
American Institute of Aeronautics and Astronautics
1

Component-Based Tool for Mission Operations Software
Deployment

A.E. Lindsey*

QSS Group Inc., Moffet Field, CA, 94035-1000

A concerted effort to leverage the experience gained during the Mars Exploration Rover
(MER) mission has been initiated by the National Aeronautics and Space Administration
(NASA). The intended goal is to redesign, implement, deploy and improve upon several
mission-critical spacecraft operations tools. The next generation software that enhances the
current suite of MER tools is being developed jointly at NASA Ames Research Center and
the Jet Propulsion Laboratory. The resulting collaborative effort has produced an open
architecture component-based software tool called Ensemble that is used for the
development, integration and deployment of mission operations software. This publication
presents the Ensemble framework, specific challenges of integrating multiple applications
into a single platform are discussed as well as the advantages and novelty of our new tool.
Finally, a survey describing the process of bundling several MER mission operation software
tools into the Ensemble application is examined.

I. Introduction
The Mars Exploration Rover (MER) mission is the most complex planetary surface operations mission NASA

has ever attempted. In an effort to maximize the amount of daily science activity performed by the rovers, stringent
time constraints are placed on MER scientists to analyze incoming data from the deep space satellite network, select
science goals for the next day, build an activity plan for achieving the goals and finally put together a sequence of
commands that enable the rovers to accomplish these goals. Although the mission has been a huge success, the
original planning and operation tools are cumbersome to use and lack process integration. The MER tools are in
essence large applications with separate interfaces that are loosely coupled together making analysis, planning and
scheduling overly complex and inefficient.

A collaborative effort between Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) is
developing next generation software that incorporates key component functionality from the current suite of MER
tools into a single application. This cooperative endeavor has yielded an innovative component-based software tool
that enables different applications to integrate into a common platform and interoperate as a single unit. The
resulting open architecture tool, called Ensemble, is used for the development, integration and deployment of
mission operations software. Ensemble is based on the Eclipse Rich Client Platform (RCP), a popular, stable, and
well-supported set of Java classes that define architectures for general component-based applications. Any
subsequent applications are built on top of the RCP as a set of components called plug-ins that augment and extend
the platform’s functionality. Team members have overwhelmingly elected to use the open source Eclipse IDE,
consisting of the RCP together with a set of plug-ins that add capabilities such as compiling and debugging
programs, for Java software development. By capitalizing on the maturity and availability of the Eclipse RCP,
Ensemble offers a low-risk, platform independent means towards a tighter integration of operation tools. Moreover,
the chosen approach enables component reuse throughout the operations process, simplifies tool integration by
providing a standard development environment and provides a unified GUI for all operation tools.

Currently, our JPL collaborators are redelivering the MER activity planning tools as Ensemble components. First
round user testing with MER mission personnel has already been performed. The basic integration between planning
and sequencing components is complete. A preliminary interface between Ensemble and a planner capable of
resolving constraint violations has also been demonstrated. The 2007 Phoenix Lander science interface tool is based
on Ensemble, using components from ARC and JPL. In addition, Ensemble has been base-lined for the 2009 Mars

* Computer Scientist, Computational Sciences Division, NASA Ames Research Center M/S 269-2, Moffett Field,
CA 94035-1000.



American Institute of Aeronautics and Astronautics
2

Larger Project Context

Ensemble
Ops Components

Phoenix 2007MER Now Mars Science Lab 2009

ARC Code TH
SPIFe Planning Process
Process/tool design

ARC Code TI
Europa Planning Engine
Tool Implementation

JPL Division 31
Maestro Downlink Browser

Tool Implementation

Each mission’s operations tool is assembled from
different subsets of the Ensemble components

Figure 1. Ensemble Flight Missions.

Science Laboratory (MSL) activity
planning function. The software for
all three missions will be maintained
and developed on a single platform
(see Fig 1.).

Based on the MER mission
experience we believe future space
operations will greatly benefit from
four basic tenets adopted by the
Ensemble platform methodology:

1) Divide large applications
into interoperable and
reusable components.

