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This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-
dimensional altitude dependent wind field. The time optimalcontrol problem possesses a singular control
structure when the lift coefficient is taken as a control varable. A singular arc analysis is performed to obtain
an optimal control solution on the singular arc. Using a timescale separation with the flight path angle treated
as a fast state, the dimensionality of the optimal control dation is reduced by eliminating the lift coefficient
control. A further singular arc analysis is used to decompos the original optimal control solution into the flight
path angle solution and a trajectory solution as a function dthe airspeed and altitude. The optimal control
solutions for the initial and final climb segments are compued using a shooting method with known starting
values on the singular arc. The numerical results of the shammg method show that the optimal flight path
angle on the initial and final climb segments are constant. Té analytical approach provides a rapid means for
analyzing a time optimal trajectory for aircraft performan ce.

[. Introduction

The climb performance of an aircraft is an important desigguirement for establishing trajectories to reach a
specified altitude and airspeed after takeoff in some optmenner. For transport aircraft, a climb segment may
follow a trajectory designed to achieve an optimal fuel eomgtion or a minimum time. Trajectory optimization
problems to minimize aircraft fuel consumption or time afrdd had been studied by various contributors in the 70’s
and 80's™7 In recent years, minimum time problems have also been exahior many space systerfis? Many
approaches are found in literature for analyzing optimghfltrajectories for a minimum time-to-climb of an aircraft
One such method is based on the singular perturbation méladdhas been investigated for the minimum time-to-
climb problem?® The singular perturbation method performs a time-scalarsdipn of the fast and slow states in
flight dynamic equations so that the dimension of the probteraduced by the order of the fast states. If the aircraft
is modeled as a point mass with three state variables: ddtitpeed, and flight path angle, then the flight path angle is
considered as a fast state and therefore its differentistaan can be treated in a quasi-steady state approximtion
This allows the flight path angle be treated as a control kégifor the minimum time optimal control problem.

Another popular method is based on the energy state appativimmethod; * ®which facilitates a simple means
for computation by combining the altitude and speed vagisibito the energy state variable that represents the sum
of the kinetic energy and potential energy of the aircraftiry climb. Because of the order reduction in the state
equations, the energy state approach enjoyed a popularityinimum time optimal control problems. The total
energy level curves thus can be viewed as curves of sub-ajptirmb path!! Climbs or dives along the energy level
curves theoretically is supposed to take virtually littteé. In some climb maneuvers, an aircraft often has to erecut
an energy dive to trade altitude for speed. Once a desiregispattained, the aircraft climbs out of the current energy
level curve and transitions into a curve that takes the @firto the next energy level curve. This transition curvescut
across the energy level curves in an optimal manner suchthhbatltitude can be gained in a minimum time. This
curve is known as the energy climb path. Fig. 1 illustratesra@rgy climb maneuver.

The energy climb path turns out to be a singular arc controblem that can be analyzed by the Pontryagin’s
minimum principle!? In brief, the minimum principle introduces the concept ointilgonian functions in analytical
dynamics that must be minimized (or maximized) during aettigry optimization. The optimization problems are
formulated using calculus of variations to determine a $&tptimality conditions for a set of adjoint variables that
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provide the sensitivity for the control problerisThis is known as an indirect optimization method which tyfiic
involves a high degree of analytical complexity due to theoduction of the adjoint variables that effectively doebl

the number of state variables. Furthermore, the solutiothogefrequently involves solving a two-point boundary
value problem. Nonetheless, the adjoint method provideeat glegree of mathematical elegance that can reveal the
structure of a problem. In some cases, exact analyticah@bsolutions can be obtained. Except for simple problems,
many trajectory optimization problems require numericatmods that can solve two-point boundary value problems
such as gradient-based methods, shooting methods, dypangiamming, etc.

Fig. 1 - Time-Optimal Energy Climb Path

Within the framework of the Pontryagin’s minimum principthe singular-arc optimal control method is an inter-
mediate method for the trajectory optimization. The existeof a singular arc in the time optimal control can simplify
the trajectory optimization significantly. Briefly, the gular arc is described by a switching function that minirsize
a Hamiltonian function when the Hamiltonian function isdar with respect to a control variable.

