
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— In this paper, we present an architecture and a

formal framework to be used for systematic benchmarking of

monitoring and diagnostic systems and for producing comparable

performance assessment for different diagnostic technologies. The

framework defines a number of standardized specifications,

which include a fault catalog, a library of modular test scenarios,

and a common protocol for gathering and processing diagnostic

data. At the center of the framework are 13 benchmarking metric

definitions. The calculation of these metrics is illustrated on a

probabilistic model-based diagnosis algorithm utilizing Bayesian

reasoning techniques. The diagnosed system is a real-world

electrical power system, namely the Advanced Diagnostic and

Prognostic Testbed (ADAPT) developed and located at the NASA

Ames Research Center. The proposed benchmarking approach

shows how to generate realistic diagnostic data sets on large-

scale, complex engineering systems, and how the generated

experimental data can be used to enable “apples to apples”

assessments of the effectiveness of different diagnostic algorithms.

Index Terms— Fault Detection, Fault Diagnosis, Systems

Health Management, Bayesian Reasoning, Model-Based

Diagnosis.

I. INTRODUCTION

YSTEM health management (SHM) is of interest to most,

if not all, of NASA’s missions. NASA’s spacecraft and

aircraft contain multiple sub-systems including navigation

systems, power systems, and propulsion systems, and it is

crucial to keep these subsystems healthy during a mission [1-

3]. Novel automatic or semi-automatic techniques –

implemented in hardware, software, or both – have the

potential of bringing increased autonomy and improved quality

to SHM at NASA. In this paper, we put special emphasis on

automated diagnosis and monitoring [3-7], including its

application to sensor validation [8-11]. A wide range of

algorithms for diagnosis and monitoring, both model-based

and data-driven, have been developed. Unfortunately, there are

several closely related challenges associated with developing

Manuscript received May 19, 2008.

Tolga Kurtoglu is with the Mission Critical Technologies/NASA Ames

Research Center, Moffett Field, CA 94035 USA (phone: 650-604-1738; e-

mail: tolga.kurtoglu@ nasa.gov).

Ole Mengshoel is with the USRA-RIACS/NASA Ames Research Center,

Moffett Field, CA 94035 USA (phone: 650-604-4199; e-mail:

ole.j.mengshoel@ nasa.gov).

Scott Poll is with the NASA Ames Research Center, Moffett Field, CA

94035 USA (phone: 650-604-2143; e-mail: scott.d.poll@ nasa.gov).

and deploying such algorithms and systems for aerospace

vehicles; we high-light the following two in this paper. (In

related work, the challenges of model construction and real-

time reasoning are considered [4,11,12].)

First, there is a lack of SHM data sets that are realistic and

standardized, in particular at the system and subsystem levels.

This makes it difficult for researchers to benchmark

diagnostics algorithms and systems (the data challenge). On

the hardware side, different techniques and data sets, including

destructive testing, non-destructive testing, accelerated life

testing, reliability databases, etc. are available to support the

component level. Unfortunately, there is a lack of similar data

sets, at the system and sub-system levels, available for

benchmarking diagnostic technologies (and in particular

model-based approaches). This makes it more difficult to

empirically evaluate integrated systems where software

(implementing algorithms for diagnosis, monitoring,

prognosis, etc.) monitor and control hardware sub-systems

(such as electrical power systems) in a realistic fashion.

Second, there is a lack of support for comparative analysis

of different diagnostic algorithms and systems; lack of

common vocabularies and ontologies; and well-defined

metrics (the evaluation challenge). This makes it difficult to

understand the pros and cons of different alternatives, which

might lead to sub-optimal design choices being made, with

obvious unfortunate consequences for performance and safety.

In this paper, we present an architecture and a framework

with the goal of improved benchmarking system health

management systems. We consider model-based techniques for

diagnosis and monitoring, and define relevant detection and

isolation metrics. As a case study, we consider probabilistic

model-based diagnosis utilizing Bayesian networks and

arithmetic circuits. The diagnosed system is the Advanced

Diagnostic and Prognostic Testbed (ADAPT), a real-world

electrical power system. Our benchmarking approach shows

how to generate realistic data and compute metrics in the

context of ADAPT, thereby facilitating research on system

health management systems. We emphasize the use of a

common fault catalogue and common metrics, which together

enable “apples to apples” assessments of the effectiveness of

different technologies, including the probabilistic techniques

investigated here.

The significance of this work is as follows. First, we start

addressing the data challenge by presenting the ADAPT EPS,

which provides a setting for generating standard, realistic

A Framework for Systematic Benchmarking of

Monitoring and Diagnostic Systems

Tolga Kurtoglu, Ole Mengshoel, Scott Poll

S

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

problem sets for diagnosis and monitoring, including sensor

validation. Second, by introducing a benchmarking

architecture and uniform metrics, we enable systematic

empirical evaluation of different model-based diagnostic

algorithms, which again should lead to improved

understanding and comparative analysis of different diagnostic

algorithms. In other words, we start addressing the evaluation

challenge. Such benchmarking results can eventually be used

to select between or integrate different diagnostic approaches.

The organization of the rest of this paper is as follows:

Section 2 presents a review of metrics defined for diagnostic

health management techniques and summarizes associated

benchmarking efforts. Section 3 introduces our proposed

benchmarking framework and provides an overview of the

approach. The fundamentals of the Advanced Diagnostic and

Prognostic Testbed are described in Section 4. Section 5

presents major components of the benchmarking framework

including the fault catalog, scenario descriptions, and the

experimental procedures involved. Benchmarking metrics are

defined in Section 6. Section 7 discusses an approach to

probabilistic model-based diagnosis along with its application

to the ADAPT EPS. Section 8 summarizes initial

benchmarking results for our probabilistic approach, followed

by concluding remarks.

II. RELATED WORK

The development of monitoring and diagnostic technologies

is of great interest to military and industrial aerospace

applications. As these algorithms become more readily

available, the necessity for assessing the performance of

alternative diagnostic tools becomes important. As a result,

there is an increasing need to define metrics that will allow the

evaluation and benchmarking of competing diagnostic

technologies.

Several institutions and organizations have proposed metrics

to address this need [13-19]. Among those, the SAE [13]’s

“Health and Usage Monitoring Metrics” defines probability of

detection and probability of false alarms as key metrics for

evaluating diagnostic algorithms. In addition, these definitions

are supplemented by a variety of measures and statistics to

present the results.

DePold et al. [14-15] introduced metrics to evaluate the

accuracy and cost effectiveness of diagnostic systems. Their

approach is based on the receiving operating characteristics

(ROC) analysis [16], which illustrates the trade-off space

between the probability of false alarm and the probability of

detection for different signal to noise ratio (SNR) levels. The

method is used to test the relative accuracy of diagnostic

systems based on different threshold settings. Later, they also

proposed a combined metric [15] that accounts for

consequential event costs including missed detection, false

alarms, and misdiagnosis.

Another widely used metric for diagnostic accuracy is the

Kappa Coefficient [13]. It is based on the construction of a

confusion matrix that summarizes diagnostic results produced

by a reasoner over a number of test/use cases. The Kappa

Coefficient is used to measure the ability of an algorithm to

discriminate between multiple fault candidates.

Apart from these approaches, several researchers have

attempted to demonstrate benchmarking capability in addition

to defining evaluation metrics [17-19]. Among these, Orsagh

et al. [17] provided a set of 14 metrics to measure the

performance and effectiveness of prognostics and health

management algorithms for US Navy applications [18]. The

metrics are defined separately for detection, isolation, and

prognosis. For detection, the metrics include thresholds,

accuracy, reliability, sensitivity to load, speed, or noise, and

stability. The isolation metrics are same as the detection

metrics but also include measures for discrimination and

repeatability. Finally, the prognosis metrics are concerned with

predicted condition, and remaining life. They also combined

individual metrics into a composite score by implementing a

weighted average sum. Moreover, they defined effectiveness

metrics as a separate category that can be used to incorporate

non-technical aspects such as operation, maintenance and

implementation costs, computer resource requirements, and

algorithm complexity into the analysis. Using these metrics,

one can assess the overall effectiveness and benefit of

diagnostic health management systems. Other researchers have

also proposed similar cost-benefit formulations for health

management systems. [20-22]. These approaches, however, are

primarily concerned with higher-level trade-off’s in health

management systems and are not focused specifically on the

performance of monitoring and diagnostic algorithms.