2) Deliver to a mission only
those components it needs.

3) Allow reconfiguration so the work process can evolve as experience is gained.
4) Usage of continuous automated build and test systems.

The paper contents are organized as follows: An overview of the Ensemble plug-in architecture, MER activity
planning and sequencing subsystem, MER mission problems addressed by Ensemble, a discussion of how Ensemble
components are being used in space missions, future directions and conclusion.

II. Ensemble Plug-in Architecture
Ensemble uses software components called plug-ins for command sequencing, science planning, plan

representation, activity planning and modeling see Fig. 2. The underlying architecture of Ensemble is Eclipse which
is both an application framework and a Java-based IDE. Ensemble participants working for a particular customer
project create and test software components in the form of Eclipse plug-ins that are integrated into an Ensemble
product (or products) for that customer. An Ensemble product is built from the Eclipse Rich Client Platform (RCP)
and a selection of shared Ensemble plug-ins, plus a selection of customer-specific plug-ins.

Plug-ins within Ensemble fall into two categories: "owned" and "shared":
• Owned – Each Ensemble participant will develop some capabilities that fall within an area that they

consider their principal focus. The plug-ins that make-up these capabilities are considered to be
exclusively owned by the participant and are clearly marked in the Ensemble repository with the
reverse-domain name of the team at the beginning, e.g. gov.nasa.arc.teamname.plugin. The plug-in
source code is always available for reference by other Ensemble participants, however all modifications
are submitted to the participant that owns the plug-in. These modifications are also considered the
property of the participant. In other words, contributions to an owned plug-in do not grant the

Science
Planning

Activity
Planning Modeling

Plan
Representation

Command
Sequencing

Non-Eclipse Tools

Ames Planner

Eclipse
Platform

SEQGEN

Figure 2. Ensemble Plug-in Architecture.



American Institute of Aeronautics and Astronautics
3

contributor any ownership of the plug-in. Ensemble participants may use an Owned plug-in in a project
only with the permission of the participant that owns it.

• Shared – Some capabilities (for example, parsing an activity dictionary) are utilitarian in nature and
should be developed only once and maintained centrally. The plug-ins that comprise these capabilities
are developed cooperatively by Ensemble participants and are marked in the Ensemble repository with
names of the form gov.nasa.ensemble.plugin. All Ensemble participants may modify and use the plug-
ins for any purpose, regardless of whether they contributed any code to its development.

The Eclipse RCP performs the following functions:
• Hosts an application’s plug-ins, managing the interface between plug-ins.
• Provides access to key parts of the Eclipse User Interface, including menus, toolbars, perspectives and

status displays.
• Provides access to plug-ins with other useful capabilities, including an integrated help system, an

automatic update manager, graphical editors, charting and graphing.

The applications that are currently planned for development within Ensemble deal with science planning, and
activity planning and scheduling. A typical application program or set of application programs built from Ensemble
plug-ins might perform one or more of the following functions, each with direct user involvement:

• Search for and display images needed for planning.
• Enable the user to define a target (for an imaging activity or a traverse activity) by clicking on

an image.
• Define an instance of an activity by selecting from an Activity Dictionary and specifying

values of parameters for the instance.
• Specify temporal relationships among activity instances.
• Display a timeline of activities and of groups of activities; enable a user to change the

scheduled time of activities by dragging items on the timeline.
• Call upon external models to simulate the plan and display results textually and graphically.
• Call upon automated planners to schedule activities into legal positions.

Many of the possible applications planned for Ensemble overlap, in the sense that they share plug-ins. For
example, plug-ins that display lists of activities to the user are present in any application that needs to display lists.

Some plug-ins, referred to as core plug-ins, can be distinguished, although architecturally from an Eclipse point
of view, there is no distinction. The core plug-ins are expected to be a constituent of several Ensemble-based
applications because they offer functionality that is common in planning applications. Sometimes it is clear at the
beginning of the development of a plug-in that it should be considered core. Other times, a specialized version for a
single project's definite need might first be implemented, and then later its general features factored out to become a
core plug-in. Functions that are specific to a single project are implemented as non-core plug-ins. Thus, a specific
application consists of the RCP, some core and customer-specific plug-ins.

