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Abstract— In this paper, we present an architecture and a 

formal framework to be used for systematic benchmarking of 

monitoring and diagnostic systems and for producing comparable 

performance assessment for different diagnostic technologies. The 

framework defines a number of standardized specifications, 

which include a fault catalog, a library of modular test scenarios, 

and a common protocol for gathering and processing diagnostic 

data. At the center of the framework are 13 benchmarking metric 

definitions. The calculation of these metrics is illustrated on a 

probabilistic model-based diagnosis algorithm utilizing Bayesian 

reasoning techniques. The diagnosed system is a real-world 

electrical power system, namely the Advanced Diagnostic and 

Prognostic Testbed (ADAPT) developed and located at the NASA 

Ames Research Center. The proposed benchmarking approach 

shows how to generate realistic diagnostic data sets on large-

scale, complex engineering systems, and how the generated 

experimental data can be used to enable “apples to apples” 

assessments of the effectiveness of different diagnostic algorithms. 

 
Index Terms— Fault Detection, Fault Diagnosis, Systems 

Health Management, Bayesian Reasoning, Model-Based 

Diagnosis. 

 

I. INTRODUCTION 

YSTEM health management (SHM) is of interest to most, 

if not all, of NASA’s missions. NASA’s spacecraft and 

aircraft contain multiple sub-systems including navigation 

systems, power systems, and propulsion systems, and it is 

crucial to keep these subsystems healthy during a mission [1-

3]. Novel automatic or semi-automatic techniques – 

implemented in hardware, software, or both – have the 

potential of bringing increased autonomy and improved quality 

to SHM at NASA. In this paper, we put special emphasis on 

automated diagnosis and monitoring [3-7], including its 

application to sensor validation [8-11]. A wide range of 

algorithms for diagnosis and monitoring, both model-based 

and data-driven, have been developed. Unfortunately, there are 

several closely related challenges associated with developing 
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and deploying such algorithms and systems for aerospace 

vehicles; we high-light the following two in this paper.  (In 

related work, the challenges of model construction and real-

time reasoning are considered [4,11,12].)  

First, there is a lack of SHM data sets that are realistic and 

standardized, in particular at the system and subsystem levels.  

This makes it difficult for researchers to benchmark 

diagnostics algorithms and systems (the data challenge). On 

the hardware side, different techniques and data sets, including 

destructive testing, non-destructive testing, accelerated life 

testing, reliability databases, etc. are available to support the 

component level. Unfortunately, there is a lack of similar data 

sets, at the system and sub-system levels, available for 

benchmarking diagnostic technologies (and in particular 

model-based approaches). This makes it more difficult to 

empirically evaluate integrated systems where software 

(implementing algorithms for diagnosis, monitoring, 

prognosis, etc.) monitor and control hardware sub-systems 

(such as electrical power systems) in a realistic fashion.   

Second, there is a lack of support for comparative analysis 

of different diagnostic algorithms and systems; lack of 

common vocabularies and ontologies; and well-defined 

metrics (the evaluation challenge).  This makes it difficult to 

understand the pros and cons of different alternatives, which 

might lead to sub-optimal design choices being made, with 

obvious unfortunate consequences for performance and safety.   

In this paper, we present an architecture and a framework 

with the goal of improved benchmarking system health 

management systems. We consider model-based techniques for 

diagnosis and monitoring, and define relevant detection and 

isolation metrics. As a case study, we consider probabilistic 

model-based diagnosis utilizing Bayesian networks and 

arithmetic circuits.  The diagnosed system is the Advanced 

Diagnostic and Prognostic Testbed (ADAPT), a real-world 

electrical power system. Our benchmarking approach shows 

how to generate realistic data and compute metrics in the 

context of ADAPT, thereby facilitating research on system 

health management systems. We emphasize the use of a 

common fault catalogue and common metrics, which together 

enable “apples to apples” assessments of the effectiveness of 

different technologies, including the probabilistic techniques 

investigated here.   

The significance of this work is as follows. First, we start 

addressing the data challenge by presenting the ADAPT EPS, 

which provides a setting for generating standard, realistic 
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problem sets for diagnosis and monitoring, including sensor 

validation. Second, by introducing a benchmarking 

architecture and uniform metrics, we enable systematic 

empirical evaluation of different model-based diagnostic 

algorithms, which again should lead to improved 

understanding and comparative analysis of different diagnostic 

algorithms. In other words, we start addressing the evaluation 

challenge.  Such benchmarking results can eventually be used 

to select between or integrate different diagnostic approaches.  

The organization of the rest of this paper is as follows: 

Section 2 presents a review of metrics defined for diagnostic 

health management techniques and summarizes associated 

benchmarking efforts. Section 3 introduces our proposed 

benchmarking framework and provides an overview of the 

approach. The fundamentals of the Advanced Diagnostic and 

Prognostic Testbed are described in Section 4. Section 5 

presents major components of the benchmarking framework 

including the fault catalog, scenario descriptions, and the 

experimental procedures involved. Benchmarking metrics are 

defined in Section 6. Section 7 discusses an approach to 

probabilistic model-based diagnosis along with its application   

to the ADAPT EPS. Section 8 summarizes initial 

benchmarking results for our probabilistic approach, followed 

by concluding remarks.  

II. RELATED WORK  

The development of monitoring and diagnostic technologies 

is of great interest to military and industrial aerospace 

applications. As these algorithms become more readily 

available, the necessity for assessing the performance of 

alternative diagnostic tools becomes important. As a result, 

there is an increasing need to define metrics that will allow the 

evaluation and benchmarking of competing diagnostic 

technologies.  

Several institutions and organizations have proposed metrics 

to address this need [13-19]. Among those, the SAE [13]’s 

“Health and Usage Monitoring Metrics” defines probability of 

detection and probability of false alarms as key metrics for 

evaluating diagnostic algorithms. In addition, these definitions 

are supplemented by a variety of measures and statistics to 

present the results.  

DePold et al. [14-15] introduced metrics to evaluate the 

accuracy and cost effectiveness of diagnostic systems. Their 

approach is based on the receiving operating characteristics 

(ROC) analysis [16], which illustrates the trade-off space 

between the probability of false alarm and the probability of 

detection for different signal to noise ratio (SNR) levels. The 

method is used to test the relative accuracy of diagnostic 

systems based on different threshold settings. Later, they also 

proposed a combined metric [15] that accounts for 

consequential event costs including missed detection, false 

alarms, and misdiagnosis.  

