
Distributed Evaluation Functions for Fault Tolerant
Multi-Rover Systems

Track:Genetic Algorithms

ABSTRACT
The ability to evolve fault tolerant control strategies for
large collections of agents is critical to the successful ap-
plication of evolutionary strategies to domains where fail-
ures are common. Furthermore, while evolutionary algo-
rithms have been highly successful in discovering single-
agent control strategies, extending such algorithms to multi-
agent domains has proven to be difficult. In this paper
we present a method for shaping evaluation functions for
agents that provide control strategies that both are toler-
ant to different types of failures and lead to coordinated
behavior in a multi-agent setting. This method neither re-
lies of a centralized strategy (susceptible to single point of
failures) nor a distributed strategy where each agent uses a
system wide evaluation function (severe credit assignment
problem). In a multi-rover problem, we show that agents
using our agent-specific evaluation perform up to 500% bet-
ter than agents using the system evaluation. In addition
we show that agents are still able to maintain a high level
of performance when up to 60% of the agents fail due to
actuator, communication or controller faults.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Performance

Keywords
Multiagent Systems, Robust Optimization, Genetic Algo-
rithms, Neural Networks

1. INTRODUCTION
Many important control tasks involve components that

have high failure rates. These tasks are especially common
in aerospace domains, where harsh environmental conditions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8-12, 2005, Seattle, WA, USA.
Copyright 2006 ACM 1-59593-010-8/05/0006 ...$5.00.

stress hardware, and in defense domains, where adversaries
try to destroy hardware. An evolutionary multi-agent sys-
tem can be an excellent tool in overcoming failures, as agents
that do not fail can evolve to overcome the difficulties im-
posed by agents that do fail. Adaptive multi-agent systems
are naturally robust and reconfigurable. While evolutionary
computation has shown to be successful in numerous single-
agent control tasks, including pole balancing, robot naviga-
tion and rocket control, applying these single-agent methods
to a multi-agent system in a robust way is often difficult [12,
7, 8, 3, 10]. Instead of reducing the risk of failure, a poorly
designed multi-agent system can increase the rate of failure
over that of a single-agent system. For example evolution-
ary algorithms that are too centralized allow for single points
of failure while evolutionary algorithms that cannot adapt
quickly are vulnerable to any failure in the system. In this
paper, we address these issues in a multi-rover domain by
having each rover evolve its control strategy independently,
using an evaluation function that allows it to adapt quickly.
This framework is based on work previously described in [3]
and [13] and is extended to the domain of rover failures.

The main issue that needs to be addressed in such a dis-
tributed evolutionary process is what evaluation function
should be used by each rover. A natural choice is to have
the rovers directly use the full system evaluation function
that rates the performance of the entire multi-rover system.
While as system designers, we ultimately wish to have the
system evaluation maximized, having the rovers use the sys-
tem evaluation directly could lead to difficult credit assign-
ment problems when there are many rovers. When using
the system evaluation, a rover could rate a good control
policy poorly if other rovers were taking poor actions dur-
ing the evaluation process. Correspondingly, a rover could
rate a bad control policy highly if other rovers were taking
good actions during the evaluation process. The difficulty
with having rovers use the system evaluation, is that since
each rover has so little individual impact on its evaluation
function, it will take a long time to evolve an effective con-
trol strategy. To overcome this problem, this paper will have
each rover use a rover-specific evaluation function. A rover’s
actions have greater impact on their rover-specific evalu-
ation, which will be careful designed so that when rovers
evolve to maximize their rover-specific evaluation, they will
also tend to maximize the system evaluation.

This paper shows how these rover-specific evaluations can
be used effectively in a multi-rover environment when a ma-
jority of the rovers suffer from one of the following faults:

1. Rovers can have faults in actuators where they are

unable to move.

2. Rovers can have faults in communication where they
are unable to ascertain the locations of other rovers
used to compute evaluation functions.

3. Rovers can have faulty controllers, where an overwhelm-
ing amount of noise is added to output of the con-
trollers, causing the rovers to move almost at random.