III. Activity Planning and Sequencing Subsystem
The surface operations’ planning for the MER rovers has been ambitious and challenging. The daily rover

activity planning process must balance different science and engineering needs, while taking into account resource
limitations, operations safety rules, etc. The Activity Planning and Sequence Subsystem (APSS) is a part of the
Ground Data System and a critical component for the mission operations rover uplink process. It is responsible for
strategic mission planning, science observation planning, and engineering activity planning and sequence command
uplink. APSS supports both user and automated reasoning operations needed to modify activity plans. The system
uses a vast array of software tools during various mission phases. Some of these applications include returned data
analysis, resource estimation; spacecraft command preparation and activity sequence planning as seen in Fig. 3.

The following is a list of APSS components:
• Europa – an artificial intelligence based planner, developed by ARC.



American Institute of Aeronautics and Astronautics
4

• APGEN – the activity plan generator resource model-based planner developed by JPL.
• SAP – the science activity planner is used to facilitate science telemetry analysis and activity planning.
• RSVP – the rover sequencing and visualization program is used for advanced Martian surface and rover

visualizations as well as to generate the actual rover command sequences.
• SEQGEN – the sequence generator predicts events that will occur on the spacecraft as result of the

sequence, giving warnings when the sequence violates *rules* or causes spacecraft subsystems to be
misused.

• SLINC – the spacecraft language interpreter and collector is responsible for the translation of a
spacecraft sequence in the form of a spacecraft sequence file (SSF) into a command packet file (CPF)
for broadcast to the spacecraft. In addition a binary UNIX file may be formatted into a CPF for
transmission to the spacecraft.

• RSFOS – the re-engineered space flight operations schedule is a program that reads user maintainable
ASCII tables and an input predicted events file (PEF) generated by SEQGEN. One of the output files is
input to the graphical editor, “soeedt”, used to generate an operations schedule.

• CAST – the common allocation scheduling tool is an integrated set of multi-mission software tools that
assist projects in negotiating deep space network (DSN) coverage.

• SEQREVIEW – the sequence review tool re-formats and extracts information from sequence products
(e.g. PEF) which allows users or external applications to analyze the data.

The two primary goals for the GDS are
1) Efficient and flexible activity planning for large-scale, complex tasks.
2) Usage of an integrated system for analysis, planning & execution.

The originally designed APSS proved ineffective at efficiently meeting these goals. In particular, the subsystem
consisted of loosely connected and difficult to monitor scripts functioning to mirror large portions of the GDS. In
addition, the interfaces were brittle and linked together with ordinary flat files and the infrastructure lacked overall
process integration. The usage of this original system presented many mission planning challenges.

IV. Improving Mission Tool Development
The current approach used to develop mission operations software has produced a set of powerful tools that have

enabled stunning successes for NASA. Many parts of the current development process are functioning well and
should be preserved. However, improvements in the state of the art software engineering as well as increasing
demands from new missions have exposed several areas that deserve attention. A redesigned APSS using Ensemble
components has been developed (see Fig. 4) and successfully delivered to MER. The new APSS has been designed
to address a number of problems areas outlined below.

 

RSVPMAPGEN
Europa
Planner

SEQGEN

SAP

Science Activity Plan (RML)
(Prioritized list of observations)

Activities “Integrated”
Activity Plan

Interactive
Model API
(results)

SATF,
SASF

CPF

SEQ_REVIEW

SFOS,
SOE

SSF

EDRs,
RDRs

LTF

P-file,
S/C Ephem File

View
Period File

SCMF

APGEN

STS/SLINC

RSFOS

SEQ_REVIEW

PEF

PEF DKF

RoSE

Interactive
Model API
(directives)

