
 1

Program Model Checking Using Design-for-Verification: 
NASA Flight Software Case Study1, 2,3 

                                                           
1 1-4244-0525-4/07/$20.00 ©2007 IEEE 
2 IEEEAC paper #1264, Version 1, Updated December 8, 2006 
3 The research reported in this paper was funded by the NASA Office of Safety and Mission Assurance's Software Assurance Research Program.  The 
development of the Propel toolset, which was used in this research, was funded by the NASA Engineering for Complex Systems Program.  

 
Lawrence Z. Markosian, Masoud Mansouri-Samani, and 

Peter C. Mehlitz 
QSS Group, Inc. 

NASA Ames Research Center 
Moffett Field, CA 94035 

{lzmarkosian, masoud, pcmehlitz}@email.arc.nasa.gov  
 

 
Tom Pressburger 

NASA Ames Research Center 
Moffett Field, CA 94035 

Tom.Pressburger@nasa.gov

Abstract—Model checking is a verification technique 
developed in the 1980s that has a history of industrial 
application in hardware verification and verification of 
communications protocol specifications. Program model 
checking is a technique for model checking software in 
which the program itself is the model to be checked. 
Program model checking has shown potential for detecting 
software defects that are extremely difficult to detect 
through traditional testing. The technique has been the 
subject of research and relatively small-scale applications 
but faces several barriers to wider deployment. This paper is 
a report on continuing work applying Java PathFinder 
(JPF), a program model checker developed at NASA Ames 
Research Center, to the Shuttle Abort Flight Management 
system, a situational awareness application originally 
developed for the Space Shuttle. The paper provides 
background on the model checking tools that were used and 
the target application, and then focuses on the application of 
a “Design for Verification” (D4V) principle and its effect 
on model checking. The case study helps validate the 
applicability of program model checking technology to real 
NASA flight software. A related conclusion is that 
application of D4V principles can increase the efficiency of 
model checking  in detecting subtle software defects. The 
paper is oriented toward software engineering technology 
transfer personnel and software practitioners considering 
introducing program model checking technology into their 
organizations.  

TABLE OF CONTENTS 

1. INTRODUCTION......................................................1 
2. TOOLSET FOR MODEL CHECKING C++................2 
3. TARGET APPLICATION..........................................2 
4. DESIGN FOR VERIFICATION ..................................3 
5. APPLICATION OF A D4V DESIGN PRINCIPLE........4 
6. FUTURE WORK......................................................8 
ACKNOWLEDGEMENTS .............................................9 

REFERENCES............................................................. 9 
BIOGRAPHIES............................................................ 9 

1. INTRODUCTION 

Model checking is a verification technique developed in the 
1980s that has a history of industrial application in 
hardware verification. Program model checking is a 
technique for model checking software in which the 
program itself is the model to be checked. Program model 
checking has shown potential for detecting software defects 
that are extremely difficult to detect through traditional 
testing. The technique has been the subject of research and 
relatively small-scale applications but faces several barriers 
to wider deployment. In this paper we report our experience 
applying Java PathFinder (JPF)[JPF], a program model 
checker developed at NASA Ames Research Center, to the 
Shuttle Abort Flight Management system, a situational 
awareness application originally developed for the Space 
Shuttle.  
 
Barriers to wider deployment of program model checking 
for real-world applications include the large, usually 
unbounded, state space of the application; the lack of tools 
(model checkers) that accept common programming 
languages; the complexity of these programming languages; 
software design process that do not support the require-
ments for applying verification tools; the absence of usable 
information about what properties should be checked; and 
the lack of guidance for software developers on how to take 
verification requirements into account during development.  
 
This paper provides a brief overview of our program model 
checking toolset for C++ and the target application. It then 
discusses our experience in applying “design for 
verification” principles to increase the effectiveness of 
model checking. Other aspects of the toolset and the case 



 2

study have been reported elsewhere[O’Malley] or will be 
reported following completion of the study. 