We show that rovers using rover-specific evaluation func-
tions can overcome severe fault scenarios, with little loss in
performance.

In Section 2 we discuss the properties needed in a multi-
rover system and how to evolve rovers using evaluation func-
tions possessing such properties along with a discussion of
related work. In section 3 we present the “Rover Problem”
where a set of planetary rovers use neural networks to deter-
mine their movements based on a continuous-valued array
of sensor inputs. Section 5 presents the performance of the
multi-rover system evolved using rover evaluation functions
under actuator, communication and sensor faults. The re-
sults show the the effectiveness of the rovers in gathering in-
formation is 500% higher with properly derived rover fitness
functions than in rovers using a system evaluation function.
Finally Section 6 we discuss the implication of these results
and their applicability to different domains.

2. MULTI-ROVER EVOLUTION
The most straight forward method to apply evolutionary

computation to a multi-rover system is to treat the multi-
rover system as a large single entity. Under this method
there is a single population of control policies, where each
control policy controls the entire multi-rover system. Un-
fortunately such a method is neither robust (i.e.,., single
point of failure) nor efficient (i.e., extremely slow convers-
gence). While ad-hoc redundancy facilities could be added,
such an approach makes the search for a good solution even
more cumbersome. The slow convergence problems of such
systems are particularly devastating in our domain where
rapid adaptation is needed when a significant percentage of
the rovers fail.

To allow for higher levels of robustness, instead of using
a single population of system-wide control policies, we have
each rover evolve its own control policy independently (see
Figure 1). Each rover has its own population of control
strategies, that it uses to control its actions. After the rover
has taken a sequence of actions, it can then evaluate the
performance of a control policy based on how much it con-
tributed to the full system. Since each rover evolves its own
population it can be given any evaluation function. The key
to making this process work effectively is having the rovers
use well designed evaluation functions that are sensitive to
the rovers actions, yet still aligned with the system evalu-
ation. The following sections discuss critical properties of
rover evaluation functions, and how to create a good evalu-
ation function for this domain.

2.1 Rover Evaluation Function Properties
In this section we illustrate some important properties of

rover-specific evaluation functions based on work described
in [16] and in the context of previous multi-rover control
work described in [3] and [13]. Let the system evaluation
function be given by G(z), where z is the state of the full

Rover

Evaluation

control policy population

Interaction

with other

rovers

(mutation)

Figure 1: Evolution Process for Single Rover. A
rover chooses a control policy from its own popula-
tion of control policies. It then uses it for control.
After evaluating the control policy’s effectiveness,
the rover updates its population.

system (e.g., the position of all the rovers in the system,
along with their relevant internal parameters and the state
of the environment). Let the rover evaluation function
for rover i be given by gi(z). First we want the private
evaluation functions of each rover to have high factoredness
with respect to G, intuitively meaning that an action taken
by an rover that improves its private evaluation function
also improves the system evaluation function (i.e. G and gη

are aligned). Formally, the degree of factoredness between
gi and G is given by:

Fgi =

R
z

R
z′ u[(gi(z) − gi(z

′)) (G(z) − G(z′))]dz′dzR
z

R
z′ dz′dz

, (1)

where z′ is a state which only differs from z in the state of
rover i, and u[x] is the unit step function, equal to 1 when
x > 0. Intuitively, a high degree of factoredness between gi

and G means that a rover evolved to maximize gi will also
maximize G.

Second, the rover evaluation function must be more sensi-
tive to changes in that rover’s fitness than to changes in the
fitness of other rovers in the collective. Formally we quantify
the rover-sensitivity of evaluation function gi, at z as:

λi,gi(z) = Ez′

»
‖gi(z) − gi(z − zi + z′i)‖
‖gi(z) − gi(z′ − z′i + zi)‖

–
, (2)

where Ez′ [·] provides the expected value over possible values
of z′, and (z−zi+z′i) notation specifies the state vector where
the components of rover i have been removed from state z
and replaced by the components of rover i from state z′. So
at a given state z, the higher the rover-sensitivity, the more
gi(z) depends on changes to the state of rover i, i.e., the
better the associated signal-to-noise ratio for i. Intuitively
then, higher rover-sensitivity means there is “cleaner” (e.g.,

less noisy) selective pressure on rover i. Ideally we want eval-
uation functions that are both factored and highly learnable
(Figure 2).