Power
Model API

Power
Model
API

CAST

DSN all ocations,
View Period Files

Rover
State

Constrai nt
Check

DSN
alloc ations,
View Period

Files

DSN
NSS
Predicts

OPGS

DACS

SSW

MMPAT
library

MDNS

DACS

DACS

SEQGEN
Engine

Action
Requests

Science Activity
Plan (APF)

Constrai nts (APF)

Hy perdriv e

rml2apf

apf2rml

Comm
Plan
(APF)

SMF,
SATF,
SASF

Mission
Planning
(strategic)

DDL
(at startup)

FSW models

MMPAT
library

Targets (RML)

Activity Dictionar y

Activity
Defintions

Activity
Defintions (AAF) to

APGEN

DRCF,
DVCF

EAS

S/C Tlm
(RKSML)SPICE

Kernels OPGS

SSW
MDNSSIE

Scientist

TAP

Constraint
Editor

EDRs,
RDRs

Durations
(to TAP)

TAP Tactical Activity Planner
SIE Sequence Integration Engineer
AAF Activity Adaptation File
APF Activity Plan File
PEF Predicted Events File
RML Rover Markup Language

Figure 3. MER Nominal APSS.

PUL Payload Uplink Lead
TAP Tactical Activity Planner
SIE Sequence Integration
Engineer
PEF Predicted Events File
SSF Spacecraft Sequence File

RSVP

SEQGEN

Activity
Plan SATF,

SASF

SEQ_REVIEW

SFOS,
SOE

EDRs,
RDRs

LTF

P-file,
S/C Ephem
File

View
Period File

RSFOS

SEQ_REVIEW

PEF

PEF DKF

Interactive
Model API
(directives)

Power
Model API

CAST

DSN allocations,
View Period Files

Rover
State

DSN allocations,
View Period Files

DSN
NSS
Predicts

OPGS

DACS

SSW

MDNS

DACS

Propagated
Constraints,
Resourc e
Estimates

Comm
Plan

Mission
Planning
(strategic)

DDL
(at startup)

MMPAT
library

Activity
Definiti ons

DRCF,
DVCF

EAS

S/C Tlm
(RKSML)

OPGS SSW

Scientist/TAP/
SIE/PUL/

Rover Driv er/
SA-SPaH Driver

EDRs,
RDRs

Durations
(to TAP)

CPF

SCMF

STS/SLINC2

DACS

SSF

RSVP-Hyperdri ve
FSW models

Rover Driv er
SA-SPaH Driver

Targets

Msg‘sMaestro SPIFe &Constraint Editor

Activity Dictionary

SPICE
Kernels

MDNS

RSVP-RoSE

Europa 2

ENSEMBLE

Results of
Modeling

Eclipse Platform& Shared Data Model

Figure 4. MER Ensemble APSS.



American Institute of Aeronautics and Astronautics
5

A. Brittle Interfaces
Historically, mission operations software has consisted of a set of largely independent tools that communicate

with each other using files or socket-based interfaces. The interfaces between the planning tools on MER were a late
addition that became the source of numerous problems. Consequently, this area requires immediate improvement.

File and socket-based interfaces are notoriously difficult to test and debug. As a result, these kinds of interfaces
tend to fail often. The most reliable interface between two tools is usually accomplished via direct use of the
respective tools’ application programming interface (API). This approach ensures that many problems in the
interface are discovered at compile time.

Direct API interfaces can be very difficult to implement when the tools being integrated were developed in
different environments. Since most Ensemble members agree to develop their tools as Eclipse plug-ins, these issues
are minimized. Moreover, Ensemble draws upon capabilities provided by the Eclipse RCP to document and enforce
interfaces between different components.

Components can still be integrated with the Ensemble architecture despite not being developed as an Eclipse
Java plug-in. Work is underway to develop a general, robust method for non-Eclipse tools to interact with other
Ensemble tools. By reusing a single interface point for multiple external tools, it is expected that the reliability of
these interfaces will be increased.