Another widely used metric for diagnostic accuracy is the 

Kappa Coefficient [13]. It is based on the construction of a 

confusion matrix that summarizes diagnostic results produced 

by a reasoner over a number of test/use cases. The Kappa 

Coefficient is used to measure the ability of an algorithm to 

discriminate between multiple fault candidates.  

Apart from these approaches, several researchers have 

attempted to demonstrate benchmarking capability in addition 

to defining evaluation metrics [17-19]. Among these, Orsagh 

et al. [17] provided a set of 14 metrics to measure the 

performance and effectiveness of prognostics and health 

management algorithms for US Navy applications [18]. The 

metrics are defined separately for detection, isolation, and 

prognosis. For detection, the metrics include thresholds, 

accuracy, reliability, sensitivity to load, speed, or noise, and 

stability. The isolation metrics are same as the detection 

metrics but also include measures for discrimination and 

repeatability. Finally, the prognosis metrics are concerned with 

predicted condition, and remaining life. They also combined 

individual metrics into a composite score by implementing a 

weighted average sum. Moreover, they defined effectiveness 

metrics as a separate category that can be used to incorporate 

non-technical aspects such as operation, maintenance and 

implementation costs, computer resource requirements, and 

algorithm complexity into the analysis. Using these metrics, 

one can assess the overall effectiveness and benefit of 

diagnostic health management systems. Other researchers have 

also proposed similar cost-benefit formulations for health 

management systems. [20-22]. These approaches, however, are 

primarily concerned with higher-level trade-off’s in health 

management systems and are not focused specifically on the 

performance of monitoring and diagnostic algorithms. 

Finally, Bartys et al. [19] presented a benchmarking study 

for actuator fault detection and identification (FDI). This 

method developed by the DAMADICS Research Training 

Network introduced a set of 18 performance indices used for 

benchmarking FDI algorithms on an industrial valve-actuator 

system. The indices measure the temporal performance of 

detection and isolation decisions, as well as true and false 

detection and isolation rates, sensitivity, and diagnostic 

accuracy. This benchmark study used real process data, and 

demonstrated how the performance indices can be calculated 

for 19 actuator faults using a single fault assumption.   
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III. BENCHMARKING FRAMEWORK AND 

ARCHITECTURE OVERVIEW 

The overall goal of this research is to develop a formal 

framework to be used for systematic benchmarking of different 

health management systems and to produce comparable 

performance assessment for different diagnostic methods. To 

achieve this goal, a number of standardized specifications are 

defined which include a standardized fault catalog, a library of 

modular and standardized test scenarios, a test protocol, a 

common process for processing diagnostic data and the 

calculation of metrics.  

The detailed architecture of the developed framework is 

presented in Figure 1. The physical system is a real-world 

electrical power system (EPS), namely the Advanced 

Diagnostic and Prognostic Testbed (ADAPT) developed and 

located at the NASA Ames Research Center. The EPS 

problem domain contains both discrete and continuous faulty 

behavior, which are defined under a standardized fault catalog. 

The fault catalog establishes a common ground as to what 

failure modes, and faulty behavior are required to be modeled 

by individual diagnostic algorithm developers. To date, 

ADAPT has worked with diagnostic algorithms from NASA 

(Hybrid Diagnostic Engine (HyDE) [23], Inductive 

Monitoring System (IMS) [24]), academia (FACT) [25]), and 

industry (such as TEAMS-RT [26]). The testing procedure is 

usually scenario-based, where each scenario may have faults 

injected into the system, either through a GUI that manages a 

fault simulation software or via physical implementation (more 

on this in Section V). To detect faults, each diagnostic 

algorithm has access to real-time data from the ADAPT EPS. 

Moreover, a standardized output scheme is enforced on the 

diagnostic algorithms to ensure the generation of common data 

sets for the calculation of metrics. The data from the testbed 

and this output of the diagnostic system are saved to a 

database, and the diagnostic algorithm performance is 

evaluated according to a predefined set of metrics. In the 

following sections, specific modules of the framework are 

explained in detail with their interactions and specific roles, 

but first a brief summary of the ADAPT Testbed is provided. 

IV. ADVANCED DIAGNOSTIC AND PROGNOSTIC 

TESTBED (ADAPT) 

The Advanced Diagnostic and Prognostic Testbed 

(ADAPT) at the NASA Ames Research Center is a unique 

facility designed to test, measure, evaluate, and mature 

diagnostic and prognostic health management technologies. It 

provides a representative physical domain in the form of an 

electrical power subsystem (EPS) that enable automated 

diagnosis of complex systems exhibiting hybrid, i.e. both 

continuous and discrete behavior.  

The layout of the ADAPT power system is shown in Figure 

2. The EPS includes elements common to many aerospace 

applications: power storage, power generation, and power 

distribution. The power storage consists of three battery 

modules. Each of the three batteries can be charged by one of 
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Fig. 1.  The architecture of the benchmarking framework 
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Fig. 2.  ADAPT Testbed components and system configuration  
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the two battery chargers in the power generation element. 

Finally, any of the three batteries can be used to power any of 

the two load banks in the power distribution element. This 

design gives the ADAPT EPS basic redundancy and 

reconfiguration capability.  

A data acquisition and control system sends commands to 

and receives data from the EPS. The testbed operator stations 

are integrated into a software architecture that allows for 

nominal and faulty operations of the EPS, and includes a 

system for logging all relevant data. In addition, the ADAPT 

system includes a high-fidelity simulation testbed, called the 

VIRTUAL ADAPT, that emulates the ADAPT hardware. This 

environment provides identical interfaces to the application 

system module through wrappers to the ADAPT network and 

allows the physical components of the testbed, i.e. the 

chargers, batteries, relays, and the loads to be replaced by 

simulation modules that generate the same dynamic behaviors 

as the hardware testbed. The simulation environment also 

provides for precise repetition of different operational 

scenarios that facilitates more rigorous testing and evaluation 

of different diagnostic algorithms. (More information on the 

ADAPT testbed can be found in [2].  

V. BENCHMARKING FRAMEWORK DESCRIPTION 

In order to effectively establish a systematic framework for 

benchmarking of diagnostic algorithms, our method describes 

specific tasks and requirements and defines a set of 

hierarchically organized metrics that can be used for “apples to 

apples” comparison of different diagnostic technologies. A 

number of key technical challenges exist in developing this 

framework.  

First, it is required that the criteria which will be used as a 

basis for comparison are clearly defined. In particular, the 

metrics should be measurable, analytically computable, and 

independent of any specific diagnostic technology.  