2. TOOLSET FOR MODEL CHECKING C++ 

The program model checker used in this work is directly 
applicable to Java. However, NASA flight software is 
written in C and other languages. While C has been most 
commonly used, C++ has seen increasing use, for example, 
in the Shuttle Cockpit Avionics Upgrade (CAU), and it is 
likely to be used in Constellation, NASA’s program for 
crewed and robotic exploration of the solar system.  To 
apply JPF to C++, we identified the semantic gaps between 
the two languages and developed a partial C++ to Java 
translation system, augmented by library and runtime 
support (for example, to handle pointers to primitive types 
and arrays of primitive types; and function pointers, which 
do not exist in Java). The complete set of tools for 
translating, analyzing, testing and model checking C++ is 
called Propel. Concurrently with development of Propel, we 
determined that the CAU coding standards avoided most of 
the problematic features of C++ (for example, multiple 
inheritance). Thus we were able to show the feasibility of 
our approach for translating real NASA flight software. 
Because of broad changes in funding for software 
engineering research at NASA, we were unable to mature 
the translator to the level required for automatic translation 
and execution of a Java implementation of SAFM.  Nor 
were we able to address the issue of whether the translation 
quality would be adequate for model checking.4 
 
Nevertheless, the translation infrastructure supported an 
adequate representation of parts of SAFM. We were able to 
(1) use JPF to model check parts of SAFM; (2) identify a 
design issue in SAFM and measure its effect on model 
checking; (3) apply a “design for verification” (D4V) 
technique and measure the improvement on model 
checking; and (5) through inspection, identify a defect that 
validated the application of D4V techniques. We are 
currently assembling a “Practitioner’s Guidebook” based on 
our experience with SAFM and other applications. 

3. TARGET APPLICATION 

The Shuttle Abort Flight Management system (SAFM) was 
developed by NASA Johnson Space Center and General 
Dynamics Decision Systems as part of the Shuttle Cockpit 
Avionics Upgrade (CAU). SAFM evaluates the potential 
abort options for the Space Shuttle under various 
contingencies and provides abort recommendations to the 
crew. Primarily as a result of the loss of Columbia and the 
subsequent re-focusing of NASA’s manned space flight 
away from the space shuttle and similar vehicles, both CAU 

                                                           
4 For example, the question of whether automated translation unacceptably 
increases the state space. 

and SAFM were canceled before being deployed, but the 
developers of SAFM remained interested in the analysis of 
the software. SAFM is a single-threaded application written 
in 30KLOC of C++ that follows coding standards 
appropriate to safety-critical applications. 

SAFM was selected for this case study for several reasons.  

• High criticality—it is capable of determining a safe 
landing trajectory for the shuttle autonomously in case 
of a failure requiring an abort during ascent. 

• Commonality of interest with the developers and their 
willingness and availability to work with us. 

• Good conformance of the application with technical 
criteria for C++ model checking using the Propel 
toolset. 

• Manageable size.  

High criticality—Advanced defect detection technologies 
such as model checking are thought to be capable of 
detecting subtle defects, defects which could escape 
detection using standard testing approaches, but they also 
represent a departure from current standard practice and are 
relatively immature. Further NASA development and 
deployment of leading-edge V&V technologies is best 
justified by demonstrating their success on safety-critical 
NASA applications. SAFM was rated “Crit 1R”, which is 
high criticality but redundant software. The in-flight SAFM 
system is redundant because there are ground systems that 
duplicate and take priority over in-flight SAFM functional-
ity in the presence of effective ground communication. In 
the absence of ground communication, the on-board SAFM 
system provides the required situational awareness to the 
crew. Since human life could depend on flawless operation 
of SAFM, it needs to be “human rated”, which requires 
extensive V&V.  
 
Commonality of interest—Success in applying a new 
software engineering technology in the context of a 
significant application requires a good working relationship 
among the application developers and the technology 
developers. The SAFM development team was willing to 
work with us for several reasons. They recognized a need 
for significantly greater autonomy (functionality achieved 
through automation in the absence of ground control) in 
space flight software than is currently available in 
applications like SAFM, and they recognized that a major 
barrier to greater autonomy has been the inability to 
perform verification and validation of autonomy software. 
Program model checking has been thought to be particularly 
well-suited to V&V of complex applications such as 
autonomy software.  In addition, although SAFM had been 
delivered to NASA by its developers, it was not scheduled 
for deployment until 2006; this 2-year lead time would 



 3

allow remediation of potential issues that our technologies 
might reveal.  
 