In this study, we will examine an aspect of the minimum tirnesimb problem for an aircraft flying in the
presence of a two-dimensional atmospheric wind field. Arydical solution for the singular arc is obtained. Wind
patterns at a local airport can affect the climb performasfcarcraft. While the time-optimal climb problems have
been thoroughly studied in flight mechanics, the effect afdsiare usually not included in these studies. A solution
method of a minimum-time to climb will then be presented fomputing a minimum time-to-climb flight trajectory.

[I. Singular Arc Optimal Control

In our minimum time-to-climb problem, the aircraft is moeelas a point mass and the flight trajectory is strictly
confined in a vertical plane on a non-rotating, flat earth. direnge in mass of the aircraft is neglected and the engine
thrust vector is assumed to point in the direction of therafteselocity vector. In addition, the aircraft is assumed t
fly in an atmospheric wind field comprising of both horizordald vertical components that are altitude-dependent.
The horizontal wind component normally comprises a lordjital and lateral component. We assume that the aircraft
motion is symmetric so that the lateral wind component isinduded. Thus, the pertinent equations of motion for
the problem are defined in its the state variable form as

h = vsiny + wy, (2)
T—-—D—Wsi
V= Sy Wy, COS Y — W, Sin 7y (2)
m
. L — W cos W, SIn~y — Wy, COS
muv v
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whereh is the altitudeyp is the speedy is the flight path anglel is the thrust forceD = Cp¢S is the drag force,

L = CqS is the lift force,W is the aircraft weightyn is the aircraft mass, and,, = w, (h) andwy, = wy, (h) are

the respective temporal average horizontal and verticadiield components as functions of the altitude. Thus, the
time rate of change of the wind field can be computed as

by = w,h = w, (vsiny + wp) 4)

wp, = w;lh = w;l (vsiny + wp) (5)

where the prime denotes the derivative with respect to tiitedé . The gradient of the wind velocity with respect to
the altitude is also called a vertical wind shér.

The problem is now posed as a minimization of the time-totblfrom an initial speed and an initial altitude to
a final speed and a final altitude at a final titpe To formulate the time-optimal control problem, we consitie

following cost function
ty
J= / dt (6)
0
subject to state constraints by Eqgs. (1)-(3).

The boundary conditions for the problem are the initial andlfaltitude and airspeed of the aircraft as

h(0) = ho h(ty) = hy
v (0) = vo v(ty) = vy
M (h(0),v(0)) = Mo M (h(ty),v(ts)) = My

whereM is the Mach number as a function of the altitude and airsp&hd.flight path angley (0) or v (t¢) may be
free or fixed.

To solve for the time-optimal control problem of Eq. (6), wapdy the Pontryagin’s minimum principle which can
be stated as follows:

Letz (t) : (0,t) — R™ be state variables and(t) : (0,¢) — R™ be in a set of admissible contrtd that
guides a dynamical system describediby= f (z (), (¢)) from an initial stater (0) to a final stater (t;) where
f(z,u) : R™ x R™ — R™ is some function, there exist a set of variabld$) : (0,¢) — R", called adjoint variables,
such that we have the following necessary conditions fonmgity casted in a Hamiltonian canonical structure

L TCIORTORY0)

T (7)
. OH (x (t) ,u(t),A(t
WL ICURTORYG) @

whereH (z (t),u (t), A (t)) is the Hamiltonian function of the dynamical system whiar,d minimum time-to-climb
optimal control problem, is defined as

H (x (t),u(t), A1) =1+ AT () f (x (1) u(t)) 9)
The optimal control is given by the following necessary dtind

u* (1) = argmin H (27 (), u (1), A () (10)

If the dynamical system is autonomous, thaf is not an explicit function of time, the Hamiltonian funatids
required to be zero throughout the optimal solution

H(z(t),u(t),A(t) =0 (11)

A singular control exists if the control variableappears linearly in the Hamiltonian functidh corresponding
t015
0*H
R— )
ou?
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LetS (x,\) : R™ x R® — R™ be a switching function defined by

_on
T du

Since the controk does not appear explicitly i, it cannot be determined explicitly. However, by differieting
S repeatedly until the contral appears explicitly, then the contrels so determined. For the controto be optimal,

the Kelley’s condition must be satisfied
g O (d*S
(=1) 7 \ ger >0 (14)