System Evaluation

G(z)

High Factoredness

Low Sensitivity
Low Factoredness

High Sensitivity

High Factoredness

High Sensitivity

Rover-Specific Evaluation

g
i
(z)

Figure 2: Properties of Rover-Specific Evaluations.
Direction of an arrow represents goal of evaluation.
Size of an arrow represents sensitivity of the eval-
uation to rover’s action. As a system designer we
are concerned with maximizing the system evalua-
tion function (left). For rovers to be able to effec-
tively maximize system evaluation, their evaluations
should be aligned with the system evaluation (high
factoredness) and supply a strong signal (high sen-
sitivity).

As an example, consider the case where the rover evalu-
ation function of each rover is set to the system evaluation
function, meaning that each rover is evaluated based on the
fitness of the full collective (e.g., approach 2 discussed in
Section 2). Such a system will be fully factored by the def-
inition of Equation 1. However, the rover fitness functions
will have low rover-sensitivity (the fitness of each rover de-
pends on the fitness of all other rovers).

2.2 Difference Evaluation Functions
Let us now focus on improving the rover-sensitivity of

the evaluation functions. To that end, consider difference
evaluation functions [16], which are of the form:

Di ≡ G(z) − G(z−i + ci) , (3)

where z−i contains all the states on which rover i has no
effect, and ci is a fixed vector. In other words, all the com-
ponents of z that are affected by rover i are replaced with the
fixed vector ci. Such difference evaluation functions are fully
factored no matter what the choice of ci, because the second
term does not depend on i’s states [16] (e.g., D and G will
have the same derivative with respect to zi). Furthermore,
they usually have far better rover-sensitivity than does a
system evaluation function, because the second term of D
removes some of the effect of other rovers (i.e., noise) from
i’s evaluation function. In many situations it is possible to
use a ci that is equivalent to taking rover i out of the system.
Intuitively this causes the second term of the difference eval-
uation function to evaluate the fitness of the system without

i and therefore D evaluates the rover’s contribution to the
system evaluation.

Though for linear evaluation functions Di simply cancels
out the effect of other rovers in computing rover i’s eval-
uation function, its applicability is not restricted to such
functions. In fact, it can be applied to any linear or non-
linear global evalution function. However, its effectiveness
is dependent on the domain and the interaction among the
rover evaluation functions. At best, it fully cancels the effect
of all other rovers. At worst, it reduces to the system evalu-
ation function, unable to remove any terms (e.g., when z−i

is empty, meaning that rover i effects all states). In most
real world applications, it falls somewhere in between, and
has been successfully used in many domains including rover
coordination, satellite control, data routing, job scheduling
and congestion games [3, 14, 16]. Also note that the compu-
tation of Di is a “virtual” operation in that rover i computes
the impact of its not being in the system. There is no need
to re-evolve the system for each rover to compute its Di,
and computationally it is often easier to compute than the
system evaluation function [14]. Indeed in the problem pre-
sented in this paper, for rover i, Di is easier to compute than
G is (see details in Section 5).

2.3 Related Work
Evolutionary computation has a long history of success

in single agent and multi-agent control problems [15, 9, 6,
2, 1]. Advances in evolutionary computation methods in
single agent domains tend to result from improvements in
search methods. In [9] this is accomplished through fuzzy
rules in a helicopter control problem, while in [15] cellular
encoding is used to improve performance on pole-balancing
control. Similarly [6] addresses planetary rover control by
having genetic algorithms search through a space of plans
generated from a planning algorithm.