Finally, Bartys et al. [19] presented a benchmarking study

for actuator fault detection and identification (FDI). This

method developed by the DAMADICS Research Training

Network introduced a set of 18 performance indices used for

benchmarking FDI algorithms on an industrial valve-actuator

system. The indices measure the temporal performance of

detection and isolation decisions, as well as true and false

detection and isolation rates, sensitivity, and diagnostic

accuracy. This benchmark study used real process data, and

demonstrated how the performance indices can be calculated

for 19 actuator faults using a single fault assumption.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

III. BENCHMARKING FRAMEWORK AND

ARCHITECTURE OVERVIEW

The overall goal of this research is to develop a formal

framework to be used for systematic benchmarking of different

health management systems and to produce comparable

performance assessment for different diagnostic methods. To

achieve this goal, a number of standardized specifications are

defined which include a standardized fault catalog, a library of

modular and standardized test scenarios, a test protocol, a

common process for processing diagnostic data and the

calculation of metrics.

The detailed architecture of the developed framework is

presented in Figure 1. The physical system is a real-world

electrical power system (EPS), namely the Advanced

Diagnostic and Prognostic Testbed (ADAPT) developed and

located at the NASA Ames Research Center. The EPS

problem domain contains both discrete and continuous faulty

behavior, which are defined under a standardized fault catalog.

The fault catalog establishes a common ground as to what

failure modes, and faulty behavior are required to be modeled

by individual diagnostic algorithm developers. To date,

ADAPT has worked with diagnostic algorithms from NASA

(Hybrid Diagnostic Engine (HyDE) [23], Inductive

Monitoring System (IMS) [24]), academia (FACT) [25]), and

industry (such as TEAMS-RT [26]). The testing procedure is

usually scenario-based, where each scenario may have faults

injected into the system, either through a GUI that manages a

fault simulation software or via physical implementation (more

on this in Section V). To detect faults, each diagnostic

algorithm has access to real-time data from the ADAPT EPS.

Moreover, a standardized output scheme is enforced on the

diagnostic algorithms to ensure the generation of common data

sets for the calculation of metrics. The data from the testbed

and this output of the diagnostic system are saved to a

database, and the diagnostic algorithm performance is

evaluated according to a predefined set of metrics. In the

following sections, specific modules of the framework are

explained in detail with their interactions and specific roles,

but first a brief summary of the ADAPT Testbed is provided.

IV. ADVANCED DIAGNOSTIC AND PROGNOSTIC

TESTBED (ADAPT)

The Advanced Diagnostic and Prognostic Testbed

(ADAPT) at the NASA Ames Research Center is a unique

facility designed to test, measure, evaluate, and mature

diagnostic and prognostic health management technologies. It

provides a representative physical domain in the form of an

electrical power subsystem (EPS) that enable automated

diagnosis of complex systems exhibiting hybrid, i.e. both

continuous and discrete behavior.

The layout of the ADAPT power system is shown in Figure

2. The EPS includes elements common to many aerospace

applications: power storage, power generation, and power

distribution. The power storage consists of three battery

modules. Each of the three batteries can be charged by one of

HyDE

ADAPT EPS

Test-Bed

GUI

Fault

Catalog

Test

Scenarios

- Temporal Metrics
- Computational Metrics

- Technical Metrics

- Temporal Metrics
- Computational Metrics

- Technical Metrics

Diagnosis Algorithms

IMS

TEAMS - RT

Bayesian

Diagnosis

.....

Diagnosis Algorithm

Benchmarking

Diagnostic

Data

Diagnosis
Algorithm

Scorecard

HyDE

Metric 1

Metric 2

Metric 3

....

Fault

Data

ADAPT

Data

ADAPT

Model

Test

Run

Metric

Evaluation

I/O Protocol

Test

Protocol

HyDE

ADAPT EPS

Test-Bed

GUI

Fault

Catalog

Test

Scenarios

- Temporal Metrics
- Computational Metrics

- Technical Metrics

- Temporal Metrics
- Computational Metrics

- Technical Metrics

Diagnosis Algorithms

IMS

TEAMS - RT

Bayesian

Diagnosis

.....

Diagnosis Algorithm

Benchmarking

Diagnostic

Data

Diagnosis
Algorithm

Scorecard

HyDE

Metric 1

Metric 2

Metric 3

....

Fault

Data

ADAPT

Data

ADAPT

Model

Test

Run

Metric

Evaluation

I/O Protocol

Test

Protocol

Fig. 1. The architecture of the benchmarking framework

Power Generation Power Storage Power Distribution

Battery Charger 1

Battery Charger 2

Battery 1

Battery 2

Battery 3

Load Bank 1

Load Bank 2

Battery Charger
24V , 20A

Battery Charger
24V , 20A

Utility
120VAC

Battery 1A
12V, 100Ah

Battery 1B
12V, 100Ah

Battery 2A
12V, 100Ah

Battery 2B
12V, 100Ah

Inverter
24VDC – 120VAC

Load 1B

Load 1C

Load 1D

Load 1E

Load 1F

Load 1H

Load 2A

Load 2B

Load 2C

Load 2D

Load 2E

Load 2F

Load 2G

Load 2H

AV

TT

TT

V

VVA

AV V

A

Battery 3A
12V , 50Ah

Battery 3B
12V, 50Ah

TT

AV V

A

A

Inverter
24VDC – 120VAC

VV

A

V

A

Load 1A

Load 1G

V

A

F

V

A

V

A

F

Fig. 2. ADAPT Testbed components and system configuration

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

the two battery chargers in the power generation element.

Finally, any of the three batteries can be used to power any of

the two load banks in the power distribution element. This

design gives the ADAPT EPS basic redundancy and

reconfiguration capability.

A data acquisition and control system sends commands to

and receives data from the EPS. The testbed operator stations

are integrated into a software architecture that allows for

nominal and faulty operations of the EPS, and includes a

system for logging all relevant data. In addition, the ADAPT

system includes a high-fidelity simulation testbed, called the

VIRTUAL ADAPT, that emulates the ADAPT hardware. This

environment provides identical interfaces to the application

system module through wrappers to the ADAPT network and

allows the physical components of the testbed, i.e. the

chargers, batteries, relays, and the loads to be replaced by

simulation modules that generate the same dynamic behaviors

as the hardware testbed. The simulation environment also

provides for precise repetition of different operational

scenarios that facilitates more rigorous testing and evaluation

of different diagnostic algorithms. (More information on the

ADAPT testbed can be found in [2].

V. BENCHMARKING FRAMEWORK DESCRIPTION

In order to effectively establish a systematic framework for

benchmarking of diagnostic algorithms, our method describes

specific tasks and requirements and defines a set of

hierarchically organized metrics that can be used for “apples to

apples” comparison of different diagnostic technologies. A

number of key technical challenges exist in developing this

framework.

First, it is required that the criteria which will be used as a

basis for comparison are clearly defined. In particular, the

metrics should be measurable, analytically computable, and

independent of any specific diagnostic technology.

 Second, the description of system characteristics, most

notably fault representations and healthy system states, should

be standardized. In addition, it is required that a broad

collection of fault data is used covering a wide spectrum of

fault types and behaviors in order not to bias the benchmarking

results towards certain algorithms that may perform well for a

specific subset of fault domains.