For this problem, the Hamiltonian function is defined as

S (13)

T—-D—Wsinvy
m

H (h,v,7, Ay Ao, \T,Cr,Cp) =1+ A, (vsiny + wp) + Ay ( — Wy COS7Y — Wp sinv)

L —Wcosy  gsiny —wycosy
T ( mu + v (15)

where\,, A, and\, are the adjoint variables.
We define the specific excess thriisénd the wing loading factot as functions of the altitude, Mach numbf,
and Reynolds numbeke as

T'[h, M (h,v)] — {CDKJ [Re (h,v)] + KC%} qlp(h), M (h,v)] S

F (h,v,C1) = = (16)
C h),M (h S
(v, 0y) = S W00 17)
whereCp  is the profile drag coefficient anid is the induced drag parameter.
Then, the necessary conditions for optimality result infdllewing adjoint differential equations
. 6H ’ aF " "o, . ’ / . ’
An = ~on = =AWy, — Ay 9on (wm cosy + wy, 51117) (vsiny + wp) — (wm cosy + wy, 51n7) wy,
gon "o " ) w wy, (wJE siny — w,, cos 7)
-\ ;%—i— (ww siny — wy, cosv) (sm7+ 7) + ” (18)
: OH ) oF / ro )
Ay = oy = —Apsiny — A, [g% — (wm cosy + wy, 51117) smw}
9 wp, w; siny + w;l cos 7)
L foonon geomy 19)
vdv V2 v2 v2
: 8H / ro. ro, /
Ay = —W = —ARVCOSY — Ay |—gcCOsy —v (ww CoS 2y + wy, 51n27) + (waE siny — wy, cosv) wh}
. , , wp, (w;E cosy + w;l sin 7)
— Ay gsmy + w,, sin 2y — wy, cos 27y + (20)
v v

In order to determine the extremal control to achieve a $astanb path, we take the lift coefficiett; as a control
variable. Then the optimal control is one that renders thailianian stationary
OH 2KC%qS qS A
— =\ — LN 0= =
oCy, v m T muv L7 9Ku\,
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subject to the inequality constrai@t, i, < C; < Cr maz-

The optimal lift coefficient in Eq. (21) may be solved by a twoint boundary value problem using a numerical
method such as a shooting method or a gradient descent me®lati a numerical solution often does not reveal a
structure of the optimal control analytically. In most caisi is found that this problem can be approximated as a
singular optimal control problem by making an assumptiaat the induced drag paramet&ris usually small and
therefore can be neglected. In fact, the ideal induced daegnpeter for an elliptical wing loading is given by

1

K= R (22)

where AR is the aspect ratio. For a typical transport aircraft, thegraspect ratio is about 7 so that the idé&al
parameter is about 0.045. Thus, this assumption is reakonab
Under this assumption, we see thatd/0C% = 0 and so there exists a singular control with a switching fiemct

5=\ ﬁ (23)

muv

SinceqS/mv > 0, we then obtain a bang-bang extremal control as

CL,mam )"Y <0
Cz = CL,sing )\'y =0 (24)
CL,min )\,y >0

The bang-bang control law is thus viewed as a sub-optimatisol to the minimum time optimal control problem.
Equation (24) states that the minimum-time-to-climb tc&jey is approximated by three sub-optimal arcs. The first
arc is a trajectory on which the aircraft flies at some ini@iiitude and airspeed at a maximum lift coefficient until
it intercepts with a singular arc trajectory defined by theosel switching condition. The singular arc is an optimal
flight trajectory for the fastest clinfoand is also called an energy climb path (ECP) since it is athathcrosses a set
of level curves of constant energy heiglits= h + v?/2g as illustrated in Fig. 1. At some point on this trajectorg th
aircraft climbs out of the singular arc and flies along a firrahaith a minimum lift coefficient to arrive at the final
altitude and airspeed.