Many advances in evolutionary computation for multi-
agent control have been accomplished through the use of
domain specific fitness functions. Ant colony algorithms
[5] solve the coordination problem by utilizing “ant trails”
that provide implicit fitness functions resulting in good per-
formance in path-finding domains. In [2], the algorithm
takes advantage of a large number of agents to speed up
the evolution process in certain domains, but uses greedy
fitness functions that are not generally factored. Also out-
side of evolutionary computation, coordination between a
set of mobile robots has been accomplished through the use
of hand-tailored rewards designed to prevent greedy behav-
ior [11]. While highly successful in many domains all of
these methods differ from the methods used in this paper in
that they lack a general framework for efficient evolution in
multi-agent systems.

3. CONTINUOUS ROVER PROBLEM
In this section, we show how evolutionary computation

with the difference evaluation function can be used effec-
tively in the Rover Problem1. In this problem, there is a
collective of rovers on a two dimensional plane, which is try-
ing to observe points of interests (POIs). Each POI has
a value associated with it and each observation of a POI
yields an observation value inversely related to the distance
the rover is from the POI. In this paper the distance metric

1This problem was first presented in [3].

will be the squared Euclidean norm, bounded by a minimum
observation distance, δmin:2

δ(x, y) = min{‖x − y‖2, δ2
min} . (4)

The goal of the system designer is to have rover try to ob-
serve valuable POIs at a close range as computed by the
system evaluation.

3.1 System Evaluation
Formally the system evaluation function is given by:

G =
X

t

X
j

Vj

mini δ(Lj , Li,t)
, (5)

where Vj is the value of POI j, Lj is the location of POI j and
Li,t is the location of rover i at time t. Intuitively, while any
rover can observe any POI, as far as the global evaluation
function is concerned, only the closest observation matters3.
This is the function we as a system designer wish the rovers
to maximize.

3.2 Rover Capabilities
At every time step, the rovers sense the world through

eight continuous sensors. From a rover’s point of view, the
world is divided up into four quadrants relative to the rover’s
orientation, with two sensors per quadrant (see Figure 3).
For each quadrant, the first sensor returns a function of the
POIs in the quadrant at time t. Specifically the first sensor
for quadrant q returns the sum of the values of the POIs in
its quadrant divided by their squared distance to the rover
and scaled by the angle between the POI and the center of
the quadrant:

s1,q,j,t =
X
j∈Jq

Vj

δ(Lj , Li,t)

„
1 − |θj,q|

45 ◦

«
, (6)

where Jq is the set of observable POIs in quadrant q and
|θj,q| is the magnitude of the angle between POI j and the
center of the quadrant. The second sensor returns the sum
of square distances from a rover to all the other rovers in
the quadrant at time t scaled by the angle:

s2,q,i,t =
X

i′∈Nq

1

δ(Li′ , Li,t)

„
1 −

|θi′,q|
45 ◦

«
, (7)

where Nq is the set of rovers in quadrant q and |θi′,q| is the
magnitude of the angle between rover i′ and the center of
the quadrant.

The sensor space is broken down into four regions to facili-
tate the input-output mapping. There is a trade-off between
the granularity of the regions and the dimensionality of the
input space. In some domains the tradeoffs may be such
that it is preferable to have more or fewer than four sensor
regions. Also, even though this paper assumes that there

2The square Euclidean norm is appropriate for many natural
phenomenon, such as light and signal attenuation. However
any other type of distance metric could also be used as re-
quired by the problem domain. The minimum distance is
included to prevent singularities when a rover is very close
to a POI.
3Similar evaluation functions could also be made where
there are many different levels of information gain depend-
ing on the position of the rover. For example 3-D imaging
may utilize different images of the same object, taken by
two different rovers.

Rover Sensor

POI Sensor

POIs

Figure 3: Diagram of a Rover’s Sensor Inputs. The
world is broken up into four quadrants relative to
rover’s position. In each quadrant one sensor senses
points of interests, while the other sensor senses
other rovers.

are actually two sensors present in each region at all times,
in real problems there may be only two sensors on the rover,
and they do a sensor sweep at 90 degree increments at the
beginning of every time step.