Third, a repeatable, standardized process should be

developed for scenarios and for processing resulting data sets.

Part of this challenge is to ensure that a level of consistency is

maintained for collection and processing of the diagnostic

data. More importantly, it is required to establish a

standardized scheme for representing the typical output of

diagnostic algorithms, i.e. the estimation of health status of a

physical system.

In order to address these challenges, the proposed

benchmarking framework provides an architecture that can be

used for generating standard, realistic problem sets and

associated data for diagnostic analysis. The architecture

includes clearly defined performance metrics, a common fault

catalog, and standardized representations and procedures

required for collecting and processing diagnostic data. The

details of the framework are explained in the following

sections followed by a detailed discussion of the performance

metrics in the next section.

A. Fault Catalog

Different fault types and behaviors embodied within the

ADAPT testbed are defined under a fault catalog. There are

fundamentally two classes of faults that are being currently

used as part of this study: abrupt faults and incipient faults.

All faults are classified based on the physical components of

Fault_ID Component Fault Mode

 Fault

Class

Battery

Component_ID's

BAT1A, BAT2A, BAT3A,

BAT1B, BAT2B, BAT3B,

f1 Battery Overheat abrupt

f2 Voltage Drain incipient

f3 Voltage Failure abrupt

f4 Terminal Corrosion/Short abrupt

f5 Battery Leak/Level Loss incipient

f6 Reverse Connection abrupt

Circuit Breaker

Component_ID's

EY136, EY162, EY166, EY180, EY236

EY262, EY266, EY280, EY336

f7 Failed Open abrupt

f8 Stuck Closed abrupt

f9 Failed Closed abrupt

Inverter

Component_ID's INV1, INV2

f10 Switched Off abrupt

f11 Short abrupt

f12 Overheat incipient

f13 Improper Output Voltage incipient

ADAPT Fault Catalog

Fig. 3. An excerpt from the ADAPT Fault Catalog

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

the ADAPT EPS. These faults are determined by conducting a

failure modes and effects analysis (FMEA) [27] on the EPS

and by amalgamating component failure information from

various reliability documents.

Figure 3 shows an excerpt of the fault catalog. The first

column lists the “unique ID” for each fault type, and the

second column depicts the generic component type for the

faulty behavior. For example, faults 1-6 capture “battery”

faults, whereas, faults 7-10 define “circuit breaker” faults.

Note that, physical locations where these faults could manifest

themselves (labeled as “component ID’s) are also listed in a

separate row under each generic component type. Listed next

in the fault catalog are the fault modes of components,

followed by the fault classes (abrupt vs. incipient). Currently,

there are over 90 faults classified under 14 generic component

types. In addition, each component type has its own non-faulty

mode(s) defined. For example, a “circuit braker” has healthy

nodes of “nominal_open” and “nominal_closed”.

The fault catalog along with the non-faulty component mode

definitions serves as a requirements document for individual

diagnostic algorithm developers and is intended to guide the

modeling of the physical system by establishing a common

ground among different diagnostic tools.

B. Scenario Descriptions

An important aspect of the benchmarking process is the

ability to test the diagnostic performance over a wide variety

of operational scenarios. This is facilitated by the definition of

standardized test scenarios.

A test scenario defines the EPS’s initial configuration, load

configuration, and fault configurations for a test run. The

system initial configuration describes basic connectivity of the

major elements of the EPS testbed, i.e. the connectivity

between power storage, power generation, and power

distribution elements. For example, Battery 1 may be

connected to Load Bank 1, 2, or both. Similarly, Battery 1 may

be charged by the by either of the battery chargers. The load

configuration describes the loads that are used during a test

run. Currently, the ADAPT EPS system can be configured to

have up to 6 AC, and 2 DC loads at each load bank. The AC

loads include fans, lights, and pumps with different operating

characteristics. Finally, the fault configuration describes the

fault or faults that are experimented. It includes a unique fault-

id, injection time and injection location of the fault, any

required fault parameters, and the source of the fault that

captures whether the fault was generated by the simulation or

was induced through a hardware implementation.

Figure 4 illustrates the execution of a simple scenario. In

this test run (experiment ID#266), Battery 1 feeds Load Bank

1. Two AC, and one DC load is used: Light 6 on load location

L1A, Fan 1 at L1B, and a DC load at L1G. A single fault is

injected on Inverter 1 (fault ID f10 in Figure 3) through

hardware set-up. Accordingly, the inverter is switched off at

about 41 seconds into the experiment. No fault parameters are

required for this fault type. The fault description is also

provided in Figure 4.

C. Testing Procedures, Input’s, and Output’s

As stated earlier, a common process is developed for running

repeatable, standardized scenarios and for generating and

processing common data sets. This section describes the

input’s and output’s given to and generated by the ADAPT

testbed during each test scenario.

In order to provide a level of consistency between the

diagnostic algorithms, we offer a simple reference architecture

shown in Figure 5. According to this architecture, each

diagnostic algorithm is treated as a black box with inputs and

output as shown in the Figure.

In this architecture, a diagnostic system is characterized by

its model M of the ADAPT testbed, as well as how the inputs

from and outputs to the ADAPT testbed are mapped into the

constructs used by the algorithm. The inputs to the diagnostic

algorithm are of two main types, namely:

· Commands c(t): Commands at time t to the ADAPT

Fig. 4. A summary of a test run

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

testbed from the ADAPT user. This represents constraints on

the desired state of ADAPT.

· Sensor readings s(t): Sensor readings at time t – such as

voltage, current, and temperature – from ADAPT. Note that

because of sensor failures, some of the readings might be

incorrect.

In the architecture, a diagnostic algorithms output is an

estimate of ADAPT’s health status h,DA(i) (t), which typically

includes the health of ADAPT’s sensors and the health of

ADAPT excluding sensors.

In addition, the format of h(t) is standardized to facilitate the

generation of common data sets and the calculation of the

benchmarking metrics which will be introduced in the next

section. Accordingly, each diagnostic algorithm is required to

output the following through a common API architecture:

· Detection Signal (DS): A binary value (high or low) as to

whether the diagnostic system has detected a fault.

· Isolation Signal (IS): A binary value (high, low) as to

whether the diagnostic system has isolated a fault or a set of

faults. Each “high” isolation signal is associated with a

candidate fault set that summarizes the estimate of the health

status of the ADAPT system.

· Candidate Fault Set (CFS): A candidate fault set is a list

of diagnoses, i.e. estimated system components that are

identified as “faulty”. Each element in the candidate fault set is

a pair in the form of (Component_ID, Fault_ID). Together the

pair captures the particular instance of a component that is

diagnosed as faulty, and the associated fault mode as defined

by the fault catalog. For example, the candidate set

corresponding to the correct diagnosis for the scenario

presented in Figure 3 is {(Inverter 1, f10)}.

This output by the diagnostic algorithms can be generated at

appropriate time steps based on the data rate of the testbed, or

it can be reported at discrete points in time if there is a change

in any one of the three values.

D. Fault Injection

ADAPT supports the repeatable injection of faults into the

system in one of two ways [28]. First, faults may be physically

injected at the testbed hardware. A simple example is tripping

a circuit breaker using the manual throw bars. Another is using

the power toggle switch to turn off the inverter. Relays may be

failed by short-circuiting the appropriate relay terminals.

Wires leading to or from sensors may be short-circuited or

disconnected. Additional faults include loosening the wire

connections in power-bus common blocks. Faults may also be

introduced in the loads attached to the EPS. For example, the

valve can be closed slightly to vary the back pressure on the

pump and reduce the flow rate.

In addition to fault injection through hardware, faults may be

introduced via software. Software fault injection includes one

or more of the following: 1) sending commands to the testbed

that were not intended for nominal operations 2) blocking

commands sent to the testbed 3) altering the testbed sensor

data. The sensor data can be altered in a number of ways. For a

static fault, the data are frozen at previous values and remain

fixed. An abrupt fault applies a constant offset to the true data

value. An incipient fault applies an offset that starts at zero and

grows linearly with time. Excess sensor noise is introduced by

adding Gaussian or uniform noise to the measured value.