To find a singular control, we use the fact tifat= 0 andS = 0 on the singular arc to establish that = 0 and

A, = 0. Hence, this allows us to eliminate, in Eq. (20) by solving for\,

/ ) " 4in? Wh (w/ tan~y — w;L)
A=Ay |4 g LeCOSEY T SINAY - (25)
v COos 7y v

The remaining adjoint equations (18) and (19) now become

s 8F ! ’ ’ " " ’ 2
An = Ay {—g <% + %) + [wmwh tany + w, v cosy + wyvsiny — (wh) ] (sin7+ %)} (26)

. OF  sinvy . / ’ . Wh
Ao = o [_g <%+ ” ) —i—sm'y(wmtan'y—wh) (sm'y—i— T)] (27)

Differentiating Eq. (25), which is equivalent to computifig= 5\7’ and then substituting Eq. (27) into the resulting
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expression yield

. F / , OF w/ cos 2 4+ w/ sin 2 W, (wm tany — wh)
Ah :AU 9_2 |:_g+ (wztanv—wh) wh:| —g— g+ T v h Y _
v ov |v cos 7y v
/ ’ ! , , 2 ’
+ 2 —w, sin7y (3 + tan” ) + 2w, cosy — wm“;h 1 + (31111 tany — 2wy, + wwwh>
v v CosTy v v COS Y

2
2(wl) tan " on) N 2
SR N (sin'y—i— %) + e (3sin'y—|— 2%) — (wh) (sin’y—i— %)
v cosy v v

_|_
cos Yy

w, cos2y 4w, sin2y  Wh (ww tan7y — wh) ( i~ 4 ’wh)
- siny + —
v

(28)
cos 7y v
By equating Eq. (28) to Eq. (26), the singular arc for a mimmtime-to-climb is now obtained as
oF 20F
fhyv,v,n)=(1-a)) F+(1 —l—ag)v% — %% +asn+as =0 (29)
with the coefficientsiy, as, a3, anday described by the following functions of the wind field paraerns
W, (w; tany — w;l)
a; = (30)
g
v (w; cos 27y + w;l sin 27) W, (w; tan~y — w;l)
as = — (31)
g Ccosy g
as = ? [w; sin 7y (3 + tan? 7) — 2w;I cosvy + w””u;h ] (32)
V COS= 7y

<v siny + wh)2 2w, (wz tany — wh)
a4 =

" " ’ ’ 2 '
+v (wm tany — wh) - <3ww tany —wj, + wIwh) (33)
g COSs 7y g

v COS Y

Equation (29) is a partial differential equation in termgtud specific excess thrust that describes an optimal
climb path for a minimum time-to-climb solution for an aia€t flying in the presence of an altitude dependent at-
mospheric wind field. Examining Eqg. (29) reveals that therzlnigh degree of cross coupling between the horizontal
wind field and the vertical wind field up to the second denixegiof the wind fields. Thus, not only the wind field
gradients affect the optimal climb path, but the wind fieldvatiures also play a role as well. Equation (29) results
in a parabolic equation in terms 6f;, which can be solved to give a feedback control for the ligtféioient on the
singular arc as a function of the three state variables and~.

A certain simplification of Eq. (29) can be made by considgtime concept of fast and slow states in flight
dynamics. Ardema had shown that in optimal trajectory asig)yhe three-state model of a point mass aircraft exhibits
a time-scale separation behavior whereby the state vagatdndv possess slower dynamics than the state variable
~.2 This time scale separation is normally treated by a singuéeturbation analysis by replacing the fast state equation
with the following equation

. L—Wecosy ,siny —wp cos~y
€y = +

(34)

muv v
wheree is a small parameter.
Equation (34) has an inner solution and an outer solution¢iwis the steady state solution obtained by setting
e = 0. The inner solution can usually be solved by the method otheat asymptotic expansion. The inner solution
is also called a boundary-layer solution in reference tohiseorical origin of the singular perturbation method in
the fluid boundary layer theory. The overall solution is doeatéd by the outer solution with the inner solution only
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affecting a small initial time period. As a first order appiroation, the inner solution can sometimes be ignored. In
this case, EqQ. (34) results in the following load factor