Technical match—Mismatch between technology 
capabilities and a target application can result in redirection 
of project focus, resources lost in developing work-arounds, 
or even a complete failure. SAFM was a good fit to the 
technical characteristics required by the translation 
approach taken by Propel. Most of the coding standards 
identified for successful model checking using Propel were 
met in SAFM. For example, SAFM did not make extensive 
use of the C++ Standard Template Library, and had only 
one use of multiple inheritance. On the other hand, SAFM 
lacked an important characteristic which may have made it a 
much better candidate for an early feasibility demonstration: 
it is single-threaded, whereas the properties that model 
checkers are best adapted to verifying “out of the box” 
include freedom from deadlock and other concurrency 
defects. Another characteristic of SAFM that impeded the 
effectiveness of model checking is that its input space 
includes many floating point variables. Program model 
checking, which focuses on the correctness of state 
transitions, is not particularly effective at detecting defects 
in arithmetic computations.  
 
Manageable size—Our program model checking tools are 
limited by the size of the state space of complex applica-
tions. SAFM’s size was known from the start to be too large 
to allow program model checking in its entirety using the 
approach taken with the Propel toolset. This did not 
represent a critical problem because the application was 
modular and would allow scope selection. Our goal was not 
to model check a complete application but to demonstrate 
feasibility of Propel. Still, the size of the application needed 
to be limited because the entire application and its test 
environment would need to be ported, compiled and run on 
the platforms used by Propel developers at Ames Research 
Center; and the case study team would need to obtain a 
sufficient understanding not only of the application, but also 
of its low-level technical requirements (the system 
requirements specification—SRS) to apply Propel 
effectively. 

4. DESIGN FOR VERIFICATION 

One of the goals of the case study was to measure the 
effectiveness of "Design for Verification" (D4V) guidelines 
on model checking.  The D4V approach is a set of 
principles, artifacts and processes for designing a program 
so that verification tools can be applied more effectively. It 
applies a variety of techniques such as design patterns, 
application programming interfaces, and source annotations, 
based on the hypothesis that the many of the general 
architecture and design principles leading to good 
modularity, extensibility and complexity/functionality ratio 
can be adapted to overcome some of the limitations of 

model checking and other software assurance methods.  
 
Below are several D4V design principles relevant to model 
checking. In the next section we show the application of one 
of these D4V principles to SAFM. 
 
Avoid redundancy—While not every form of redundancy is 
as bad from a verification perspective as it is from a 
maintenance point of view, behavioral redundancy to re-
create (local) state can impose problems (the model checker 
does not distinguish between function local and object 
state). For example: 
 

 
 
We can change the above example by factoring out the 
declaration of x and turning it into object state. 
 

 
 
This change is not recommended in the case where x is 
modified and not used. This will cause an unnecessary 
increase in the number of object states.  

Another harmful example of redundancy can occur with 
redundant aggregates, for example:  

 
One can factorize these and turn them into delegation 
objects as shown below: 

class A { 
  X x; 
  B b; 
  .. 
  void f (..) { 
    x.modify(); 
    b.update(x); 
  } 
}; 

class B { 
  X x; 
  A a; 
  .. 
  void g (..) { 
    x.modify(); 
    a.update(x); 
  } 
}; 

class A { 
  X x; 
  ... 
  void f(...) { /* use x */ } 
  void g(...) { /* use x */ } 
}; 

class A { 
  void f (...) { 
    X x(...); 
    ... // do something with x w/o 
changing it 
  } 
 
  void g (...) { 
    X x(...); 
    ... // do something else with 
x w/o changing it 
  }   
};



 4

 

 
 

These redundant types are usually a result of program 
extension: initially attempting to keep changes local (to a 
function member or class), but later realizing that the 
changes are required in a larger scope (whole class or set of 
classes). 

Use polymorphism—This guideline is discussed in the next 
section.  

Leverage model-based design—Model-based design 
provides useful hints of how a large system can be reduced 
so that its state space becomes searchable. If not inherently 
visible in the design (e.g. by means of using a 'State' design 
pattern), the model relevant information should at least be 
included as comments.  

Use finite state machines—A finite state machine (FSM) is 
one of the most suitable models for formal checks, 
especially for concurrent systems. However, FSM's can 
have problems with inheritance (the state model can change 
in derived classes) if state aspects are not factorized (e.g., 
with the State design pattern). 

Use platform-Independent Libraries and Abstraction 
Layers—Contemporary libraries can significantly exceed 
the size and complexity of applications. In practice, the 
application model or environment model will have to model 
some of these libraries (especially the ones without source 
code availability). Use of platform independent libraries, 
such as POSIX (especially pthreads), is recommended to 
easily model complexity and increase opportunity to reuse 
models. 