3.3 Rover Control Strategies
With four quadrants and two sensors per quadrant, there

are a total of eight continuous inputs. This eight dimen-
sional sensor vector constitutes the state space for a rover.
At each time step the rover uses its state to compute a two
dimensional output. This output represents the x, y move-
ment relative to the rover’s location and orientation.

The mapping from rover state to rover output is done
through a Multi Layer Perceptron (MLP), with eight input
units, ten hidden units and two output units 4. The MLP
uses a sigmoid activation function, therefore the outputs are
limited to the range (0, 1). The actual rover motions dx
and dy, are determined by normalizing and scaling the MLP
output by the maximum distance the rover can move in one
time step. More precisely, we have:

dx = dmax(o1 − 0.5)

dy = dmax(o2 − 0.5) ,

where dmax is the maximum distance the rover can move in
one time step, o1 is the value of the first output unit, and
o2 is the value of the second output unit.

3.4 Rover Selection
The MLP for a rover is selected using an evolutionary al-

gorithm as highlighted in approaches two and three in Sec-
tion 2. In this case, each rover has a population of MLPs.
At each N time steps (N set to 15 in these experiments), the
rover uses ε-greedy selection (ε = 0.1) to determine which
MLP it will use (e.g., it it selects the best MLP from its pop-
ulation with 90% probability and a random MLP from its

4Note that other forms of continuous reinforcement learners
could also be used instead of evolutionary neural networks.
However neural networks are ideal for this domain given the
continuous inputs and bounded continuous outputs.

population with 10% probability). The selected MLP is then
mutated by adding a value sampled from the Cauchy Distri-
bution (with scale parameter equal to 0.3) to each weight,
and is used for those N steps. At the end of those N steps,
the MLP’s performance is evaluated by the rover’s evalua-
tion function and re-inserted into its population of MLPs,
at which time, the poorest performing member of the pop-
ulation is deleted. Both the system evaluation for system
performance and rover evaluation for MLP selection is com-
puted using an N-step window, meaning that the rovers only
receive an evaluation after N steps.

While this is not a sophisticated evolutionary algorithm,
it is ideal in this work since our purpose is to demonstrate
the impact of principled evaluation functions selection on
the performance of a collective. Even so, this algorithm has
shown to be effective if the evaluation function used by the
rovers is factored with G and has high rover-sensitivity. We
expect more advanced evolutionary computation algorithms
used in conjunction with these same evaluation functions to
improve the performance of the collective further.

3.5 Evolving Control Strategies in Multi-Rover
System

The key to success in this approach is to determine the
correct rover evaluation functions. In this work we test two
different evaluation function for rover selection. The first
evaluation function is the system evaluation function (G),
which when implemented results in approach two discussed
in Section 2:

G =
X

t

X
j

Vj

mini δ(Lj , Li,t)
. (8)

The second evaluation function is the difference evaluation
function. This evaluation is factored with respect to the
system evaluation function, but has a much high rover sen-
sitivity. For the rover problem, the difference evaluation
function, D, becomes:

Di(L) = G(L) − G(L − Li)

=
P

t

P
j Ij,i,t(z)

»
Vj

δ(Lj ,Li,t)
− Vj

δ(Lj ,Lkj,t)

–
,

where kj is the second closest rover to POI j and Ij,i,t(z) is
an indicator function, returning one if and only if rover i is
the closest rover to POI j at time t. The second term o D
is equal to the value of all the information collected if rover
i were not in the system. Note that for all time steps where
i is not the closest rover to any POI, the subtraction leaves
zero. As mentioned in Section 2.2, the difference evaluation
computation requires that rover i know the position and
distance of the closest rover to each POI it can see. In that
regard, D requires knowledge about the position of fewer
rovers than the system evaluation function G.

