a tool, such as ReADS, provides insight into possible recurring anomalies using
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Figure 11. Screenshot of Mariana

statistical methods. And, importantly, provides analysts with a way to narrow their focus and attention to
the highest priorities, those selected by ReADS as possible recurring anomalies, and then provide the same
analysts with a way to divide up all of the data, i.e., clusters, so they can approach the reports in a more
systematical way.

For the aviation classification problem, both SVM and NMF are compelling approaches. The SVM
method with optimized hyper-parameters results in high quality predictions, and there are techniques which
can be applied to improve it even further. The simulated annealing method for determining the optimal
hyper-parameters allows for class specific error rates which is one of the strengths of the described approach.
Non-negative matrix factorization for ASRS document categorization, using the standard Lee & Seung NMF
algorithm, with entropic term weighting and the Allen et al. prediction generation algorithm, has also
produced remarkably consistent high quality predictions. This holds over a fair range of basis sizes and
minimum document count levels, and over a large set of factorizations, where between type quality variation
is comparable to within type initialization noise. Major loss of prediction quality occurred only when the
entropic weighting was omitted, when the factorization was insufficiently converged, or when low probability
assessments are accepted as predictions.
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