B. Excessive number of GUIs
The number of separate tools used in the MER APSS is also the source of notorious complaints because it

requires mission operators to interact with many different user interfaces in order to get their work done. This slows
the overall pace of mission operations and increases training requirements.

The complexity of mission operations makes it infeasible to develop a single operations tool capable of
accomplishing all necessary tasks. However, Ensemble’s reliance on Eclipse provides a common GUI framework
that can contain GUI components from multiple tools developed by different teams. A mission can then easily reuse
any component at multiple stages of the operations process. For instance, a data view that was historically available
only during the sequencing phase of operations can be displayed and used at any time if that view is developed as an
Eclipse plug-in. The result is a GUI that feels like a single tool to the user, but draws upon the resources of many
development teams.

Ensemble uses a task-oriented GUI that is based heavily upon Eclipse perspectives. A perspective defines which
GUI components will be visible to a user at a particular time. As a user moves through the tasks required for
planning, they click through a set of icons devoted to each task. For instance, a user might click on an icon to

Ames

JPL & AmesAmes

JPL & Ames

Figure 5. Planning Perspective.



American Institute of Aeronautics and Astronautics
6

activate a perspective devoted to browsing downlink data (see Fig. 5) and then move onto a perspective devoted to
building a set of activities for planning (see Fig. 6). Ensemble’s planning perspective allows activities to be arranged
into a plan, browsed and edited, and linked together with constraints. Users can browse downlink data, manipulate
it, and create targets using the data browsing perspective. In fact, we can mix and match components from the
perspectives, to show the details of an activity next to an image illustrating the target of the activity for example.

C. Duplication of Effort
The tools in existing mission operations systems are designed to address the needs of a certain phase of the

operations process. However, certain capabilities are needed at multiple stages in the operations process.
Unfortunately, the architectures used in current mission operations tools do not allow capabilities from different
tools to be reused at multiple steps in the process. As a result, redundant versions of these capabilities are developed
by multiple teams and inserted into separate tools.

The component-based development model and the perspective-based GUI that Ensemble inherits from Eclipse
enables a mission to easily reuse any component at multiple stages of the operations process. For instance, a data
view that was historically available only during the sequencing phase of operations can be displayed and used at any
time if that view is developed as an Eclipse plug-in.

This reuse is possible because of the manner in which Ensemble plug-ins deal with the spacecraft plan. In the
past, the spacecraft plan has been handed from one tool to the next in a serial fashion. At each step, a single tool had
exclusive control over the plan. In contrast, Ensemble plug-ins interact as a group with a common model of an
evolving spacecraft plan. Each plug-in can contribute to the plan whenever it is necessary, and each plug-in must
respond appropriately to modifications made by other plug-ins.

As a multi-mission architecture, Ensemble also supports extensive reuse of components between missions. The
vast majority of Ensemble plug-ins are mission-independent and mission-specific plug-ins are clearly identified.
Ensemble is already being used to support Phoenix, MSL, and several technology programs, and these customers
share a large amount of code in common.

JPL

Figure 6. Downlink Perspective.



American Institute of Aeronautics and Astronautics
7

D. Lack of Agility
Most development teams strive to make their tool applicable to multiple missions. This is a positive goal because

it enables future missions to capitalize on the investment made by prior missions. However, it can also force a
mission to accept and maintain capabilities that it doesn't need. The popular “core/adaptation” model is an attempt to
insulate different customers from customer specific requirements, but what if one customer only needs a fraction of
the core? Currently, that customer is simply forced to accept the rest of the core anyway, along with the risk and
costs associated with its maintenance.

An Eclipse (and therefore Ensemble) application consists merely of the core RCP plus a set of plug-ins. The set
of plug-ins that are included completely define the functionality supported by the program. Because plug-in
dependencies are clearly documented and checked through the Eclipse IDE, it is possible to release only those plug-
ins to a customer that provide the functionality they need. For instance, if a particular customer doesn't need spectral
visualization support, the plug-in(s) that provides that capability can simply be omitted from their release. This
provides a tool that is easier for the customer to test and learn to use.