4. SIMULATION SETUP
We performed extensive simulations to test the effective-

ness of the two rover evaluation functions under three dif-
ferent kinds of failure scenarios as well as under a scenario
where there were no failures. The simulations were designed
to illustrate the relative effectiveness of the evaluation func-
tions when there are many agents, and to show the ability
of the distributed evolutionary system to reconfigure itself
in the event of failures.

4.1 Failure Modes
In the simulation we test the follow three types of faults:

• The first fault is actuator failure, which we simulate as
having a faulty rover being unable to move after the
fault has occurred. This tests the ability of the dis-
tributed system to recover when not all the members of
the system continue to operate. This recovery capabil-
ity is especially important in increasing the longevity
of space science missions, where scientist want to keep
the mission operating as long as valuable data is being
produced. While high failure rates are common within
the nominal life of a space science mission, as the mis-
sion is extended beyond its nominal life, the failure
rate of components increases further. The ability to
overcome these failures increases the likelihood of suc-
cess within its nominal life and is critical in extending
the duration of missions to their maximum potential.

• The second fault is communication failure where rovers
are unable to ascertain the locations of other rovers
used to compute evaluation functions. The fault rep-
resents a form of equipment failure common in explo-
ration and high-risk domains.

• The third fault is control failure, where an overwhelm-
ing amount of noise is added to output of the con-
trollers, causing the rovers to move almost at random.
This fault simulates a failure in the control computer
or a fault in a lower level control system. These types
of faults are particularly devastating as they can cause
rovers to take actions that are destructive.

4.2 Environmental Setup
In these experiments, each rover had a population of MLPs

of size 10. The world was 75 units long and 75 units wide.
All of the rovers started the experiment at the center of the
world. In all experiments there were 30 rovers in the sim-
ulations. The maximum distance the rovers could move in
one direction during a time step, dmax, was set to 3. The
rovers could not move beyond the bounds of the world. The
minimum observation distance, δmin, was equal to 5.

In the experiments the environment was dynamic, mean-
ing that the POI locations and values changed with time.
There were as many POIs as rovers, and the value of each
POI was set to between three and five using a uniformly
random distribution. In these experiments, each POI dis-
appeared with probability 2.5%, and another one appeared
with the same probability at 15 time step intervals. Be-
cause the experiments were run for 3000 time steps, the
initial and final environments had little similarities. All re-
sults were averaged over at least one hundred independent
trials (except for the seventy agent runs where there were
thirty trials). For each experiment and trial the weights of
the neural network were set to random using the Cauchy
distribution (parameter of 0.5).

Results for episodic environments where the agents were
restored to their initial state at the end of each trial were re-
ported in [3]. In such a case the rovers evolve specific control
policies tuned to the particular environment in which they
are trained. Though useful in domains where the simulated
environment closely matches the environment in which the
rovers will operate, this approach has limited applicability
in general. A more desirable approach is for the rovers to

t=10 t=120

t=1500Rovers

continuously

evolve over single

trial in changing

environment

Figure 4: Sample POI Placement. Left: Environ-
ment at time = 15. Middle: Environment at time
= 150. Right: Environment at time = 1500.

evolve efficient policies that are solely based on their sensor
inputs and not on the specific configuration of the POIs.
The dynamic environment experiments reported here ex-
plore this premise and provide rover control policies that
can be generalized from one set of POIs to another, regard-
less of how significantly the environment changes. Figures 4
shows an instance of change in the environment throughout
a simulation. The final POI set is not particularly close to
the initial POI set and the rovers are forced to focus on the
sensor input-output mappings rather than focus on regions
in the (x, y) plane.

5. RESULTS
Using the rover simulation we produced experimental re-

sults for rovers performing under four scenarios, in which
rovers have faults in three of the scenarios. In all experi-
ments performance was measured using the rovers’ system-
wide performance as computed by the system evaluation
function, regardless of the evaluation functions the individ-
ual rovers actually used. The performance measures were
all relative to the performance of a set of rovers that used
random evaluations functions (computed using a uniform
distributed between 0.0 and 1.0). Values were obtained by
subtracting the performance results of the random rovers
from the performance of the rovers we were testing. The er-
ror bars were computing using the root mean square of the
sigma values for the rovers using the random evaluations and
the rovers using the evaluation functions we are testing. All
experiments were done over at least 50 independent trials to
gain statistical significance.