 Second, the description of system characteristics, most 

notably fault representations and healthy system states, should 

be standardized. In addition, it is required that a broad 

collection of fault data is used covering a wide spectrum of 

fault types and behaviors in order not to bias the benchmarking 

results towards certain algorithms that may perform well for a 

specific subset of fault domains.  

Third, a repeatable, standardized process should be 

developed for scenarios and for processing resulting data sets. 

Part of this challenge is to ensure that a level of consistency is 

maintained for collection and processing of the diagnostic 

data. More importantly, it is required to establish a 

standardized scheme for representing the typical output of 

diagnostic algorithms, i.e. the estimation of health status of a 

physical system.  

In order to address these challenges, the proposed 

benchmarking framework provides an architecture that can be 

used for generating standard, realistic problem sets and 

associated data for diagnostic analysis. The architecture 

includes clearly defined performance metrics, a common fault 

catalog, and standardized representations and procedures 

required for collecting and processing diagnostic data. The 

details of the framework are explained in the following 

sections followed by a detailed discussion of the performance 

metrics in the next section. 

A.  Fault Catalog  

Different fault types and behaviors embodied within the 

ADAPT testbed are defined under a fault catalog. There are 

fundamentally two classes of faults that are being currently 

used as part of this study: abrupt faults and incipient faults.  

All faults are classified based on the physical components of 

 

Fault_ID Component Fault Mode

 Fault 

Class

Battery

Component_ID's

BAT1A, BAT2A, BAT3A,

BAT1B, BAT2B, BAT3B,

f1 Battery Overheat abrupt

f2 Voltage Drain incipient

f3 Voltage Failure abrupt

f4 Terminal Corrosion/Short abrupt

f5 Battery Leak/Level Loss incipient

f6 Reverse Connection abrupt

Circuit Breaker

Component_ID's

EY136, EY162, EY166, EY180, EY236

EY262, EY266, EY280, EY336

f7 Failed Open abrupt

f8 Stuck Closed abrupt

f9 Failed Closed abrupt

Inverter

Component_ID's INV1, INV2

f10 Switched Off abrupt

f11 Short abrupt

f12 Overheat incipient

f13 Improper Output Voltage incipient

ADAPT  Fault Catalog

 
Fig. 3.  An excerpt from the ADAPT Fault Catalog 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5

the ADAPT EPS. These faults are determined by conducting a 

failure modes and effects analysis (FMEA) [27] on the EPS 

and by amalgamating component failure information from 

various reliability documents.  

Figure 3 shows an excerpt of the fault catalog. The first 

column lists the “unique ID” for each fault type, and the 

second column depicts the generic component type for the 

faulty behavior. For example, faults 1-6 capture “battery” 

faults, whereas, faults 7-10 define “circuit breaker” faults. 

Note that, physical locations where these faults could manifest 

themselves (labeled as “component ID’s) are also listed in a 

separate row under each generic component type. Listed next 

in the fault catalog are the fault modes of components, 

followed by the fault classes (abrupt vs. incipient). Currently, 

there are over 90 faults classified under 14 generic component 

types. In addition, each component type has its own non-faulty 

mode(s) defined. For example, a “circuit braker” has healthy 

nodes of “nominal_open” and “nominal_closed”.  

The fault catalog along with the non-faulty component mode 

definitions serves as a requirements document for individual 

diagnostic algorithm developers and is intended to guide the 

modeling of the physical system by establishing a common 

ground among different diagnostic tools.  

B. Scenario Descriptions  

An important aspect of the benchmarking process is the 

ability to test the diagnostic performance over a wide variety 

of operational scenarios. This is facilitated by the definition of 

standardized test scenarios.  

A test scenario defines the EPS’s initial configuration, load 

configuration, and fault configurations for a test run. The 

system initial configuration describes basic connectivity of the 

major elements of the EPS testbed, i.e. the connectivity 

between power storage, power generation, and power 

distribution elements. For example, Battery 1 may be 

connected to Load Bank 1, 2, or both. Similarly, Battery 1 may 

be charged by the by either of the battery chargers. The load 

configuration describes the loads that are used during a test 

run. Currently, the ADAPT EPS system can be configured to 

have up to 6 AC, and 2 DC loads at each load bank. The AC 

loads include fans, lights, and pumps with different operating 

characteristics. Finally, the fault configuration describes the 

fault or faults that are experimented. It includes a unique fault-

id, injection time and injection location of the fault, any 

required fault parameters, and the source of the fault that 

captures whether the fault was generated by the simulation or 

was induced through a hardware implementation.  

Figure 4 illustrates the execution of a simple scenario. In 

this test run (experiment ID#266), Battery 1 feeds Load Bank 

1. Two AC, and one DC load is used: Light 6 on load location 

L1A, Fan 1 at L1B, and a DC load at L1G. A single fault is 

injected on Inverter 1 (fault ID f10 in Figure 3) through 

hardware set-up. Accordingly, the inverter is switched off at 

about 41 seconds into the experiment. No fault parameters are 

required for this fault type. The fault description is also 

provided in Figure 4.  

C. Testing Procedures, Input’s, and Output’s 

As stated earlier, a common process is developed for running 

repeatable, standardized scenarios and for generating and 

processing common data sets. This section describes the 

input’s and output’s given to and generated by the ADAPT 

testbed during each test scenario. 

In order to provide a level of consistency between the 

diagnostic algorithms, we offer a simple reference architecture 

shown in Figure 5. According to this architecture, each 

diagnostic algorithm is treated as a black box with inputs and 

output as shown in the Figure. 

In this architecture, a diagnostic system is characterized by 

its model M of the ADAPT testbed, as well as how the inputs 

from and outputs to the ADAPT testbed are mapped into the 

constructs used by the algorithm. The inputs to the diagnostic 

algorithm are of two main types, namely:  

· Commands c(t): Commands at time t to the ADAPT 

 
Fig. 4. A summary of a test run  
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testbed from the ADAPT user. This represents constraints on 

the desired state of ADAPT.   

· Sensor readings s(t): Sensor readings at time t  – such as 

voltage, current, and temperature – from ADAPT. Note that 

because of sensor failures, some of the readings might be 

incorrect. 

In the architecture, a diagnostic algorithms output is an 

estimate of ADAPT’s health status h,DA(i) (t), which typically 

includes the health of ADAPT’s sensors and the health of 

ADAPT excluding sensors.  