Future work will add intermittent data faults, data spikes, and

the ability to introduce more than one fault type for a given

sensor at the same time. By using these three approaches to

software fault injection, fault scenarios may be constructed

that represent diverse component faults.

Since some fault scenarios may be costly, dangerous, or

impossible to introduce in the actual hardware, a simulation

module called VIRTUAL ADAPT also provides fault injection

capabilities. For example, degradation in the batteries can be

simulated as an incipient change in a battery capacitance

parameter. Other parametric faults can also be injected and

simulated. In addition, VIRTUAL ADAPT permits

experimentation with fault scenarios that cannot be realized in

the hardware, such as an inverter malfunction. Currently,

mostly discrete failures (e.g., relay failures) and sensor errors

are introduced into ADAPT, so the simulation provides added

functionality by enabling injection of other types of fault

scenarios.

VI. BENCHMARKING METRIC DEFINITIONS

A set of 13 metrics has been defined for assessing the

performance of the diagnostic algorithms. These metrics are

structured using two different classification schemes.

First, the metrics are classified as either detection metrics or

isolation metrics as shown in Figure 6. In defining this

classification, a distinction has been made between two basic

functions that can be provided by a diagnostic algorithm

[17,19]. According to this distinction, detection is defined as

“the indication of malfunction in the system”. By nature, fault

detection reasoning is a binary classification of the system

state (faulty or non-faulty). On the other hand, isolation is

defined as “the determination of the fault mode and location in

the system”. Contrary to detection, isolation is a multi-state

reasoning problem as there will be multiple candidates for

fault modes and locations in a faulty system. This makes the

benchmarking of isolation functionality a far more challenging

task with several requirements.

To produce reliable and realistic benchmarking results for

Diagnostic
Algorithm DA,i

Commands c(t)

Health status h,DA,i (t)

Sensor reading s(t)

ADAPT

Model M

Diagnostic
Algorithm DA,i

Commands c(t)

Health status h,DA,i (t)

Sensor reading s(t)

ADAPT

Model M

Fig. 5. Diagnostic algorithm reference architecture. Each diagnostic

algorithm, DAi is inputted a stream of sensory readings and a list of

commands. The output from each diagnostic algorithm is an estimation of

the health status of the ADAPT testbed.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

isolation functionality, it is required that a consistent level to

be defined at which faults in the system are assumed to be

located (isolation level). Depending on the application,

isolation may be performed at the line replaceable unit (LRU)

level as is the case for most maintenance driven ground-based

diagnostics, or it may be performed at the component or failure

mode level as required by most real-time, on-board diagnostic

applications. As one may expect, this selection directly affects

the scope of the modeling efforts. To eliminate variations in

the scope of different system models, it is also required that a

common set of fault definitions is provided that the algorithms

are expected to reason about (isolation set). For the

benchmarking study reported here, the component failure

modes as defined by the fault catalog are used as the common

isolation level and the fault catalog along with the non-faulty

component mode definitions provides a common isolation set.
Secondly, the metrics are grouped under temporal metrics

that measure time response of diagnostic algorithms and static

metrics that measure non-temporal features of a diagnostic

algorithm including accuracy, resolution, sensitivity, and

stability [18]. These metrics are again shown in Figure 6.

The temporal metrics, one for detection (metric 1) and two

for isolation (metric 8-9), attempt to measure how quickly the

diagnosis algorithms respond to faults in the physical system.

The static accuracy metrics (metrics 2-5 for detection

accuracy and metrics 10-11 for isolation accuracy) are

intended to measure the correctness of the detection and

isolation estimates by an algorithm.

The static resolution metric (metric 12) attempts to measure

the resolution of isolation estimates. Ideally, an isolation

estimate should include all the actual fault cases present in the

physical system and nothing more. However, in realty, it is

often necessary to lower the resolution setting of diagnostic

algorithms for the sake of better accuracy [29]. Practically, this

means that an isolation estimate may include other faults in

addition to the actual fault cases present in the system.

The static sensitivity metric (metric 6) is intended to

measure the detection response to the relative strength of faults

present in the system.

The static stability metrics, one for detection (metric 7) and

one for isolation (metric 13), attempt to measure the level of

fluctuation in detection and isolation estimates. A detection

and isolation estimate that fluctuates is difficult to interpret

and often times undesirable [18]. These metrics are designed

to favor stable detection and isolation estimates by a

diagnostic algorithm.

A. Detection Metrics

The seven detection metrics are defined as:

Metric 1 - Time to Detect: The period of time from the

beginning of a fault injection to the moment of the first “high”

detection signal as shown in Figure 7. In the figure, t,inj is the

time of fault injection, t,dsig is the time of first high detection

signal. Time to detect t,det then becomes: t,det = t,dsig - t,inj, where

t,det > 0. The metric is calculated for each scenario when it is

applicable, i.e. when there is a fault injected. (Figure 7

illustrates the profile of an abrupt fault).

Metrics 2-5 are detection accuracy metrics and are defined

based on the construction of a decision matrix [1]. A decision

matrix is a binary classification matrix that represents the

distribution of predicted vs. actual states of faulty and non-

faulty cases as shown in Figure 8.

The diagonal in the decision matrix are the correct

predictions. The faulty cases equal to b+d, and the non-faulty

"Detection" Metrics
Temporal Performance

METRIC 1 Time to Detect

Static Performance

Accuracy

METRIC 2 Detection False Positive Rate

METRIC 3 Detection False Negative Rate

METRIC 4 Fault Detection Rate

METRIC 5 Fault Detection Accuracy

Sensitivity

METRIC 6 Detection Sensitivity Factor

Stability

METRIC 7 Detection Stability Factor

"Isolation" Metrics
Temporal Performance

METRIC 8 Time to Isolate

METRIC 9 Time to Estimate

Static Performance

Accuracy

METRIC 10 Isolation Classification Rate

METRIC 11 Isolation Misclassification Rate

Resolution

METRIC 12 Size of Isolation Set

Stability

METRIC 13 Isolation Stability Factor

Fig. 6. A summary of metrics used for benchmarking activity

Time
0 - Min

1 - Max

t,injt,st t,fnt,dsig

Fault Profile

Detection Signal
Profile

t,det

Fig. 7. The definition of “time-to-detect” metric

Non-Faulty Faulty

Non-Faulty a b

Faulty c d

Actual State

Predicted

State
Fig. 8. The decision matrix

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

cases equal to a+c. Based on the decision matrix, metrics 2-5

are defined as:

Metric 2 – Detection False Positive Rate: The ratio of cases

where a fault is detected while the system was actually non-

faulty which equals to c/(a+c).

Metric 3 – Detection False Negative Rate: The ratio of

cases where a fault is missed while the system was actually

faulty which equals to b/(d+b).

Metric 4 – Fault Detection Rate: The ratio of cases where a

fault is detected while the system was actually faulty which

equals to d/(d+b).

Metric 5 – Fault Detection Accuracy: The ratio of correctly

classified cases to the total number of cases which equals to

(a+d)/(a+b+c+d).

The next metric is intended to measure the sensitivity of

detection and is defined as:

Metric 6 – Detection Sensitivity Factor: The relative

strength of a fault when “detection” occurs [7]. For abrupt

faults, fault strength is discretized into four qualitative values

{0.25, 0.50, 0.75, and 1.00}, whereas for incipient faults a

continuous scale between 0.0 and 1.0 is used to represent fault

strength. The sensitivity factor corresponds to the relative level

of fault strength where the detection signal becomes “high” as

shown in Figure 9. The metric is calculated for each scenario.