Reduce concurrency—From a model checking perspective, 
the searched state space consists of all possible thread-state 
combinations, which implies that the level of concurrency 
has the biggest impact on state space size. As a conse-
quence, reducing concurrency can be considered as the 
premier measure to ease model checking. 

Reduce the number of threads—Threads can be a useful 
abstraction and implementation mechanism to partition 
independent program actions. However, when there is 
coordination (or interference) between these threads, the 
required synchronization mechanisms increase the time, 
increase the state space and introduce potential liveness and 
safety problems.  

Some of these cases can be reduced with multiplexing 
patterns, e.g. separating asynchronous event emitters from a 
synchronous event processor by means of an event queue 
mechanism, i.e., combining sequenced operations inside of 
one dedicated thread (the event processor) instead of using 
explicit synchronization between several threads to enforce 
the sequencing. 

Reduce the number of interleavings—Besides the raw 
number of threads, the state space is affected by the number 
of potential interleavings of these threads. While there exist 
automated techniques to reduce these interleavings (partial 
order reduction), most model checkers include some kind of 
interface to denote atomic sections (code which does not 
interfere with other threads). Previous versions of JPF 
supported two primitives: Verify.beginAtomic() and 
Verify.endAtomic(). They were used to mark a section of 
the code that would be executed atomically by the model-
checker – i.e., no thread interleavings are allowed. 

 

These calls are deprecated in the current version of JPF 
which by default supports partial order reduction instead.  

5. APPLICATION OF A D4V DESIGN PRINCIPLE  

As indicated in the previous section, SAFM generally 
followed coding standards appropriate to high-criticality 
software. We identified several issues in SAFM that 
specifically related to D4V and model checking. We 
investigated these issues in detail in the sequencer 
component of SAFM. The first issue was the complexity of 
a critical method in the sequencer component involving a 
complex conditional statement; this presented us with an 
opportunity to apply one of the D4V guidelines. The second 

Verify.beginAtomic(); 
 
... // code without side effects  
// outside this thread 
 
Verify.endAtomic();

class A { 
  X *x; 
  void f (...) { 
    x->modify(); 
    ... 
  } 
}; 
 
class B { 
  X *x; 
  void g (...) { 
    x->modify(); 
    ... 
  } 
}; 
 
... 
X *x = new X(...); 
A *a = new A(...); 
B *b = new B(...); 
a-> setX(x); b-> setX(x); 
 



 5

was a subtle bug that was introduced when a newly added 
requirement was not implemented completely by the 
developers. We initially identified this defect not by 
applying the model checker but by inspection during the 
translation. We then used the ability of the model checker to 
provide better coverage than the existing testing framework 
that came with SAFM, in order to detect that bug.  
 
In this paper we show the effects of the D4V modification 
on the use of the Java PathFinder (JPF) model checker and 
also on increased coverage provided by JPF in order to 
reveal the bug. We— 
 

• selected relevant metrics, 
• ran JPF on the original SAFM code containing the 

bug and obtained data for these metrics,  
• made the D4V modification, and  
• obtained the metric data for the modified code. 
 

The metrics show a significant reduction in the resources 
needed to apply the JPF program model checker to detect 
the bug. 
 
We confirmed with the SAFM development team that the 
apparent defect is indeed a real defect. This defect was not 
revealed by the SAFM test environment and the developers’ 
code review process, and would have been difficult to find 
using traditional testing or by simply applying program 
model checking to the original code.  
 
In addition to simplifying the code, the D4V modification 
made the previously-undetected bug quickly identifiable by 
reducing the length of paths that had to be checked to 
ensure detection. This confirms that the D4V approach 
increases the efficiency of program model checking.  
 
In the subsections below we discuss details of the D4V 
guideline violation, resolution of the problem, and its 
impact on model checking.  

Guideline violation—One of the D4V guidelines relates to 
the use of polymorphism. Programs, especially those 
converted from non-OOP languages like C, sometimes use 
state where they should use inheritance. Figure 1 shows an 
example of this in C++. 
 
In this example the variable “type” is used to explicitly store 
the type of an instance of class A or B. It is initialized in the 
constructors of both classes and is used in the A::foo() 
method to determine the exact type of the object so that the 
appropriate operations are carried out. Besides being error 
prone (type initialization, branch-completeness) and 
breaking abstraction rules (base classes should not have to 
know about their concrete derived classes), this produces 
more code (the branches) and more data (type fields) that 
need to be handled by the model checker. 
 