(vsiny + wp) (w; siny — w;l cos 7)
g

n = cosy — (35)
Equation (35) thus dethrones the number of state equationsthree to two by converting the state variable

into a control variable in place of the lift coefficie@l,. Substituting Eq. (35) into Eq. (29) now vyields the optimal
climb path function

wp, (w; tany — w;L) OF v (w; cos 27y + w;L sin 27) wp, (w; tany — w;L)
f(hJ%V):F 1- +o— |1+ -
g v g cos-y g
2 aF , ’ ! 1 2 " 1"
el <2wJE sin? y tany + wj, cos 2y + w) +v (w) (waE tany — wh)

g Oh g v COS Y g

¢ (w) (w; tan~y — w;l) (—w; tan -y cos 2y + Qw;l cos® vy + M) =0 (36)

g g v COS 7Y

We have thus reduced the optimal climb path by removing tipex@ency on the lift coefficient. We now examine
some special cases of the general optimal climb path fum¢ti@, v, v):

1. Steady Wind Field:
For a steady wind field, the gradients and curvatures vatiigheby reducing the optimal climb path function
to the following

OF 2 0F
f(h,’U)—F"”U%—?% —O

(37)
Equation (37) is the well-known result for the ECP withoutmospheric wind field. Thus, the optimal climb
pathin the presence of a steady wind field is effectively #mesas that without the wind field effect. This result
is not surprising and can be explained by the fact that sinedrtertial reference frame is attached to the air
mass, whether the air mass is moving at a constant speed ainestationary, the speed of the aircraft relative
to the air mass is the same, thus resulting in the same optlimd) path.

2. Horizontal Wind Field:
In the presence of a horizontal wind field only, the optimahtl path function becomes

F(hv,y) = F + U@_F - vw; cos 2y v2 OF QUU}; sin’ y tan y n v?’w; sin’ y tan y
v g cos~y g Oh g g2

———Z sinytan?ycos2y =0 (38)

f(h,v):F—i-va—F <1+

=0 (39)

2
! ! " 2 !
vw, v? OF vw, vPw, Y (ww)
ov

_ - ZE_ T +
g g oh g g* g*

3. Vertical Wind Field:

7 of 16

American Institute of Aeronautics and Astronautics



In the presence of a vertical wind field only, Eq. (36) becomes

whw%) +UB_F (1 I Uw;L sin 27y n whw;> v2 OF Uw;L cos 2

f(h,v,w):F<1+ Ov g cos7y g g Oh

g Oh g

N2

, : 2 2 (wh) cos? v :

o, (v51n7+wh) B (v51n7+wh) —0 (40)
g g

For small flight path angles, Eq. (40) reduces to

oF 20w, ' 20F  ow, . 2
f(hv,y)=F 1+whwh +o— 1+w —v———vwh—vwh vy + wp
g v g — 7

2v (w;l)g (vv—;wh) —0 (1)

Vertical wind field is especially important for microbursiopplems. A microburst is a wind shear disturbance
characterized by an unusually strong downdraft near thargtsurface that presents an extreme hazard to
aircraft during take-off or landing.

[ll.  Optimal Solution

During a climb, the aircraft flies under a maximum continuttuast from take-off to a point in the flight trajectory
envelope where it intersects with the optimal climb pathe @ahicraft then maintains its course along the optimal climb
path until it reaches some point on the optimal climb pathneliteclimbs out to the final altitude and airspeed. Thus,
there exist three climb segments during a climb as illusttat Fig. 1 labeled as A, B, and C where B is the singular
arc optimal climb path. The suboptimal solutions for thentlisegments A and C may be defined by lines of constant
energy heightd = h 4 v%/2¢.11

From the optimal control perspective, the initial and findhb segments are to be determined by requiring the
Hamiltonian function as defined in Eqg. (15) to be zero. In &dnj the adjoint variable\, is no longer restricted
to zero according to the first and last switching condition&q. (24). Thus, in general, the optimal solutions for
the initial and final flight segments are considerably momaglex than the optimal climb path solution and usually
involve solving a two-point boundary value problem.