The next metric is intended to measure the stability of

detection and is defined as:

Metric 7 – Detection Stability Factor: The level of stability

of the detection signal measured as a percentage of the sum of

duration of “high” detection signals to the total time elapsed

after fault injection. The metric is calculated for each scenario

and is illustrated in Figure 10.

B. Isolation Metrics

As defined earlier, isolation is “the determination of the

fault mode and location in the system”. Contrary to detection,

isolation is a multi-state reasoning problem as there will be

multiple candidates for fault modes and locations in a faulty

system. Moreover, the isolation candidates identified by a

diagnostic algorithm may change as more data and

computation time becomes available as shown in Figure 11.

In the figure, t,inj is the time of fault injection, t,isig1 and t,isig2

are the time of isolation signals corresponding to candidate

fault sets 1 and 2. For example, candidate set 1 might

correspond to inverter1_switched_off or {(Inverter 1, f10)}

using the standardized diagnostic output format, and candidate

set 2 might correspond to circuit_braker_166_failed open or

{(EY166, f7)}. Due to this time variant nature of isolation

estimates, it is required to define what constitutes an

algorithms final diagnostic output that is to be used for

calculating the isolation metrics.

 To address this, we define the concept of end-of-scenario

isolation set which will be treated as the final diagnostic

output of an algorithm. For simplicity, an end-of-scenario

isolation set is defined as the candidate fault set that

corresponds to the last “high” isolation signal. For example,

for the case used in Figure 11, candidate set 2 becomes the

end-of-scenario isolation set. We are currently investigating

other definitions for the end-of-scenario isolation set that takes

fault injections and temporal aspects of different isolation

estimates. However, for the purposes of this paper, the

aforementioned definition is used to calculate the following 6

isolation metrics:

Metric 8 - Time to Isolate: The period of time from the

beginning of a fault injection to the moment of last “high”

isolation signal, i.e. the signal that corresponds to the end-of-

scenario isolation estimate. Consider Figure 11 again. In the

Fault
Profile

Time
0 - Min

1 - Max

t,injt,st t,fnt,pk

Fault
Strength

0.50

Fault Profile

Detection Signal
Profile

Abrupt Fault

0.25

0.75

Fault
Profile

Time
0 - Min

1 - Max

t,injt,st t,fnt,pk

Fault
Strength

0.65

Fault Profile

Detection Signal
Profile

Incipient Fault

Fault
Profile

Time
0 - Min

1 - Max

t,injt,st t,fnt,pk

Fault
Strength

0.50

Fault Profile

Detection Signal
Profile

Abrupt Fault

0.25

0.75

Fault
Profile

Time
0 - Min

1 - Max

t,injt,st t,fnt,pk

Fault
Strength

0.65

Fault Profile

Detection Signal
Profile

Incipient Fault

Fig. 9. The definition of “detection-sensitivity-factor” metric

0 - Min

1 - Max

Timet,injt,st t,fnt,dsig

Fault Profile

Detection Signal
Profile

measured after t,dsig

Detection
High

Detection
High

Stability = t (detection high) / (t,fn - t,dsig)

0 - Min

1 - Max

Timet,injt,st t,fnt,dsig

Fault Profile

Detection Signal
Profile

measured after t,dsig

Detection
High

Detection
High

Timet,injt,st t,fnt,dsig

Fault Profile

Detection Signal
Profile

measured after t,dsig

Detection
High

Detection
High

Stability = t (detection high) / (t,fn - t,dsig)

Fig. 10. The definition of “detection-stability-factor” metric

Time
0 - Min

1 - Max

t,injt,st t,fnt,Isig1

Fault Profile

Isolation Signal
Profile

t,iso1

Isolation

Candidate

Set I

Isolation

Candidate

Set II

t,Isig2

t,iso2

Fig. 11. The definition of “time-to-isolate” metric

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

figure, t,inj is the time of fault injection, t,isig1 and t,isig2 are the

time of isolation signals corresponding to candidate set 1 and

2. Since candidate set 2 is the end-of-scenario isolation set, the

time to isolate t,iso metric becomes: t,iso = t,isig2 - t,inj, where t,iso

> 0. Similar to the detection temporal metric, this metric is

also calculated for each scenario when it is applicable. When

multiple faults are present, time to isolate metric is calculated

by averaging individual isolation times over the number of

faults injected to the system.

Metric 9 - Time to Estimate: The cumulative time spent by

an algorithm to estimate the physical state of the system. This

metric is calculated by summing over the time periods from

the reading of sensor values and commands to the moment of

producing an health status estimate as shown in Figure 5.

Metrics 10-11 are isolation accuracy metrics and are

defined based on the construction of a confusion matrix [1,6].

A confusion matrix is an expanded version of a decision

matrix that incorporates fault classification as shown in Figure

12 for a “relay” component. In this example, the “relay” can

have one healthy (non-fault), and two faulty (stuck_open,

stuck_closed) modes. The classification problem then becomes

determining what mode the relay will be in.

Similar to the decision matrix, the diagonal values in the

confusion matrix captures correctly isolated cases, whereas the

off-diagonal elements are incorrect diagnoses. Cumulatively,

the confusion matrix summarizes an algorithm’s ability to

discriminate among multiple fault candidates. In most cases,

the confusion matrix is expressed in a normalized form. When

normalized, each cell value in the confusion matrix represents

the probability of that case occurring. In addition, the non-

faulty row and column can be removed from the matrix in

order not to bias the results towards no-fault cases and to

ensure that the matrix represents a measure of discrimination

between faults once it has been determined that a fault is

actually present. A common measure, the Kappa Coefficient

[1]
1
, for example is calculated using a confusion matrix

without the no-fault entries.

 The confusion matrix can be constructed at the system or

individual component level. In this study, a normalized

confusion matrix is built for each system component, which

summarizes the probabilities of a component’s classification

cases over a series of scenarios. Metrics 10 and 11 then are

defined as:

1 Not used in this study

Metric 10 – Isolation Classification Rate: The rate of

correct classification rate by the isolation algorithm. This

metric equals to the sum of probabilities along the diagonal.

Metric 11 – Isolation Misclassification Rate: The rate of

misclassification by the isolation algorithm. This metric equals

to the sum of probabilities along the off-diagonal.

The next metric is intended to measure the resolution of

isolation and is defined as:

Metric 12 – Size of Isolation Set: The number of candidates

in the end-of-scenario isolation set. The metric is calculated

for each scenario.

The next metric is intended to measure the stability of

isolation and is defined as:

Metric 13 – Isolation Stability Factor: The level of stability

of the isolation signal measured as a percentage of duration of

“end-of-scenario isolation set” to total time elapsed after fault

injection. The metric is calculated for each scenario and is

illustrated in Figure 13.

VII. CASE STUDY: PROBABILISTIC DIAGNOSTICS

Our probabilistic approach to diagnosis and state estimation

is based on Bayesian networks [30] and arithmetic circuits.

Both formalisms have been used to represent and reason with

multi-variate probability distributions. Our emphasis in this

paper is on their application in ADAPT and benchmarking.

There are two broad classes of approaches to Bayesian

network inference: Interpretation and compilation. In

interpretation approaches, a Bayesian network is directly used

for inference. In compilation approaches, a Bayesian network

is (off-line) compiled into a secondary data structure, where

the details depend on the approach being used, and this

secondary data structure is then used for (on-line) inference.