V. Ensemble Mission Components

Ensemble components are actively being used as part of the MER APSS. Ensemble has integrated the following
five powerful engines (Maestro, SPIFe, Europa, RoSE and SEQGEN) into a single application. The Maestro
Ensemble component subset is the next generation SAP and has been delivered to the MER science team for beta
testing. The MER science and uplink team members have estimated that overall science return increased by 20 –
50% during the beta testing phase. Additional components are actively being integrated into Ensemble, e.g. high
fidelity terrain modeling and analysis.

Ensemble is also being feature developed for two future space missions. In particular, Ensemble components
have been designed for usage in the Phoenix 2007 (see Fig. 7) and MSL 2009 missions (see Fig. 8). Phoenix is a
long-armed Lander designed to examine the icy plains of northern Mars for potential habitats in water ice, and to
search for evidence of life, past or present. The Phoenix activity planning tool called the Phoenix Science Interface
(PSI) includes the Ames Ensemble component subsets SPIFe and Europa as well as the JPL Ensemble component
subset Maestro. Currently the term SPIFe is used loosely to refer to a collection of interfaces, principally a timeline,
that are used during activity planning. In fact, both the SPIFe planning interface and the Europa planning engine are
two reusable mission operations tools.

The MSL mission will deliver a mobile laboratory to the surface of Mars to explore a local region as a potential
habitat for past or present life. The rover will be equipped with an impressive array of scientific instrumentation and
its own power source. It is highly probable that MSL will use the current MER mission GDS. Consequently, the
delivered Ensemble components and re-designed APSS that already augment the GDS with greater efficiency and

flexibility is expected to demonstrate similar success in the future missions. 
 

 

RSVP

SEQGEN

“Integrated”
Activity Plan

Interactive
Model API
(results)

SATF,
SASF

CPF

SEQ_REVIEW

SFOS,
SOE

SSF

LTF

P-file,
S/C Ephem File

View
Period File

SCMF

APCORE

STS/SLINC

RSFOS

SEQ_REVIEW

PEF

PEF DKF

RoSE

Interactive
Model API
(directives)

Power
Model API

Power
Model
API

CAST

DSN allocations,
View Period Files

Constraint
Check

DSN
alloc ations,
View Period

Files

DSN
NSS
Predicts

OPGS

DACS

SSW

MMPAT
library

MDNS

DACS

DACS

SEQGEN
Engine

Hyperdriv eapf2rml

Comm
Plan
(APF)

SMF,
SATF,
SASF

Mission
Planning
(strategic)

FSW models

MMPAT
library

Activity Dictionar y

Activity
Defintions

EAS

S/C Tlm
(RKSML)SPICE

Kernels OPGS

SSWMDNSSIE

Scientist

TAP

EDRs,
RDRs

Durations
(to TAP)

TAP Tactical Activity Planner
SIE Sequence Integration Engineer
AAF Activity Adaptation File
APF Activity Plan File
PEF Predicted Events File
RML Rover Markup Language

PSI
SPIFe

Europa-II
Planner

MAESTRO

Science Activity Plan (RML)
(Prioritized list of observations)

Activities

EDRs,
RDRs

Rover
State

Action
Requests

Targets (RML)

Figure 7. Phoenix Ensemble Components.

Activity
View

Activ ity
Constraint
Editor

Ac tivity
Dic tionary

Incons

Work flow
Manager

Collab
Support

Models&
Rules

Plan
Manager
View

unscheduled
ac tivities

parameter
edits

science
constraints

scheduled
activ ities

resource
estimates

Activ ity
Sim

Sequence
Library

s tored
sequences

Ac tivity
Timeline
Editor

v iolation
flags

Data
Products

Roundtrip
Track ing

Data
Produc t
Views footprints

and
simrover

Data Produc t
Search Views

Command
View

Command
Checker

Command
Dic tionary

Command
Modeler

Command
Sim

parameter
edits

final
sequences

v iolation
flags

footprints &
simrover

resource
estimates,
timing

Ac tivity
Checker

targets

Shared Data

RML
Writer

RML
Reader Database

Activ ity
Modeler

View
External
ProcessorData

Legend

Planning
Assistant
View

Maestro

SPIFe

RSVP-
Rose

RSVP-
Hyperdrive:
Interactive
with RoSE

Client to
SEQGEN

sequence
timing

Clients to Europa 2

planning
advice

Processor

Activ ity
Sc ratchpad
Editor

Command
Sequence
Editor

Figure 8. MSL Ensemble Components.