First, we shall consider the singular arc optimal solutiélong this singular arc, all the state and adjoint variables
are functions of the altitudk, airspeed, and flight path angle. However, it can easily be shown that the flight path
angley on the singular arc optimal energy climb path is in turn a fiomcof the altitudeh and airspeed. Therefore,
the two variableg: andv uniquely determine the optimal climb path. In particular, the case of small flight path
angles for which Egs. (39) and (41) apply. The optimal climbdtionf (h,v,~) can be written as

f(hyv,y) = Zfzhv (42)

wheref; are explicit functions ofy andh.
The time derivative off (h, v, ) is evaluated as

j= Z (afl af“)vi (43)

taking into account that the assumptipe= 0 is built into the climb path function.
Substituting Egs. (1)-(3) into Eq. (43) then yields the daling polynomial equation that can be solved for the
flight path angley

3

7’ eyt + ) ci(hv)y =0 (44)
=0
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where the coefficients; are

cs (hyv) = —%vw;I (45)
0 0 ’ / 0 ,
cq (hyv) = %v — % (vww + wpwy, + g) — %vwh (46)
‘ _Ofi afi B N, Oficn Oficag / _Ofica
¢i (h,v) = a5 Wh + g (Fg whwz) + ' o0 (me + wpwy, + g) 50 VWn (47)

Equation (44) gives the flight path angle as a function of flizude and speed. Thus the optimal climb surface
function f (h,v,v) can be replaced by a climb path functigri, v,y (h,v)) upon embedding the solution of the
flight path angle from Eq. (44).

The adjoint variables along the optimal climb path are notedeined from enforcing the conditiorf$ = 0 and
A, = 0 on the singular arc as

_ g+ vw; + 2vw;ﬂ — whw;ﬂ + whw;I
gv (F =) + (vy +wp) (9 + vwyy — wpwyy + whwy,)

Ap = (48)

v

Ay =

gv (F =) + (vy +wp) (9 + UU’;{Y — wpwyy + whw;l) (49)

The foregoing analysis has shown that the along the singutathe time optimal trajectory is known in the- h
plane as well as the flight path angle and the adjoint vargaflbis information greatly facilitates the optimal sotunts
for the climb segments on the initial and final arcs. Sincdrft@l conditions on the initial climb segment are known
according to the problem statement and the fact that itdisalmust terminate on the optimal climb path function
for which all the state and adjoint variables are known, tthenoptimal solution for the initial arc can be computed
using a shooting technique to integrate backward from soon& B on the optimal climb path to the initial point
A as shown in Fig. 1. Likewise, to compute the optimal solutior the final arc, a shooting method may be used
to integrate forward from some point C on the optimal climithp@ the final point D that terminates at the desired
altitude and airspeed. A shooting method may be establadéallows:

The flight path angle not on the optimal climb path function can be solved by settive Hamiltonian in Eq. (15)
to zero with the usual small angle assumption, thus regyiltinhe following quadratic equation

/\va;l'y2 + {)\hv — X\ (g + vw; — whw;l)] Y4+ 1+ Apwn + Ay (Fg — whw;) =0 (50)
Equation (50) is then used to eliminate the flight path angleression in the adjoint equation in the adjoint

differential equations (18) and (19), which can then be p&tarized in terms of the altitude as the independent
variable instead of time using the following transformatiith the small angle assumption

A\ —Anwy, = Ao [9%_5 - (w; + w;iy) (vy +wp) — (w; + w;ﬂ) w;}

Z2h 2R 51
dh h vy 4+ wp, 1)
. BF ! ’
Aoy YT A |9 — (we Fwpy)y
Y 9% = (s + i) o 2
dv h vy + wp
In addition, the airspeed can also be parameterized as aduitiee altitude as
d ; F— , '
v _ S _WE=g Ly, (53)

%:h vy + wp

Equations (50)-(53) are then integrated either forwardamklward using the known state and adjoint variables on
the optimal climb path as the starting values at points B andii@ shooting method then iterates on these known
values on the optimal climb path until the conditions at p®# and D are met.
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IV. Numerical Example

We compute the time optimal climb trajectory of a transpaxraft in a horizontal wind field. The aircraft has a
maximum thrust;,,,, which varies as a function of the altitude as

T = Thax (ﬁ) ' (54)
Po

wherep is the densityp, is the density at the sea level, amib a constant.
Using Eq. (35) with the small flight path angle approximatitre specific excess thrust is computed as

Tmam 1Y ¢ C’D lpv2S
F= L) —zpet? 55
w (Po) w 59)