Due to their high level of predictability and fast execution

times, compilation approaches are especially suitable for

resource-bounded reasoning and real-time systems [31]. Our

focus here is on compilation approaches, and in particular the

tree clustering (or clique tree, or join tree) approach and the

Time
0 - Min

1 - Max

t,injt,st t,fnt,Isig1

Fault Profile

Isolation Signal
Profile

Isolation

Candidate

Set I

Isolation

Candidate

Set II

t,Isig2

Stability = t (isolation set) / (t,fn - t,isig)

measured after t,iso

Time
0 - Min

1 - Max

t,injt,st t,fnt,Isig1

Fault Profile

Isolation Signal
Profile

Isolation

Candidate

Set I

Isolation

Candidate

Set II

t,Isig2

Stability = t (isolation set) / (t,fn - t,isig)

measured after t,iso

Fig. 13. The definition of “isolation-stability-factor” metric

Relay Non-Faulty Stuck_open Stuck_Closed

Non-Faulty A F K

Stuck_open B G L

Stuck_Closed C H M

Actual State

Predicted

State

Fig. 12. The confusion matrix

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

arithmetic circuit approach [32,33].

Under the tree clustering paradigm, a Bayesian network is

transformed into join tree [5] during compilation. During

propagation, evidence is propagated in that join tree, leading

to belief updating or belief revision computations as

appropriate. In practice, tree clustering often performs very

well on relatively sparse BNs as are often developed by

formalizing expert knowledge. However, as Bayesian network

connectivity (expressed, for example, as the ratio of the

number of leaf nodes to the number of non-leaf nodes)

increases, the size of the maximal minimal clique size and the

total clique tree size can grow dramatically [34,35], and thus

care is needed when Bayesian network are designed and

compiled.

A second compilation approach is the construction of

arithmetic circuits from Bayesian networks [36,32,33]. An

arithmetic circuit has a relatively simple structure, but can be

used to answer a wide range of probabilistic queries.

Compared to tree clustering, the arithmetic circuit approach

exploits local structure and often has a longer compilation time

but a shorter inference time. In the following we emphasize

arithmetic circuits, which have given excellent performance in

the ADAPT setting [4,11,12].

We assume a time-sliced Dynamic Bayesian Network

(DBN) model M of ADAPT. This DBN represents ADAPT’s

failure modes, operational modes, as well as other features of

the EPS. A DBN is essentially a multi-variate stochastic

process, structured as a directed acyclic graph, with discrete

time t. Suppose that the set of random variables (nodes in the

BN) at time t is X(t); these nodes can be partitioned as follows:

• Health nodes H(t): There are two types of health (or

output) nodes in the BN model:

o Component health nodes: HC(t): Represent the

health of a system (such as ADAPT) excluding

sensors, both failure modes and operational

(nominal) modes.

o Sensor health nodes HC(t): Represent the health

of a system’s sensors, both their failure modes

and operational (nominal) modes.

• Evidence nodes E(t): There are two types of evidence (or

input) nodes in the BN model:

o Command nodes EC(t): System commands, in our

case commands to the ADAPT testbed from the

user. This represents the desired, but perhaps not

actual, state of the system.

o Sensor nodes ES(t): Sensor readings – such as

voltage, current, and temperature for ADAPT.

Because of sensor failure, some sensor readings

might be incorrect.

• Remaining nodes R(t): Nodes that reflect parts of the

system that do not do not fit into any of the categories

above.

Information from sensors and the environment (user) is

incorporated into the probabilistic model and reasoning

process at runtime. More specifically, evidence nodes E(t) are

clamped using sensor readings (for time t) and user commands

(for time up to time t), thus impacting the status of the health

nodes H(t) as computed using one or more probabilistic

queries. In particular, we are interested in the maximum a

posteriori probability over H(t) given evidence instantiation

e(t) for E(t), or MAP(H(t), e(t)). This MAP query can be

approximated using the most probably explanation (MPE) or

the most likely values (MLV); we will use the notation

MAPMPE(H(t), e(t)) and MAPMLV(H(t), e(t)) respectively. The

benefit of these two approximations is that they are, from a

complexity theory perspective, easier (roughly speaking) than

the MAP query in the general case [37].

VIII. BENCHMARKING RESULTS: BAYESIAN

DIAGNOSTICS OF ADAPT

We now discuss our benchmarking of the current Bayesian

network model for ADAPT. (The model was developed in

collaboration with Mark Chavira and Adnan Darwiche,

UCLA; see also [11,12]) The ADAPT BN currently contains

503 discrete nodes and 579 edges; domain cardinalities range

from 2 to 4 with an average of 2.23 and a median of 2. Note

that this ADAPT BN was not created manually. Instead, it was

auto-generated from a high-level specification of ADAPT.

The ADAPT BN was then compiled, using the ACE system

(see http://reasoning.cs.ucla.edu/ace/), into an arithmetic

circuit. The timing measurements reported here were made on

a PC with an Intel 4 1.83 GHz processor, 1 GB RAM, and

Windows XP.

These experimental scenarios were generated using the

ADAPT EPS. These scenarios, which are summarized in

Figure 14, cover component failures, sensor failures, and both

component and sensor failures. In addition, each scenario

contains one, two, or three faults. In order to stress-test our

probabilistic reasoner, we did not restrict inserted faults to

discrete faults only. We also inserted continuous faults such as

“stuck at x”, “noise StdDev = x” or “drift slope = x “, where

x is a real number. Since our probabilistic models do not

contain continuous random variables, experiments with

continuous faults cannot be diagnosed exactly, but they are

still of great interest and included in many of the experiments

reported on below.

In each scenario, ADAPT's initial state was as follows:

Circuit breakers were commanded closed; the corresponding

command variables in EC(t) were clamped to cmdClose in

evidence e(t). Relays were commanded open; the

corresponding relay variables in EC(t) were clamped to

cmdOpen in e(t). In the initial state, the result of computing

MAPMPE(H(t), e(t)) is that all health nodes H(t) are healthy.

Continuous sensor readings in ES(t) were discretized before

being used for clamping the appropriate discrete random

variables in our ADAPT model. To keep the experimental

protocol consistent across scenarios, all inserted faults were

persisted until the end of the experiments.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

In this paper, we have calculated four (of the six) isolation

metrics for the Bayesian diagnostic algorithm using 16

scenarios with single and multiple faults. These metrics are:

time-to-isolate, time-to-estimate, isolation classification rate,

and isolation misclassification rate. These results are discussed

next.

A. Event Table

For illustration purposes, we first present how data is

provided in one scenario, namely Experiment 447. This

experiment lasts for approximately 80 seconds and has two

sequential fault injections as shown in Table 1 below. Sensors

are sampled at a 2 Hz rate, and after each sample the

probabilistic model is used to compute a diagnosis.

Time Event

15:56:21.194 Start of scenario

15:56:21.236 Sample of sensors

15:56:21.736 Sample of sensors

…

15:57:04.736 Sample of sensors

15:57:05.080 Fault injection

15:57:05.236 Sample of sensors

…

15:57:14.736 Sample of sensors

15:57:15.080 Fault injection

15:57:15.236 Sample of sensors

…

15:57:42.252 End of scenario

Table 1. The illustration of temporal development of a multiple fault scenario

B. State Estimation and Isolation Times

The results of the experiments with real-world data from

ADAPT are summarized in Figure 14. Each scenario is

presented in one or more rows of the table, along with the

faults inserted and the diagnostic results computed for queries

MAPMPE(H(t), e(t)). Because H(t) contains 128 variables that

provide the health status of 128 EPS components and sensors,

we only show the variables found to be non-healthy in Figure

14. The main diagnostic query was also taken towards the end

of a scenario.

Our main observations regarding the results from the

experiments are as follows. In 10 out of the 16 scenarios,

there is an exact match between the faults inserted and the

diagnosis. Even in cases where there is not an exact match, the

diagnosis is either partly matching or at least quite reasonable.