In addition, the format of h(t) is standardized to facilitate the 

generation of common data sets and the calculation of the 

benchmarking metrics which will be introduced in the next 

section. Accordingly, each diagnostic algorithm is required to 

output the following through a common API architecture:  

· Detection Signal (DS): A binary value (high or low) as to 

whether the diagnostic system has detected a fault.  

·  Isolation Signal (IS): A binary value (high, low) as to 

whether the diagnostic system has isolated a fault or a set of 

faults. Each “high” isolation signal is associated with a 

candidate fault set that summarizes the estimate of the health 

status of the ADAPT system.  

·  Candidate Fault Set (CFS): A candidate fault set is a list 

of diagnoses, i.e. estimated system components that are 

identified as “faulty”. Each element in the candidate fault set is 

a pair in the form of (Component_ID, Fault_ID). Together the 

pair captures the particular instance of a component that is 

diagnosed as faulty, and the associated fault mode as defined 

by the fault catalog. For example, the candidate set 

corresponding to the correct diagnosis for the scenario 

presented in Figure 3 is {(Inverter 1, f10)}. 

This output by the diagnostic algorithms can be generated at 

appropriate time steps based on the data rate of the testbed, or 

it can be reported at discrete points in time if there is a change 

in any one of the three values. 

D. Fault Injection 

ADAPT supports the repeatable injection of faults into the 

system in one of two ways [28]. First, faults may be physically 

injected at the testbed hardware. A simple example is tripping 

a circuit breaker using the manual throw bars. Another is using 

the power toggle switch to turn off the inverter. Relays may be 

failed by short-circuiting the appropriate relay terminals. 

Wires leading to or from sensors may be short-circuited or 

disconnected. Additional faults include loosening the wire 

connections in power-bus common blocks. Faults may also be 

introduced in the loads attached to the EPS. For example, the 

valve can be closed slightly to vary the back pressure on the 

pump and reduce the flow rate.  

In addition to fault injection through hardware, faults may be 

introduced via software. Software fault injection includes one 

or more of the following: 1) sending commands to the testbed 

that were not intended for nominal operations 2) blocking 

commands sent to the testbed 3) altering the testbed sensor 

data. The sensor data can be altered in a number of ways. For a 

static fault, the data are frozen at previous values and remain 

fixed. An abrupt fault applies a constant offset to the true data 

value. An incipient fault applies an offset that starts at zero and 

grows linearly with time. Excess sensor noise is introduced by 

adding Gaussian or uniform noise to the measured value. 

Future work will add intermittent data faults, data spikes, and 

the ability to introduce more than one fault type for a given 

sensor at the same time. By using these three approaches to 

software fault injection, fault scenarios may be constructed 

that represent diverse component faults. 

Since some fault scenarios may be costly, dangerous, or 

impossible to introduce in the actual hardware, a simulation 

module called VIRTUAL ADAPT also provides fault injection 

capabilities. For example, degradation in the batteries can be 

simulated as an incipient change in a battery capacitance 

parameter. Other parametric faults can also be injected and 

simulated. In addition, VIRTUAL ADAPT permits 

experimentation with fault scenarios that cannot be realized in 

the hardware, such as an inverter malfunction. Currently, 

mostly discrete failures (e.g., relay failures) and sensor errors 

are introduced into ADAPT, so the simulation provides added 

functionality by enabling injection of other types of fault 

scenarios. 

VI. BENCHMARKING METRIC DEFINITIONS  

A set of 13 metrics has been defined for assessing the 

performance of the diagnostic algorithms. These metrics are 

structured using two different classification schemes.  

First, the metrics are classified as either detection metrics or 

isolation metrics as shown in Figure 6. In defining this 

classification, a distinction has been made between two basic 

functions that can be provided by a diagnostic algorithm 

[17,19]. According to this distinction, detection is defined as 

“the indication of malfunction in the system”. By nature, fault 

detection reasoning is a binary classification of the system 

state (faulty or non-faulty). On the other hand, isolation is 

defined as “the determination of the fault mode and location in 

the system”. Contrary to detection, isolation is a multi-state 

reasoning problem as there will be multiple candidates for 

fault modes and locations in a faulty system. This makes the 

benchmarking of isolation functionality a far more challenging 

task with several requirements.  

To produce reliable and realistic benchmarking results for 

Diagnostic
Algorithm DA,i

Commands c(t)

Health status h,DA,i (t)

Sensor reading s(t)

ADAPT

Model M

Diagnostic
Algorithm DA,i

Commands c(t)

Health status h,DA,i (t)

Sensor reading s(t)

ADAPT

Model M

Fig. 5.  Diagnostic algorithm reference architecture. Each diagnostic 

algorithm, DAi is inputted a stream of sensory readings and a list of 

commands. The output from each diagnostic algorithm is an estimation of 

the health status of the ADAPT testbed. 
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isolation functionality, it is required that a consistent level to 

be defined at which faults in the system are assumed to be 

located (isolation level). Depending on the application, 

isolation may be performed at the line replaceable unit (LRU) 

level as is the case for most maintenance driven ground-based 

diagnostics, or it may be performed at the component or failure 

mode level as required by most real-time, on-board diagnostic 

applications. As one may expect, this selection directly affects 

the scope of the modeling efforts. To eliminate variations in 

the scope of different system models, it is also required that a 

common set of fault definitions is provided that the algorithms 

are expected to reason about (isolation set). For the 

benchmarking study reported here, the component failure 

modes as defined by the fault catalog are used as the common 

isolation level and the fault catalog along with the non-faulty 

component mode definitions provides a common isolation set. 
Secondly, the metrics are grouped under temporal metrics 

that measure time response of diagnostic algorithms and static 

metrics that measure non-temporal features of a diagnostic 

algorithm including accuracy, resolution, sensitivity, and 

stability [18]. These metrics are again shown in Figure 6.  

The temporal metrics, one for detection (metric 1) and two 

for isolation (metric 8-9), attempt to measure how quickly the 

diagnosis algorithms respond to faults in the physical system. 

The static accuracy metrics (metrics 2-5 for detection 

accuracy and metrics 10-11 for isolation accuracy) are 

intended to measure the correctness of the detection and 

isolation estimates by an algorithm.  

The static resolution metric (metric 12) attempts to measure 

the resolution of isolation estimates. Ideally, an isolation 

estimate should include all the actual fault cases present in the 

physical system and nothing more. However, in realty, it is 

often necessary to lower the resolution setting of diagnostic 

algorithms for the sake of better accuracy [29]. Practically, this 

means that an isolation estimate may include other faults in 

addition to the actual fault cases present in the system. 