American Institute of Aeronautics and Astronautics
8

VI. Future Directions
When science and engineering teams navigate the two MER rovers across the roughed Martian terrain, several

hundred people collaborate to develop daily activity science plans. Teams typically collaborate in different modes
including face-to-face interactions and meetings requiring parties to participate at the same time but distributed
geographically. Needless to say the efficiency with which teams access and share information directly impacts the
amount of science data returned.

NASA ARC has developed a large touch-screen based collaborative computer called MCCBoard that has been
used to assist science teams during MER surface operations. MCCBoard’s large interactive work surface facilitates
collaboration among planning teams that can gather around a five foot long plasma display board to retrieve, view,
share and annotate mission data and rover images. MCCBoard is designed for extendibility and uses an Eclipse
plug-in architecture. The architecture supports functionality enhancement and customization of its core facilities.

The Mission Control Technologies (MCT) project is a new framework for the creation of mission systems using
collaborative component technologies. Currently MCCBoard is being redesigned and implemented using a
collaborative component technology infrastructure. The resulting next generation software intends to offer enhanced
collaborative capabilities such as virtual file storage, Open Document format support, chat, instant messaging,
reconfigurable board tool views, etc. It is believed that Ensemble in concert with such collaborative software would
greatly aid surface operations planning for future space missions.

VII. Conclusion
Automated and mixed-initiative, systems that integrate human and automated reasoning, decision support tools

have been critical to the success of MER. One serious limitation of the MER operations tools has been that they
were developed separately rather than in an integrated fashion. The Ensemble architecture enables NASA missions
to derive greater results from their investment in mission operations software. Rather than arranging together a series
of largely isolated and independent tools, missions are able to seamlessly assemble precisely the tool they need by
drawing components together from different development teams. As a result mission operators are more efficient,
ultimately improving the overall performance of our missions. Finally, operations software developers are better
able to focus more on developing great tools and less on frustrating integration issues.

Ensemble is built on the Eclipse Rich Client Platform and a selection of plug-ins. The open source platform
benefits from broad participation among multiple teams from different NASA centers. Each team is assigned a
specific Ensemble component subset to develop. The Maestro component subset has been delivered to MER for beta
testing. Moreover, two future space missions have been base-lined to use Ensemble as an integral part of their
activity planning and sequence subsystem.

A successful collaborative distributed mission requires more than just tools that play well together. It also needs
frameworks and interfaces that facilitate such interoperability. The MCT project is developing software technologies
and design methods for modular, evolvable, distributed ground data systems and mission operation systems to meet
those needs. The MCCBoard operates at several NASA centers and supports the MER mission. Currently the board
software is being redesigned and implemented using MCT components. A number of space missions would
undoubtedly benefit from using Ensemble and collaborative component technologies. Particularly those missions
involving surface operations activity planning and large distributed science teams.

Acknowledgments
The research in this paper was carried out by NASA Ames Research enter and the Jet Propulsion Laboratory,

California Institute of Technology, under a contract with NASA. The author would like to thank James Kurien, Jay
Trimble and Jeff Norris for their material support.

References

Proceedings
Norris, J. S., Powell, M.W., et. al. “Science Operations Interfaces for Mars Surface Exploration,” IEEE Conference on

Systems, Man and Cybernetics, IEEE, Big Island, HI, 2005.
Ko, A., Maldague, P., et. al. “Design and Architecture of Planning and Sequence System for Mars Exploration Rover

Operations”, SpaceOps Conference, 356-434, Montreal, Canada, 2004.