 
Figure 1 Use of an explicit state variable to determine 
object type 
 
One could use the inheritance mechanism in C++ to do this 
as shown in Figure 2. 
 

 
Figure 2 Use of built-in inheritance to determine object type 
 
We identified a similar problem in our case study. In the 
sequencer component of the original SAFM C++ code, 
instead of using the existing type hierarchy (shown in 
Figure 3), the developers used the names of the scenarios in 
a complex conditional-statement in order to decide the type 
of the scenario to run next. 
 

class A { 
  virtual void foo(…) { 
    … /* doAStuff */ 
  } 
}; 

class B : public A { 
  virtual void foo(…) { 
    … /* doBStuff */ 
  } 
}

class A { 
  int type; 
 
  A (…) { 
    type = TYPE_A; 
    … 
  } 
 
  void foo(…) { 
    … 
    if (type == TYPE_A) 
      … /* doAStuff */ ; 
    else if (type == TYPE_B) 
      … /* doBStuff */ ; 
    … 
  } 
}; 
 

class B : public A { 
  B (…) { 
    type = TYPE_B; 
    … 
  } 
  … 
}; 



 6

 
 

Figure 3 Scenario Type Hierarchy 
 
Figure 4 shows a segment of the Java model which 
represents the problem as we found it: 
 

 
 

Figure 4: Segment of model showing the D4V issue 
 
 
The problems with this code are that: 
 

• it is excessively complex (has too many condi-
tions) for the functionality that it performs, and  

• its complexity masks a bug. 
 

The large number of name string comparisons done at 
runtime could easily be avoided with the proposed D4V 
modification. For example when the for-loop picks scenario 
blueScenario17 as the next scenario to initialize and 
process, in addition to the last name comparison, 17 other 
name comparisons for other scenarios are performed, before 
the scenario type is decided. This corresponds to 17 extra 
nodes in the control flow graph used to determine 
cyclomatic complexity. The complexity decreases 
performance (in both space and time). 
 
Comparisons based on string constants can be erroneous 
(e.g., if the strings are entered incorrectly). Testing this code 
thoroughly requires—  
 

• checking that all the scenarios have the right names 
– names that match their types - (21 scenarios – 21 
name checks) and 

• checking that the names of the scenarios in the 
conditional statement are correctly entered and 
match the actual scenario names. 

 
In addition to masking the bug, which we describe later, the 
complexity of the original implementation also makes it 
more difficult to maintain and extend the implementation. 
For example, if a new scenario type is added, all the 
conditional statements that decide the scenario type based 
on its name in the original code must be modified to include 
comparison for the new scenario’s name. 
 
Resolution of the problem—The built-in type inheritance 
and method overriding mechanisms in the C++ language 
can be used to determine the types of the scenarios instead 
of using an explicit state variable (the scenario’s name 
string) to make that decision.  
 
To implement this change we declared a new isBlue() 
virtual method in the ModelScenario class which is 
defined in the ModelGreenScenario, and Model-
BlueScenario classes returning false and true 
respectively. The method is also (re)defined (i.e., 
overridden) in the ModelCurrent scenario returning true 
if abcFlag is false. We then replaced the complex 
condition in the inner if-statement with a single call to the 
isBlue() method as shown in Figure 5: 

 

BlueScenarioType3 
BlueSenarioType2 

ModelScenario 

ModelBlueScenario ModelGreenScenario 

ModelCurrent 

GreenScenarioType3 
GreenScenarioType2 

GreenScenarioType1 BlueScenarioType1 



 7

 

Figure 5 D4V modification simplifying the code 
 
This design change reduced the cyclomatic complexity of 
the source code, which, in turn, reduced the number of tests 
required to achieve branch coverage. The cyclomatic 
complexity of the processScenarios() method 
compared with the original C++ code dropped by 18 – from 
32 to 14.   
 
Unlike the original code, the revised code does not perform 
name comparisons. The virtual method dispatching 
mechanism chooses the right scenario based on the object 
type hierarchy and invokes its isBlue() method. It does 
not need to invoke any other scenario’s isBlue() 
method. It is invoked only once in the conditional part of 
the inner if-statement. 
 
Testing the revised source code does not require testing the 
method dispatching mechanism itself (the compiler and 
runtime environments are separately certified, as 
appropriate). Only three definitions of the is-
Blue()method need to be tested. It is not necessary to test 
for each instance, as is the case for each scenario name in 
the original version. 
 