The static sensitivity metric (metric 6) is intended to 

measure the detection response to the relative strength of faults 

present in the system. 

The static stability metrics, one for detection (metric 7) and 

one for isolation (metric 13), attempt to measure the level of 

fluctuation in detection and isolation estimates. A detection 

and isolation estimate that fluctuates is difficult to interpret 

and often times undesirable [18]. These metrics are designed 

to favor stable detection and isolation estimates by a 

diagnostic algorithm.  

A. Detection Metrics 

The seven detection metrics are defined as: 

 

Metric 1 - Time to Detect: The period of time from the 

beginning of a fault injection to the moment of the first “high” 

detection signal as shown in Figure 7. In the figure, t,inj is the 

time of fault injection, t,dsig is the time of first high detection 

signal. Time to detect t,det then becomes: t,det = t,dsig - t,inj, where 

t,det > 0. The metric is calculated for each scenario when it is 

applicable, i.e. when there is a fault injected. (Figure 7 

illustrates the profile of an abrupt fault).  

 

Metrics 2-5 are detection accuracy metrics and are defined 

based on the construction of a decision matrix [1]. A decision 

matrix is a binary classification matrix that represents the 

distribution of predicted vs. actual states of faulty and non-

faulty cases as shown in Figure 8.  

The diagonal in the decision matrix are the correct 

predictions. The faulty cases equal to b+d, and the non-faulty 

"Detection" Metrics
Temporal Performance

METRIC 1  Time to Detect

Static Performance

Accuracy

METRIC 2 Detection False Positive Rate

METRIC 3  Detection False Negative Rate

METRIC 4 Fault Detection Rate 

METRIC 5  Fault Detection Accuracy

Sensitivity 

METRIC 6 Detection Sensitivity Factor

Stability

METRIC 7 Detection Stability Factor

"Isolation" Metrics
Temporal Performance

METRIC 8 Time to Isolate

METRIC 9 Time to Estimate

Static Performance

Accuracy

METRIC 10 Isolation Classification Rate

METRIC 11 Isolation Misclassification Rate

Resolution

METRIC 12 Size of Isolation Set

Stability

METRIC 13 Isolation Stability Factor
 

Fig. 6. A summary of metrics used for benchmarking activity 

  

Time
0 - Min

1 - Max

t,injt,st t,fnt,dsig

Fault Profile

Detection Signal 
Profile

t,det

Fig. 7.  The definition of “time-to-detect” metric 

  

Non-Faulty Faulty

Non-Faulty a b

Faulty c d

Actual State

Predicted 

State  
Fig. 8.  The decision matrix 
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cases equal to a+c. Based on the decision matrix, metrics 2-5 

are defined as: 

 

Metric 2 – Detection False Positive Rate: The ratio of cases 

where a fault is detected while the system was actually non-

faulty which equals to c/(a+c). 

 

Metric 3 – Detection False Negative Rate: The ratio of 

cases where a fault is missed while the system was actually 

faulty which equals to b/(d+b). 

 

Metric 4 – Fault Detection Rate: The ratio of cases where a 

fault is detected while the system was actually faulty which 

equals to d/(d+b). 

 

Metric 5 – Fault Detection Accuracy: The ratio of correctly 

classified cases to the total number of cases which equals to 

(a+d)/(a+b+c+d). 

 

The next metric is intended to measure the sensitivity of 

detection and is defined as:  

 

Metric 6 – Detection Sensitivity Factor: The relative 

strength of a fault when “detection” occurs [7]. For abrupt 

faults, fault strength is discretized into four qualitative values 

{0.25, 0.50, 0.75, and 1.00}, whereas for incipient faults a 

continuous scale between 0.0 and 1.0 is used to represent fault 

strength. The sensitivity factor corresponds to the relative level 

of fault strength where the detection signal becomes “high” as 

shown in Figure 9. The metric is calculated for each scenario. 

The next metric is intended to measure the stability of 

detection and is defined as: 

 

Metric 7 – Detection Stability Factor: The level of stability 

of the detection signal measured as a percentage of the sum of 

duration of “high” detection signals to the total time elapsed 

after fault injection. The metric is calculated for each scenario 

and is illustrated in Figure 10.  

 

B. Isolation Metrics 

As defined earlier, isolation is “the determination of the 

fault mode and location in the system”. Contrary to detection, 

isolation is a multi-state reasoning problem as there will be 

multiple candidates for fault modes and locations in a faulty 

system. Moreover, the isolation candidates identified by a 

diagnostic algorithm may change as more data and 

computation time becomes available as shown in Figure 11.  

In the figure, t,inj is the time of fault injection, t,isig1 and t,isig2 

are the time of isolation signals corresponding to candidate 

fault sets 1 and 2. For example, candidate set 1 might 

correspond to inverter1_switched_off or {(Inverter 1, f10)} 

using the standardized diagnostic output format, and candidate 

set 2 might correspond to circuit_braker_166_failed open or 

{(EY166, f7)}. Due to this time variant nature of isolation 

estimates, it is required to define what constitutes an 

algorithms final diagnostic output that is to be used for 

calculating the isolation metrics. 

 To address this, we define the concept of end-of-scenario 

isolation set which will be treated as the final diagnostic 

output of an algorithm. For simplicity, an end-of-scenario 

isolation set is defined as the candidate fault set that 

corresponds to the last “high” isolation signal. For example, 

for the case used in Figure 11, candidate set 2 becomes the 

end-of-scenario isolation set. We are currently investigating 

other definitions for the end-of-scenario isolation set that takes 

fault injections and temporal aspects of different isolation 

estimates. However, for the purposes of this paper, the 

aforementioned definition is used to calculate the following 6 

isolation metrics: 

 

Metric 8 - Time to Isolate: The period of time from the 

beginning of a fault injection to the moment of last “high” 

isolation signal, i.e. the signal that corresponds to the end-of-

scenario isolation estimate. Consider Figure 11 again. In the 

Fault     
Profile

Time
0 - Min

1 - Max

t,injt,st t,fnt,pk

Fault 
Strength

0.50

Fault Profile

Detection Signal 
Profile

Abrupt Fault

0.25

0.75

Fault     
Profile

Time
0 - Min

1 - Max

t,injt,st t,fnt,pk

Fault 
Strength

0.65

Fault Profile

Detection Signal 
Profile

Incipient Fault

Fault     
Profile

Time
0 - Min

1 - Max

t,injt,st t,fnt,pk

Fault 
Strength

0.50

Fault Profile

Detection Signal 
Profile

Abrupt Fault

0.25

0.75

Fault     
Profile

Time
0 - Min

1 - Max

t,injt,st t,fnt,pk

Fault 
Strength

0.65

Fault Profile

Detection Signal 
Profile

Incipient Fault

 