The optimal climb path function, Eg. (39), is equal to
a 2 C 1 QS 2 ’
f(v,h):Tmar <ﬁ> <1_ﬂ@>_% 2_“_@4_21}101
W \po pg dh % pg dh p

e e R I GO

The aircraft has the following values;,,,, =40000 Ib,)W” =200000 Ib,S =1591 &, Cp = 0.0343, anda = 0.7.
We will compute the singular arc for two typical horizontahd field problems. The first wind field problem is a
low-altitude wind shear disturbance described by the ¥alg model

_h _h
Wy = a1e "M —age M2 (57)

where, for the problenmy; = 250 ft/sec,as = 200 ft/sec,h; = 6000 ft, andh, = 1000 ft.
The second wind field problem is a high-altitude wind fieldigemn described by the following power law model

M_%(ﬁjﬁ (58)

=

where, for the problemys = 250 ft/sec,hs = —1000 ft/sec,hy = 30000 ft, anda =
The two types of wind field are plotted in Fig. 2.

x 10"

T T
— Wind Shear Profile
—— Power Law Profile

0 20 40 60 80 100 120 140 160
w,, ft/sec

Fig. 2 - Wind Shear and Power Law Models
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As can seen, the wind shear profile is characterized by agtwomd field gradient near the ground which can be
hazardous to aircraft during take-off and landing.

To find the singular arc, we decompose the optimal climb patiction, Eq. (56), in the individual functions
fi (h,v) according to Eq. (42). For a horizontal wind field problem, Ed4) is then formulated as 4" degree
polynomial function in terms of the flight path angle A physically correct root is obtained that yields the flight
path angle on the singular arc. The singular arc funcfidh, v) then becomes a nonlinear function in termshof
andv. To compute the singular arc trajectory in the- h plane, we find the zero solution of this function using a
Newton-Raphson method as follows:

Vit1 = v; — [W} f (hi,vq) (59)

The computed singular arc time-optimal climb paths for lwaitid field profiles are plotted in Fig. 3. For reference,
we also compute the singular arc for zero wind disturbancecan be seen, the singular arc climb paths are steep
paths that rapidly increase the altitude with a relativehabier change in the air speed for the case of no wind. The
power law profile follows a similar pattern as the no-windesaalthough the ground speed intercept is less. This
would mean that with the power law profile, the aircraft hasreer the singular arc climb path at lower speed than
if there were no wind. The singular arc for the wind shear pra¢i the most interesting in that the speed variation is
significant over a wide range at a very low altitude. This is thuthe strong wind field gradient over a short altitude.
At high altitude, the three singular arcs are converginghsceffect of wind field is less pronounced at high altitude.

x10*

T
— No Wind
— Wind Shear Profile
—— Power Law Profile

25

05+

300 350 400 450 500 550 600 650
v, ft/sec

Fig. 3 - Singular Arc Time-Optimal Climb Paths

Once the singular arc has been determined, the valuksantiv along the singular arc are plugged into té
degree polynomial to solve for the flight path angle alongdimgular arc. The lift coefficients are also computed.
Figs. 4 and 5 are the plots of the flight path angle and lift icieht on the singular arc climb paths. The flight path
angle for the no-wind case generally decreases with adtitéd high altitude, the flight path angle for the two wind
profiles converge to that of the no-wind case. The wind shase as usual shows a drastic change in the flight path
angle along the singular arc at low altitude. The lift coéfiit generally increases with altitude for the no-wind case
The lift coefficient for the wind shear case varies greatlyeay low altitude and is quite large at ground level due to
the low ground speed intercept required to enter the clinth.pa