In fact, the model could be further simplified by completely 
removing the name of the scenarios altogether; this reduces 
the size of the state vector which leads to better savings in 
time and memory. We did not do that here because we 
wanted to show the effect of the specific D4V change only. 
 
The change also improves extensibility and maintainability. 
In the future, scenarios can be added and referenced in this 
code without having to verify that their names are entered 
correctly and that they match the corresponding types—
resulting in fewer specifications to test. This is an especially 

significant improvement for our example, because it 
eliminates the need to test implicit assumptions about the 
scenario name to type mappings. Such assumptions should 
be made explicit in the artifacts, for example as comments 
in the code and as assertions which can be used by a 
verification tool like a model checker. They also need to be 
linked upward to the relevant items in the requirements 
document. Existence of such unstated but critical 
assumptions accurately reflects our experience with the 
actual NASA application. All that is needed in the new 
version of our example is to extend the right class, 
ModelBlueScenario or ModelGreenScenario, and 
then the existing type hierarchy and virtual methods take 
care of the rest. 
 
 
Impact on model checking—As shown in Figure 5 the first 
if-statement sets the abcFlag value to true if the 
modeIndex is set to MODE_3. In the third if-statement (the 
one modified as part of the D4V change) the same variable 
is used to decide if a current scenario is a blue scenario or a 
green one in order to set its parameters appropriately before 
processing it (calling the processThis() method). 
Therefore both values abcFlag and modeIndex are used 
to make this decision.  
 
However, we found that the current scenario’s processT-
his() method as shown in Figure  6, in order to decide 
whether to run a blue or a green scenario, checks only the 
abcFlag value and fails to check modeIndex. This 
results in an inconsistent state where the scenario 
parameters can be set up as one type of scenario but may be 
run as another type.   
 

 
Figure 6 An erroneous condition in processing a current 

scenario 
 
We found this bug not through application of the model 
checker but by visual inspection while trying to create the 
model in order to show the effects of the proposed D4V 



 8

change. To confirm the bug using the model checker, we 
inserted the following assertion to check the value of 
modeIndex in the first branch of the if-statement: 
 
Assert(modelInput.getModeIndex() 

!=ModelSequencer.MODE_3) 
 
We also used the model checker’s choice generators to 
generate test data sets to allow the model checking to cover 
the state space with respect to the 3 input values used by our 
model. 
 
Software model checking requires making “good” choices 
to reach the suspect system states within the resource 
constraints of the tool and execution environment. The 
mechanism used by JPF to systematically explore the state 
space by generating random and non-deterministic choices 
is called ChoiceGenerators. 
 
JPF provides a number of methods in its 
gov.nasa.jpf.jvm.Verify class that are used for 
generating data choices. Within our model we have used 
two of these methods: getBoolean() and getInt(): 
 
abcFlag= 
 gov.nasa.jpf.jvm.Verify.getBoolean(); 
seqModeIndex= 
 gov.nasa.jpf.jvm.Verify.getInt(-2, 6); 
applicable= 
 gov.nasa.jpf.jvm.Verify.getBoolean(); 
 
The abcFlag and applicable values are set by 
invoking the getBoolean() method which returns 
random choices of true or false. The seqModeIndex 
value is set using the getInt() method which randomly 
selects integer values between -2 and 6, the range of the 
values for this variable in the original code. The model 
checker tries all these values by backtracking to the same 
invocations multiple times until all the values that could be 
generated by these methods are actually returned and used. 
We ran the model checker with this setup. 
 

The metrics collected while running JPF in order to find 
the bug, for before and after the proposed D4V change, 
are shown in Table 1 together with the percentage 
improvements: 
 

 
 

Metrics 
Before  
D4V 

After  
D4V Improvement

Number of choices 36 36   

Total Bytecode 
Instructions Executed 202993 72168 64% 

Relative time [ms] 1658 1242 25% 

Search depth 3 3   

New states 47 47   

Revisited states 0 0   

End states 29 29   

Backtracks 43 43   

Processed states 15 15   

Restored states 0 0   

Total memory [kB] 5368 4652 13% 

Free memory [kB] 0 0   

State Vector Length 1360 1360   
 
Table 1 Metrics for before and after D4V modifications 

 
While most of the metrics are the same before and after, this 
simple modification has a significant impact on the time and 
memory usage of the model checker required to find the 
bug. Note that the savings may be exponential in practice. 
In this simple sequential example we are dealing with only 
three input values – two Booleans and an enumerated type 
with 9 possible values making a total number of 36 different 
test cases. Only 2 values (a Boolean and the enumeration) 
are directly involved in driving the model to the erroneous 
state. In more realistic cases where we are dealing with 
hundreds of input values or multithreaded applications with 
arbitrary thread interleavings, D4V modifications can have 
a significant impact on model checking performance.  
 