Fig. 9.  The definition of “detection-sensitivity-factor” metric 

  

0 - Min

1 - Max

Timet,injt,st t,fnt,dsig

Fault Profile

Detection Signal 
Profile

measured after t,dsig

Detection 
High

Detection 
High

Stability = t (detection high) / (t,fn - t,dsig)

0 - Min

1 - Max

Timet,injt,st t,fnt,dsig

Fault Profile

Detection Signal 
Profile

measured after t,dsig

Detection 
High

Detection 
High

Timet,injt,st t,fnt,dsig

Fault Profile

Detection Signal 
Profile

measured after t,dsig

Detection 
High

Detection 
High

Stability = t (detection high) / (t,fn - t,dsig)

 

Fig. 10.  The definition of “detection-stability-factor” metric 

  

Time
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Isolation Signal 
Profile

t,iso1
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Candidate 

Set I
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Set II

t,Isig2

t,iso2

Fig. 11.  The definition of “time-to-isolate” metric 
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figure, t,inj is the time of fault injection, t,isig1 and t,isig2 are the 

time of isolation signals corresponding to candidate set 1 and 

2. Since candidate set 2 is the end-of-scenario isolation set, the 

time to isolate t,iso metric becomes: t,iso = t,isig2 - t,inj, where t,iso 

> 0. Similar to the detection temporal metric, this metric is 

also calculated for each scenario when it is applicable. When 

multiple faults are present, time to isolate metric is calculated 

by averaging individual isolation times over the number of 

faults injected to the system.  

 

Metric 9 - Time to Estimate: The cumulative time spent by 

an algorithm to estimate the physical state of the system. This 

metric is calculated by summing over the time periods from 

the reading of sensor values and commands to the moment of 

producing an health status estimate as shown in Figure 5. 

 

Metrics 10-11 are isolation accuracy metrics and are 

defined based on the construction of a confusion matrix [1,6]. 

A confusion matrix is an expanded version of a decision 

matrix that incorporates fault classification as shown in Figure 

12 for a “relay” component. In this example, the “relay” can 

have one healthy (non-fault), and two faulty (stuck_open, 

stuck_closed) modes. The classification problem then becomes 

determining what mode the relay will be in. 

 

Similar to the decision matrix, the diagonal values in the 

confusion matrix captures correctly isolated cases, whereas the 

off-diagonal elements are incorrect diagnoses. Cumulatively, 

the confusion matrix summarizes an algorithm’s ability to 

discriminate among multiple fault candidates. In most cases, 

the confusion matrix is expressed in a normalized form. When 

normalized, each cell value in the confusion matrix represents 

the probability of that case occurring. In addition, the non-

faulty row and column can be removed from the matrix in 

order not to bias the results towards no-fault cases and to 

ensure that the matrix represents a measure of discrimination 

between faults once it has been determined that a fault is 

actually present. A common measure, the Kappa Coefficient 

[1]
1
, for example is calculated using a confusion matrix 

without the no-fault entries. 

 The confusion matrix can be constructed at the system or 

individual component level. In this study, a normalized 

confusion matrix is built for each system component, which 

summarizes the probabilities of a component’s classification 

cases over a series of scenarios. Metrics 10 and 11 then are 

defined as: 

 

 
1 Not used in this study 

Metric 10 – Isolation Classification Rate: The rate of 

correct classification rate by the isolation algorithm. This 

metric equals to the sum of probabilities along the diagonal. 

 

Metric 11 – Isolation Misclassification Rate: The rate of 

misclassification by the isolation algorithm. This metric equals 

to the sum of probabilities along the off-diagonal. 

  

The next metric is intended to measure the resolution of 

isolation and is defined as: 

 

Metric 12 – Size of Isolation Set: The number of candidates 

in the end-of-scenario isolation set. The metric is calculated 

for each scenario. 

 

The next metric is intended to measure the stability of 

isolation and is defined as:  

 

Metric 13 – Isolation Stability Factor: The level of stability 

of the isolation signal measured as a percentage of duration of 

“end-of-scenario isolation set” to total time elapsed after fault 

injection. The metric is calculated for each scenario and is 

illustrated in Figure 13.  

VII. CASE STUDY:  PROBABILISTIC DIAGNOSTICS  

Our probabilistic approach to diagnosis and state estimation 

is based on Bayesian networks [30] and arithmetic circuits.  

Both formalisms have been used to represent and reason with 

multi-variate probability distributions.  Our emphasis in this 

paper is on their application in ADAPT and benchmarking.   

There are two broad classes of approaches to Bayesian 

network inference: Interpretation and compilation. In 

interpretation approaches, a Bayesian network is directly used 

for inference. In compilation approaches, a Bayesian network 

is (off-line) compiled into a secondary data structure, where 

the details depend on the approach being used, and this 

secondary data structure is then used for (on-line) inference.  

Due to their high level of predictability and fast execution 

times, compilation approaches are especially suitable for 

resource-bounded reasoning and real-time systems [31].  Our 

focus here is on compilation approaches, and in particular the 

tree clustering (or clique tree, or join tree) approach and the 

Time
0 - Min

1 - Max

t,injt,st t,fnt,Isig1

Fault Profile

Isolation Signal 
Profile

Isolation 

Candidate 

Set I

Isolation 

Candidate 

Set II

t,Isig2

Stability = t (isolation set) / (t,fn - t,isig)

measured after t,iso

Time
0 - Min

1 - Max

t,injt,st t,fnt,Isig1

Fault Profile

Isolation Signal 
Profile

Isolation 

Candidate 

Set I

Isolation 

Candidate 

Set II

t,Isig2

Stability = t (isolation set) / (t,fn - t,isig)

measured after t,iso

 

Fig. 13.  The definition of “isolation-stability-factor” metric 
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Fig. 12.  The confusion matrix 
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arithmetic circuit approach [32,33].   

Under the tree clustering paradigm, a Bayesian network is 

transformed into join tree [5] during compilation. During 

propagation, evidence is propagated in that join tree, leading 

to belief updating or belief revision computations as 

appropriate.  In practice, tree clustering often performs very 

well on relatively sparse BNs as are often developed by 

formalizing expert knowledge.  However, as Bayesian network 

connectivity (expressed, for example, as the ratio of the 

number of leaf nodes to the number of non-leaf nodes) 

increases, the size of the maximal minimal clique size and the 

total clique tree size can grow dramatically [34,35], and thus 

care is needed when Bayesian network are designed and 

compiled.   