In addition, the table provides statistics on the state estimation

ID Faults Inserted in ADAPT Most Probable Diagnosis - Computed Match Num Mean Median StDev

304 Relay EY260 failed open Health_relay_ey260_cl = stuckOpen Yes 226 1.086 0.534 2.479

305 Relay feedback sensor ESH175 failed open Health_relay_ey175_cl = stuckOpen Yes 145 1.057 0.543 1.802

306 Circuit breaker ISH262 tripped Health_breaker_ey262_op = stuckOpen Yes 341 0.791 0.504 0.896

308 Voltage sensor E261 failed low Health_e261 = stuckVoltageLo Yes 169 1.019 0.534 1.684

309 Battery BATT1 voltage low Health_battery1 = stuckDisabled Yes 365 0.954 0.502 3.131

310 Inverter INV1 failed off Health_inv1 = stuckOpen Yes 182 0.994 0.51 1.307

311 Light sensor LT500 failed low Health_lt500 = stuckLow Yes 158 1.099 0.545 1.64

441 Relay EY160 stuck open Health_relay_ey160_cl = stuckOpen Partly 195 0.985 0.546 1.28

Big fan ST515 stuck at 0 RPM

442 Current sensor IT261 noise StdDev = 5 Health_it261 = stuckCurrentHi Partly 173 2.653 0.455 8.557

Relay feedback sensor ESH172 stuck at 0 Health_esh172 = stuckOpen

Current sensor IT140 stuck at 100

443 Current sensor IT281 drift slope = 2 Health_it281 = stuckCurrentHi Partly 177 2.704 0.532 10.285

Relay EY244 stuck closed Health_relay_ey244_cl = stuckClosed

Big fan ST516 stuck at -10 RPM

445 Voltage sensor E235 stuck at 0.3 Health_e235 = stuckVoltageLo Partly 175 1.073 0.56 1.348

Relay feedback sensor ESH344A stuck closed Health_relay_ey344_cl = stuckClosed

Inverter INV2 failed off Health_inv2 = stuckOpen

447 Voltage sensor E161 failed low Health_e161 = stuckVoltageLo Yes 179 0.961 0.504 1.2

Current sensor IT167 failed low Health_it167 = stuckCurrentLo

449 Voltage sensor E140 failed low Health_e140 = stuckVoltageLo Yes 136 1.007 0.487 1.398

Voltage sensor E161 failed low Health_e161 = stuckVoltageLo

450 Inverter INV1 failed off Health_inv1 = stuckOpen Partly 160 0.994 0.482 1.296

Big fan ST515 stuck at 600 RPM Health_fan1_speed_st515 = stuckMid

451 Relay EY171 failed open Health_relay_ey171_cl = stuckOpen Yes 135 1.016 0.49 1.329

Light sensor LT500 failed low Health_lt500 = stuckLow

452 Light bulb TE500 failed off Health_load170_bulb1 = stuckDisabled Partly 166 0.739 0.358 1.282

Temperature sensor TE501 failed low

Fig. 14. The summary of experimental scenarios run on ADAPT testbed

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

times.

The “time-to-isolate metric” is also calculated for a range of

experiments and the results are presented in Table 2. In

calculating this metric, we distinguish between sequential and

simultaneous fault insertion. The sequential case is more

complicated, in that there are two isolation times (since two

faults are inserted for all scenarios shown). Since the

diagnostic inference time is on the order of one millisecond,

much of the isolation time here is due to the relatively slow

sample rate of 2Hz.

ID Faults Fault

Insertion

Time to

Isolate (ms)

447 2 Sequential 158.35

449 2 Simultaneous 63.85

451 2 Sequential 720.89

Table 2. The illustration of temporal development of a multiple fault scenario

C. Confusion Matrices

To illustrate our computation of confusion matrices, we

consider three components types, namely Relays (of which

there are 24 in ADAPT), Fans (2 in ADAPT), and Current

Sensors (9 in ADAPT). The matrices for these components

types are illustrated in Figure 15. Given these matrices, we

can compute isolation classification and misclassification

rates. For relays, the classification rate is 1.0; for fans it is

0.9375; while for current sensors it is 0.9792. In other words,

according to the classification rate, the performance is

strongest for the relays, while it is weakest for the fan faults

(given the current set of test cases).

IX. CONCLUSIONS

In this paper, we introduced a new architecture and a formal

framework to be used for systematic benchmarking of

monitoring and diagnostic systems and for producing

comparable performance assessment for different diagnostic

technologies.

The framework defines a number of standardized

components, which include a fault catalog, a library of

modular test scenarios, and a common protocol for gathering

and processing diagnostic data. In addition, it introduces 13

benchmarking metrics that are used as a basis of evaluation.

To illustrate the benchmarking framework, we considered

probabilistic model-based diagnosis of an electrical power

system (EPS) called ADAPT. ADAPT is a real-world

electrical power system that resides at the NASA Ames

Research Center. Our testing procedure is scenario-based;

each scenario is nominal (non-faulty) or involves faults being

injected into ADAPT. Testing proceeds in a controlled manner

such that benchmarking is enabled. Finally, we discussed how

diagnostic data is generated and presented results for a

selected subset of our defined metrics for a probabilistic

model-based diagnosis algorithm.

There are several important characteristics of the developed

framework. First, it uses complex, real-world data taken from

the ADAPT EPS. Second, the framework defines generic

requirements and details important elements for creating a

benchmarking architecture that can be used for empirical

evaluation of monitoring and diagnostic systems. It

emphasizes the use of a common fault catalogue and common

metrics, which together enable “apples to apples” assessments

of the effectiveness of different technologies. Third, the

framework defines 13 analytical performance metrics that

provides a systematic way to perform benchmarking of

diagnostic algorithms for realistic fault scenarios. Moreover,

contrary to other benchmarking examples in the literature, it

enables the calculation of these metrics in multiple fault

scenarios.

Fig. 15. The summary of confusion matrixes for select ADAPT components

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

ACKNOWLEDGEMENT

The authors would like to thank Ann Patterson-Hine and

Dougal Maclise (NASA Ames Research Center) for their role

in the development of the ADAPT testbed, and David Hall,

Adam Sweet, John Ossenfort, Serge Yentus, David Garcia and

David Nishikawa (NASA Ames Research Center) for their

contributions to the benchmarking discussions and for running

many of the ADAPT experiments.

REFERENCES

[1] R. M. Button and A. Chicatelli, “Electrical Power System Health

Management”, In Proc. 1st International Forum on Integrated System

Health Engineering and Management in Aerospace, November 2005,

Napa, CA.

[2] S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C. Lee, O. J.

Mengshoel, C. Neukom, D. Nishikawa, J. Ossenfort, A. Sweet, S.

Yentus, I. Roychoudhury, M. Daigle, G. Biswas, and X. Koutsoukos,

“Advanced Diagnostics and Prognostics Testbed”, In Proc. of the 18th

International Workshop on Principles of Diagnosis (DX-07), Nashville,

TN, May 2007.

[3] F. Figueroa and J. Schmalzel, “Rocket Testing and Integrated System

Health Management”, In Condition Monitoring and Control for

Intelligent Manufacturing, W. Gao (ed), Springer Verlag, 2006, pp. 373-

392.

[4] O. J. Mengshoel, M. Chavira, K. Cascio, S. Poll, A. Darwiche, and S.

Uckun, “Probabilistic Model-Based Diagnosis: An Electrical Power

System Case Study”, Submitted to IEEE Transactions on Systems, Man

and Cybernetics, Part A, 2008.

[5] S. Lauritzen and D. J. Spiegelhalter, “Local Computations with

Probabilities on Graphical Structures and their Application to Expert

Systems (with Discussion)”, Journal of the Royal Statistical Society

series B, Vol. 50, No. 2, 1988, pp. 157-224.

[6] U. Lerner, R. Parr, D. Koller, and G. Biswas, “Bayesian fault detection

and diagnosis in dynamic systems”, In Proc. of the Seventeenth National

Conference on Artificial Intelligence (AAAI-00), 2000, pp. 531–537.

[7] E. Liu and D. Zhang, “Diagnosis of Component Failures in Space

Shuttle Main Engines using Bayesian Belief Networks: A Feasibility

Study”, In Proc. 14th IEEEE International Conference on Tools with

Artificial Intelligence (ICTAI-02), 2002.