6. FUTURE WORK 

The case study, in which the D4V results reported here were 
obtained, has concluded. The experience with this case 
study and with others is the basis for a practitioner’s 
guidebook to program model checking to be delivered to the 
NASA Independent Verification and Validation Facility at 
the end of March, 2007. R&D on program model checking 
for C++ continues at NASA Ames Research Center's 
Robust Software Engineering group, using a strategy that 
addresses the major issues associated with source-to-source 
translation.  



 9

ACKNOWLEDGEMENTS 

The research and development reported here was conducted 
in the NASA Ames Research Center's Robust Software 
Engineering group, headed by Dr. Michael Lowry. The 
authors acknowledge the contributions of Howard C. Hu of 
NASA Johnson Space Center, who developed the Shuttle 
Abort Flight Management system used as the target 
application for the research reported in this paper; Tanya 
Lippincott, of General Dynamics Decision Support, who 
collaborated on the specification and verification of critical 
properties of SAFM and on analysis of test results; John 
Penix, who was the initial Prinicipal Investigator on the 
research project reported here as well as on the ECS-funded 
development of the Propel toolset; Owen O'Malley, who 
was the lead developer of the Propel toolset; Willem Visser, 
the developer of Java PathFinder and a contributor to the 
strategies employed in the research reported here.  

REFERENCES 

[JPF] http://javapathfinder.sourceforge.net 
[SPIN] Holzmann, G. The SPIN Model Checker. Addison 

Wesley, 2004 
[O’Malley, O. Mansouri-Samani, M., Mehlitz, P. and Penix, 

J. “Seeing the Invisible: Embedding Tests in Code 
that Cannot be Modifed”, Infotech@Aerospace, 
2005. 

BIOGRAPHIES 

Lawrence Z. Markosian is a Computer Scientist with QSS 
Group, Inc. at NASA Ames 
Research Center, where he 
led a team developing 
verification tools for C++. 
He has been a member of the 
NASA Software Engineering 
Initiative’s Research Infusion 
team. Prior to joining NASA, 
he was a founder of 
Reasoning Systems., where as 
VP of Applications 
Development he managed 

technology transfer of advanced software engineering tools. 
Markosian has an undergraduate degree in mathematics 
from Brown University and has done graduate work at 
Stanford University in logic and artificial intelligence. 

 
Masoud Mansouri-Samani 
is a senior research scientist 
with QSS Group, Inc. at 
NASA Ames Research Center. 
He has helped develop 
advanced V&V tools 
including Propel, a toolset for 
model checking C++. 
Mansouri-Samani obtained 
his B.Eng. in computer 
science (1991) and Ph.D. in 
Monitoring of Distributed 
Systems (1995) at Imperial 

College. He then joined HP and worked on remote systems 
diagnosis and management and was involved in the 
development of a framework for building diagnostic 
solutions in Java prior to joining QSS Group, Inc. 
 

Tom Pressburger is in the 
Robust Software Engineering 
group led by Dr. Michael 
Lowry at NASA Ames.  He 
led a software engineering 
research infusion subgroup, 
and has been leading the 
group developing a model 
checking practitioner's 
guidebook.  He has worked 
in the area of program 
synthesis, participating in 
the development of systems 
for Java model checking, 

state estimation, statistical analysis, solar system geometry, 
and, when he was at the Kestrel Institute, algorithm design.  
He also worked at Reasoning, Inc. in software reengineer-
ing. He holds a BS in Mathematics from CalTech and an 
MS in Computer Science from Stanford. 
 

Peter Mehlitz is a senior 
computer scientist with QSS 
Group, Inc., in the Robust 
Software Engineering group 
at the NASA Ames Research 
Center (ARC). As one of the 
principal developers of the 
Java Pathfinder software 
model checker, he is 
interested in software model 
checking, design patterns 
and design-for-verification. 
Mr. Mehlitz has more than 
25 years of experience in 
large scale program 

development, using a broad spectrum of programming 
environments and operating systems.  
 