A second compilation approach is the construction of 

arithmetic circuits from Bayesian networks [36,32,33].  An 

arithmetic circuit has a relatively simple structure, but can be 

used to answer a wide range of probabilistic queries.   

Compared to tree clustering, the arithmetic circuit approach 

exploits local structure and often has a longer compilation time 

but a shorter inference time.   In the following we emphasize 

arithmetic circuits, which have given excellent performance in 

the ADAPT setting [4,11,12].  

We assume a time-sliced Dynamic Bayesian Network 

(DBN) model M of ADAPT.  This DBN represents ADAPT’s 

failure modes, operational modes, as well as other features of 

the EPS.  A DBN is essentially a multi-variate stochastic 

process, structured as a directed acyclic graph, with discrete 

time t.  Suppose that the set of random variables (nodes in the 

BN) at time t is X(t); these nodes can be partitioned as follows:  

• Health nodes H(t): There are two types of health (or 

output) nodes in the BN model:  

o Component health nodes: HC(t): Represent the 

health of a system (such as ADAPT) excluding 

sensors, both failure modes and operational 

(nominal) modes. 

o Sensor health nodes HC(t): Represent the health 

of  a system’s sensors, both their failure modes 

and operational (nominal) modes.  

• Evidence nodes E(t): There are two types of evidence (or 

input) nodes in the BN model:  

o Command nodes EC(t): System commands, in our 

case commands to the ADAPT testbed from the 

user. This represents the desired, but perhaps not 

actual, state of the system.  

o Sensor nodes ES(t): Sensor readings – such as 

voltage, current, and temperature for ADAPT.   

Because of sensor failure, some sensor readings 

might be incorrect.   

• Remaining nodes R(t): Nodes that reflect parts of the 

system that do not do not fit into any of the categories 

above.  

 

Information from sensors and the environment (user) is 

incorporated into the probabilistic model and reasoning 

process at runtime.  More specifically, evidence nodes E(t) are 

clamped using sensor readings (for time t ) and user commands  

(for time up to time t), thus impacting the status of the health 

nodes H(t) as computed using one or more probabilistic 

queries. In particular, we are interested in the maximum a 

posteriori probability over H(t) given evidence instantiation 

e(t) for E(t), or MAP(H(t), e(t)).  This MAP query can be 

approximated using the most probably explanation (MPE) or 

the most likely values (MLV); we will use the notation 

MAPMPE(H(t), e(t)) and  MAPMLV(H(t), e(t)) respectively.  The 

benefit of these two approximations is that they are, from a 

complexity theory perspective, easier (roughly speaking) than 

the MAP query in the general case [37].  

VIII. BENCHMARKING RESULTS: BAYESIAN 

DIAGNOSTICS OF ADAPT 

We now discuss our benchmarking of the current Bayesian 

network model for ADAPT. (The model was developed in 

collaboration with Mark Chavira and Adnan Darwiche, 

UCLA; see also [11,12]) The ADAPT BN currently contains 

503 discrete nodes and 579 edges; domain cardinalities range 

from 2 to 4 with an average of 2.23 and a median of 2.  Note 

that this ADAPT BN was not created manually. Instead, it was 

auto-generated from a high-level specification of ADAPT.  

The ADAPT BN was then compiled, using the ACE system 

(see http://reasoning.cs.ucla.edu/ace/), into an arithmetic 

circuit. The timing measurements reported here were made on 

a PC with an Intel 4 1.83 GHz processor, 1 GB RAM, and 

Windows XP.     

These experimental scenarios were generated using the 

ADAPT EPS.  These scenarios, which are summarized in 

Figure 14, cover component failures, sensor failures, and both 

component and sensor failures.  In addition, each scenario 

contains one, two, or three faults. In order to stress-test our 

probabilistic reasoner, we did not restrict inserted faults to 

discrete faults only.  We also inserted continuous faults such as 

“stuck at x”,   “noise StdDev =  x” or “drift slope =  x “, where 

x is a real number.  Since our probabilistic models do not 

contain continuous random variables, experiments with 

continuous faults cannot be diagnosed exactly, but they are 

still of great interest and included in many of the experiments 

reported on below. 

In each scenario, ADAPT's initial state was as follows: 

Circuit breakers were commanded closed; the corresponding 

command variables in EC(t) were clamped to cmdClose in 

evidence  e(t). Relays were commanded open; the 

corresponding relay variables in EC(t) were clamped to 

cmdOpen in  e(t). In the initial state, the result of computing 

MAPMPE(H(t), e(t)) is that all health nodes H(t) are healthy. 

Continuous sensor readings in ES(t) were discretized before 

being used for clamping the appropriate discrete random 

variables in our ADAPT model. To keep the experimental 

protocol consistent across scenarios, all inserted faults were 

persisted until the end of the experiments.  
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In this paper, we have calculated four (of the six) isolation 

metrics for the Bayesian diagnostic algorithm using 16 

scenarios with single and multiple faults. These metrics are: 

time-to-isolate, time-to-estimate, isolation classification rate, 

and isolation misclassification rate. These results are discussed 

next.   

A. Event Table 

For illustration purposes, we first present how data is 

provided in one scenario, namely Experiment 447. This 

experiment lasts for approximately 80 seconds and has two 

sequential fault injections as shown in Table 1 below.  Sensors 

are sampled at a 2 Hz rate, and after each sample the 

probabilistic model is used to compute a diagnosis.   

 

Time Event 

15:56:21.194 Start of scenario 

15:56:21.236  Sample of sensors  

15:56:21.736  Sample of sensors 

…  

15:57:04.736  Sample of sensors 

15:57:05.080  Fault injection 

15:57:05.236  Sample of sensors 

…  

15:57:14.736  Sample of sensors 

15:57:15.080  Fault injection 

15:57:15.236  Sample of sensors 

…  

15:57:42.252  End of scenario 

 

Table 1.  The illustration of temporal development of a multiple fault scenario 

 

B. State Estimation and Isolation Times 

The results of the experiments with real-world data from 

ADAPT are summarized in Figure 14. Each scenario is 

presented in one or more rows of the table, along with the 

faults inserted and the diagnostic results computed for queries 

MAPMPE(H(t), e(t)). Because H(t) contains 128 variables that 

provide the health status of 128 EPS components and sensors, 

we only show the variables found to be non-healthy in Figure 

14. The main diagnostic query was also taken towards the end 

of a scenario. 