[8] R. L. Bickford, T. W. Bickmore, and V. A. Caluori, “Real-Time Sensor

Validation for Autonomous Flight Control”, In Proc. 33rd Joint

Propulsion Conference and Exhibit, Seattle, WA, July 1997.

[9] T. W. Bickmore, “A Probabilistic Approach to Sensor Data Validation”,

In Proc. 28th Joint Propulsion Conference and Exhibit, Nashville, TN,

July 1992.

[10] W. A. Maul, K. J. Melcher, A. K. Chicatelli, and T. S. Sowers, “Sensor

Data Qualification for Autonomous Operation of Space Systems”, In

AAAI Fall Symposium on Spacecraft Autonomy: Using AI to Expand

Human Space Exploration, Arlington, VA, October 2006.

[11] O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S. Poll, and S.

Uckun, “Diagnosing Faults in Electrical Power Systems of Spacecraft

and Aircraft”, In Proc. of the Twentieth Innovative Applications of

Artificial Intelligence, Conference (IAAI-08), Chicago, IL, 2008.

[12] O. J. Mengshoel, A. Darwiche, and S. Uckun, “Sensor Validation using

Bayesian Networks”, In Proc. of the 9th International Symposium on

Artificial Intelligence, Robotics, and Automation in Space (iSAIRAS-

08), Los Angeles, CA, 2008.

[13] SAE (Society of Automotive Engineers) E-32, 2007, “Health and Usage

Monitoring Metrics, Monitoring the Monitor”, February 14, 2007, SAE

ARP 5783-DRAFT.

[14] Depold, H., Siegel, J., and Hull,J., 2004, “Metrics for Evaluating the

Accuracy of Diagnostic Fault Detection Systems”, ASME GT2004-

54144, IGTI Turbo Expo, June 2004, Vienna, Austria.

[15] Depold, H., Rajamani, R., Morrison, W.H., and Pattipati, K.R., 2006,

“A Unified Metric for Fault Detection and Isolation in Engines”, ASME

GT2006-91095, IGTI Turbo Expo, May 2006, Barcelona, Spain.

[16] Metz, C.E., 1978, “Basic Principles of ROC Analysis”, Journal of

Nuclear medicine, 1978, Vol 8 (4), pp. 283-298.

[17] Orsagh R.F., Roemer, M.J., Savage, C.J., and Lebold, M., 2002,

“Development of Performance and Effectiveness Metrics for Gas

Turbine Diagnostic Techniques”, Aerospace 2002 IEEE Conference

Proceedings, 2002, Vol6, pp. 2825-2834.

[18] Roemer, M.J., Dzakowic, J., Orsagh R.F., Byington, C.S., and

Vachtsevanos, G., 2004, “Validation and Verification of Prognostic

Health Management Technologies”, Aerospace 2005 IEEE Conference

Proceedings, 2005, paper 1344.

[19] Bartys, M., Patton, R., Syfert, m., de las Heras, S., and Quevedo, J.,

2006, “Introduction to the DAMADICS Actuator FDI Benchmark

Study”, Control Engineering Practice, 2006, Vol 14, pp.577-596.

[20] Williams, Z., 2006, “Benefits of IVHM: An Analytical Approach”,

Proceedings of IEEE Aerospace Conference, Big Sky, Montana, 2006.

[21] J. Kurien, and Maria Dolores R-Moreno, 2008, “Costs and Benefits of

Model-Based Diagnosis”, Aerospace 2008 IEEE Conference

Proceedings, 2008, Paper #1280.

[22] Hoyle, C., Mehr, A.F., Tumer, I.Y., and Chen, W., 2007, “Cost-benefit

analysis of ISHM in aerospace systems,” International Design

Engineering Technical Conferences; Computers in Engineering

Conference (IDETC/CIE), Las Vegas, NV.

[23] Narasimhan, S., Dearden, R., and Benazera, E., “Combining Particle

Filters and Consistency-based Approaches for Monitoring and

Diagnosis of Stochastic Hybrid Systems,” 15th International Workshop

on Principles of Diagnosis (DX04), Carcassonne, France, 2004.

[24] D. Iverson, 2004, “Inductive System Health Monitoring”, Proceedings

of the 2004 International Conference on Artificial Intelligence (IC-

AI’04), Las Vegas, Nevada, June 2004.

[25] M. Daigle, Roychoudhury, I., Biswas G., Koutsoukos, X., Patterson-

Hine, A., Poll, S., 2008, “A Comprehensive Diagnosis Methodology for

Complex Hybrid Systems: A Case Study on Spacecraft Power

Distribution Systems”, IEEE Transactions on Systems, Man, and

Cybernetics, Part B, 2008, Volume 38 (2).

[26] Ghoshal, S., Azam, M., and Malepati, V., SBIR Phase III

"Comprehensive Fault Detection, Isolation, and Recovery (FDIR) on the

ADAPT Test Bed," Progress Report 1, Contract No. NNA06AA51Z,

Oct. 2006.

[27] Vesely, W. E., Goldberg, F. F., Roberts, N. H. and Haasi, D. F., The

Fault Tree Handbook, US Nuclear Regulatory Commission, NUREG

0492, 1981.

[28] S. Poll, A. Patterson-Hine, J. Camisa, D. Nishikawa, L. Spirkovska,

Garcia, D. Hall, C. Lee, O. J. Mengshoel, C. Neukom,, J. Ossenfort, A.

Sweet, S. Yentus, I. Roychoudhury, M. Daigle, G. Biswas, and X.

Koutsoukos, 2007, “Evaluation, Selection, and Application of Model-

Based Diagnosis Tools and Approaches”, In Proc. of the AIAA Infotech

at Aerospace Conference and Exhibit, Rohnert Park, CA, May 2007.

[29] Andrej Rakar, and Juricic, D., 2004, “Matching the Requirements in

Model-Based Fault Diagnosis”, 2004, Proceeding of the 15.

International Workshop on Principles of Diagnosis (DX-04),

Carcassonne, France, June 2004.

[30] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference”, Morgan Kaufmann, 1988.

[31] O. J. Mengshoel, “Designing Resource-Bounded Reasoners using

Bayesian Networks: System Health Monitoring and Diagnosis”, In Proc.

of the 18th International Workshop on Principles of Diagnosis (DX-07),

Nashville, TN, May 2007.

[32] M. Chavira and A. Darwiche, “Compiling Bayesian Networks Using

Variable Elimination”, In Proc. of the 20th International Joint

Conference on Artificial Intelligence (IJCAI-07), January 2007, pp.

2443 – 2449.

[33] M. Chavira, M. and A. Darwiche, “Compiling Bayesian Networks with

Local Structure”, In Proc. of the 19th International Joint Conference on

Artificial Intelligence (IJCAI-05), 2005, 1306-1312.

[34] O. J. Mengshoel, “Macroscopic Models of Clique Tree Growth for

Bayesian Networks”. In Proc. of the 22nd National Conference on

Artificial Intelligence (AAAI-07). July 2007, Vancouver, Canada, pp.

1256-1262.

[35] O. J. Mengshoel, D. C. Wilkins, and D. Roth, “Controlled Generation of

Hard and Easy Bayesian Networks: Impact on Maximal Clique Tree in

Tree Clustering”. Artificial Intelligence, 170(16–17), October 2006, pp.

1137–1174.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

[36] A. Darwiche, “A Differential Approach to Inference in Bayesian

Networks”, Journal of the ACM, Volume 50, Number 3, pp. 280-305,

2003.

[37] J. D. Park and A. Darwiche, “Complexity Results and Approximation

Strategies for MAP Explanations”, Journal of Artificial Intelligence

Research (JAIR), Vol. 21, 2004, pp. 101-133.