We next compute a complete trajectory from take-off to somal faltitude and air speed. We only consider the
wind shear case. The initial ground speed at take-off is abtach 0.2 or 224 ft/sec and the desired air speed at
15000 ft is Mach 0.5 and 0.6. The solutions not on singularegaire solving a two-point boundary value problem.
However, since the adjoint variables are completely ddtexchon the singular arc, we can solve the trajectory off the
singular arc quite easily using a shooting method by intaggd=qgs. (51) to (53) either forward or backward starting
from the singular arc. The adjoint solution on the singutaris plotted in Fig. 6.
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Fig. 6 - Adjoint Solution on Singular Arc
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The complete trajectory is plotted in Fig. 7. To climb to 1800and Mach 0.5, the climb trajectory is comprised
of three segments. The first segment, segment AB, is thedfilseegment on which the aircraft flies from take-off
ground speed to intercept the singular arc at point B. Th&uscat a very low altitude. The second segment, or
singular arc segment BC, is the minimum-time to climb patt thkes the aircraft to a higher altitude in a fastest time.
At some point on this singular arc, the aircraft begins toadteat point C and flies on the final segment, segment CD,
to the final altitude and airspeed. We note that the three setmjoin together and are tangent at points B and C. On
this path, the departure slope is to the left of the singular kn the region to the left of the singular arc, because the
altitude is continuously increasing, the thrust is maimdiat the maximum value.

The situation for Mach 0.6 corresponding to the final segnighis different. Since the aircraft must arrive at
Mach 0.6 which is to the right of the singular arc. Becauseligarture slope must be tangent to the singular arc and
curve to the left, there is no point below the final altitudesngnthis tangency exists. As a result, the aircraft must fly
past the final altitude and then reduce the engine thrust tbdgotential energy be convert to kinetic energy once the
aircraft begins to slow down. For the problem, we use a firdeomodel to describe the engine thrust reduction from
the maximum value to an idle value at roughly 20% of the maximtiorust. The segment EF is sub-optimal in that the
engine thrust varies so that it becomes a control variabdeldition to the flight path angle. Nonetheless, it is a very
good approximation since the segment EF approximatelgvalla total energy curve.
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251
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Fig. 7 - Climb Trajectory
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—— Final Segment to Mach 0.6

Fig. 8 - Lift Coefficient on Climb Trajectory
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The lift coefficient variation on the climb trajectory is stio in Fig. 8. The lift coefficient varies greatly from
a maximum take-off value to about 0.4 at a very low altitudeepBnding on the wind shear profile, this may not
be feasible due to the slow retraction of flaps and slats gedlduring take-off. The flight path angle on the climb
trajectory is plotted in Fig. 9. The flight path angle for théial segment AB and the final segment CD are computed
using Eqg. (50) as a function of the adjoint solution comptitech the shooting method. It turns out that the computed
flight path angle is very nearly constant as shown in Fig. HusJ an approximate trajectory can easily be computed
by only integrating Eg. (53) using a constant flight path arafl a point of tangency to the singular arc. The final
segment EF is computed using this approach.

To examine the optimality of the computed solution, we cotaghe values of the Hamiltonian function along
various climb segments. The segments AB, BC, and CD are aptimthe values of the Hamiltonian function are
equal to zero. The climb segment EF is sub-optimal and tltatiseclearly illustrated by the non-zero value of the
Hamiltonian function. Nonetheless, it is a reasonable @qprate solution, given that the problem would have been
formulated with the engine thrust as an additional contanlable, which would result in a more complex problem.
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Fig. 9 - Flight Path Angle on Climb Trajectory
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Fig. 10 - Flight Path Angle Computation
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Fig. 11 - Values of Hamiltonian Function

V. Conclusions

A solution to a minimum time-to climb problem in an altitudepndent two-dimensional wind field has been
presented. This problem possesses a singular controtigteughen the lift coefficient is taken as a control variable
with the induced drag effect neglected. The optimal climthen the singular arc is obtained as a function of the three
flight state variables and the lift coefficient as a controtirAe-scale separation is used to reduce the dimensionality
of the optimal climb path function by converting the lift dbeient control into the flight path angle control. Using
the singular arc analysis, this three-dimensional fumctian be further decomposed into a solution for the optimal
flight path angle and a two-dimensional climb trajectory asnetion of the airspeed and altitude. The known adjoint
variables on this optimal trajectory significantly simm#ithe general optimal control solution for the initial anfi
climb segments. A shooting method is formulated to solveemically the trajectories of the initial and final segments
using the known solutions on the optimal climb trajectoryndmerical example for a wind shear profile is computed
to demonstrate the analytical method. It is found that themated flight path angle off the singular arc is nearly a
constant and therefore can be used as a very good approxm@tie analytical approach provides a rapid means for
estimating climb trajectory of aircraft flying in the preserof atmospheric wind.
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