Our main observations regarding the results from the 

experiments are as follows.  In 10 out of the 16 scenarios, 

there is an exact match between the faults inserted and the 

diagnosis. Even in cases where there is not an exact match, the 

diagnosis is either partly matching or at least quite reasonable.   

In addition, the table provides statistics on the state estimation 

ID Faults Inserted in ADAPT Most Probable Diagnosis - Computed Match Num Mean Median StDev

304 Relay EY260 failed open Health_relay_ey260_cl = stuckOpen Yes 226 1.086 0.534 2.479

305 Relay feedback sensor ESH175 failed open Health_relay_ey175_cl = stuckOpen Yes 145 1.057 0.543 1.802

306 Circuit breaker ISH262 tripped Health_breaker_ey262_op = stuckOpen Yes 341 0.791 0.504 0.896

308 Voltage sensor E261 failed low Health_e261 = stuckVoltageLo Yes 169 1.019 0.534 1.684

309 Battery BATT1 voltage low Health_battery1 = stuckDisabled Yes 365 0.954 0.502 3.131

310 Inverter INV1 failed off Health_inv1 = stuckOpen Yes 182 0.994 0.51 1.307

311 Light sensor LT500 failed low Health_lt500 = stuckLow Yes 158 1.099 0.545 1.64

441 Relay EY160 stuck open Health_relay_ey160_cl = stuckOpen Partly 195 0.985 0.546 1.28

Big fan ST515 stuck at 0 RPM

442 Current sensor IT261 noise StdDev = 5 Health_it261 = stuckCurrentHi Partly 173 2.653 0.455 8.557

Relay feedback sensor ESH172 stuck at 0 Health_esh172 = stuckOpen

Current sensor IT140 stuck at 100

443 Current sensor IT281 drift slope = 2 Health_it281 = stuckCurrentHi Partly 177 2.704 0.532 10.285

Relay EY244 stuck closed Health_relay_ey244_cl = stuckClosed

Big fan ST516 stuck at -10 RPM

445 Voltage sensor E235 stuck at 0.3 Health_e235 = stuckVoltageLo Partly 175 1.073 0.56 1.348

Relay feedback sensor ESH344A stuck closed Health_relay_ey344_cl = stuckClosed

Inverter INV2 failed off Health_inv2 = stuckOpen

447 Voltage sensor E161 failed low Health_e161 = stuckVoltageLo Yes 179 0.961 0.504 1.2

Current sensor IT167 failed low Health_it167 = stuckCurrentLo

449 Voltage sensor E140 failed low Health_e140 = stuckVoltageLo Yes 136 1.007 0.487 1.398

Voltage sensor E161 failed low Health_e161 = stuckVoltageLo

450 Inverter INV1 failed off Health_inv1 = stuckOpen Partly 160 0.994 0.482 1.296

Big fan ST515 stuck at 600 RPM Health_fan1_speed_st515 = stuckMid

451 Relay EY171 failed open Health_relay_ey171_cl = stuckOpen Yes 135 1.016 0.49 1.329

Light sensor LT500 failed low Health_lt500 = stuckLow

452 Light bulb TE500 failed off Health_load170_bulb1 = stuckDisabled Partly 166 0.739 0.358 1.282

Temperature sensor TE501 failed low

Fig. 14.  The summary of experimental scenarios run on ADAPT testbed  
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times.   

The “time-to-isolate metric” is also calculated for a range of 

experiments and the results are presented in Table 2. In 

calculating this metric, we distinguish between sequential and 

simultaneous fault insertion. The sequential case is more 

complicated, in that there are two isolation times (since two 

faults are inserted for all scenarios shown). Since the 

diagnostic inference time is on the order of one millisecond, 

much of the isolation time here is due to the relatively slow 

sample rate of 2Hz. 

 

ID Faults Fault 

Insertion 

Time to 

Isolate (ms) 

447 2 Sequential 158.35 

449 2 Simultaneous 63.85 

451 2 Sequential 720.89 

 

Table 2.  The illustration of temporal development of a multiple fault scenario 

C. Confusion Matrices 

To illustrate our computation of confusion matrices, we 

consider three components types, namely Relays (of which 

there are 24 in ADAPT), Fans (2 in ADAPT), and Current 

Sensors (9 in ADAPT).   The matrices for these components 

types are illustrated in Figure 15.  Given these matrices, we 

can compute isolation classification and misclassification 

rates.  For relays, the classification rate is 1.0; for fans it is 

0.9375; while for current sensors it is 0.9792.  In other words, 

according to the classification rate, the performance is 

strongest for the relays, while it is weakest for the fan faults 

(given the current set of test cases).   

IX. CONCLUSIONS 

In this paper, we introduced a new architecture and a formal 

framework to be used for systematic benchmarking of 

monitoring and diagnostic systems and for producing 

comparable performance assessment for different diagnostic 

technologies.  

The framework defines a number of standardized 

components, which include a fault catalog, a library of 

modular test scenarios, and a common protocol for gathering 

and processing diagnostic data. In addition, it introduces 13 

benchmarking metrics that are used as a basis of evaluation.  

To illustrate the benchmarking framework, we considered 

probabilistic model-based diagnosis of an electrical power 

system (EPS) called ADAPT. ADAPT is a real-world 

electrical power system that resides at the NASA Ames 

Research Center.  Our testing procedure is scenario-based; 

each scenario is nominal (non-faulty) or involves faults being 

injected into ADAPT. Testing proceeds in a controlled manner 

such that benchmarking is enabled. Finally, we discussed how 

diagnostic data is generated and presented results for a 

selected subset of our defined metrics for a probabilistic 

model-based diagnosis algorithm.  

There are several important characteristics of the developed 

framework. First, it uses complex, real-world data taken from 

the ADAPT EPS. Second, the framework defines generic 

requirements and details important elements for creating a 

benchmarking architecture that can be used for empirical 

evaluation of monitoring and diagnostic systems. It 

emphasizes the use of a common fault catalogue and common 

metrics, which together enable “apples to apples” assessments 

of the effectiveness of different technologies. Third, the 

framework defines 13 analytical performance metrics that 

provides a systematic way to perform benchmarking of 

diagnostic algorithms for realistic fault scenarios. Moreover, 

contrary to other benchmarking examples in the literature, it 

enables the calculation of these metrics in multiple fault 

scenarios.  

 
Fig. 15.  The summary of confusion matrixes for select ADAPT components  
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