5.1 Evolution with no Failures
The first set of experiments tested the performance of the

two evaluation functions in a dynamic environment for 30

rovers, where none of the rovers had failures. Figure 5 shows
the performance of each evaluation function. Independent
of the evaluation function the rovers actually used, per-
formance was measured using the system evaluation func-
tion. Here rovers evolving the system evaluation function
directly performed poorly, and could not even achieve sta-
tistically significant performance beyond random levels un-
til 1000 time steps. In contrast rovers using the difference
evaluation learned quickly and achieved a final performance
level more than five times higher than the agents using the
system evaluation.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500

Sy
st

em
 E

va
lu

at
io

n
Ac

hi
ev

ed

Number of Steps

Difference Evaluation
System Evaluation

Baseline (Random Evaluation)

Figure 5: Performance of a 30-rover collective
for two evaluation functions in fault-free environ-
ment. Difference evaluation function provides the
best system-wide performance because it is rover-
sensitive.

The evolution of this system demonstrates importance of
having evaluation functions that are rover-sensitive. Having
an evaluation function that is highly rover-sensitive speeds
up learning since a rover needs to take fewer actions in or-
der to discern which actions lead to high evaluations and
which actions lead to low evaluation. In this domain rovers
that use G are hurt by the evaluation function’s low rover-
sensitivity and learn slowly. Since the fitness of each rover
depends on the state of all other rovers, the noise in the
system overwhelms the evaluation function. Rovers using
the system evaluation have difficulty figuring out which ac-
tions are bad and which actions are good. In contrast the D
evaluation has high rover-sensitivity. As a consequence, it
continues to improve well into the simulation as the fitness
signal the rovers receive are not swamped by the states of
other rovers in the system.

5.2 Evolution under Mobility Failures
The second set of experiments tested the performance of

the two evaluation functions in a dynamic environment when
rovers have mobility failures. In this scenario at time step
1500, 60% of the rovers stopped moving and were unable
to move for the rest of the trial. However, the immobile
rovers were still able to observe POIs. In this scenario the
challenge of the mobile rovers was to observe POIs that were
out of range of the immobile ones. Figure 6 shows the perfor-
mance of both evaluation functions in this scenario. Agents
using the difference evaluation proved that they could han-

dle the faults gracefully and maintain a performance level
that was only slightly degraded over when there were no
faults. These agents show that they could form a dynam-
ically reconfigurable system. In contrast agents using the
system evaluation performed poorly and were barely able to
do better than random.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500

Sy
st

em
 E

va
lu

at
io

n
Ac

hi
ev

ed

Number of Steps

Difference Evaluation
System Evaluation

Baseline (Random Evaluation)

Figure 6: Performance of a 30-rover system for two
evaluation functions when 60% of the rovers become
immobile after 1500 time steps (though immobile
rovers can still make observations).

5.3 Evolution with Communication Failures
The third set of experiments tested the performance of the

two evaluation functions in a dynamic environment where
60% of the rovers lost most of their ability to communicate
with other rovers after time step 1500. These failed rovers
were only aware of other rovers when they were within a
radius of 4 units from their current location. This amounts
to the rovers being able to communicate with only 1% of
the grid. This loss of communication made it difficult to the
rovers to compute their evaluation functions. Figure 7 shows
the performance of the two evaluation function under this
failure scenario. While the communication failure initially
lowered the system performance, the rovers using difference
evaluations were able to overcome this setback and ended up
achieving a performance level higher than before the failure.
However, rovers using the system evaluation, as before, were
never able to achieve satisfactory performance levels.

5.4 Evolution under Controller Failures
The fourth set of experiments tested the performance of

both evaluation functions in a dynamic environment where
60% of the rovers had significant control failures at time step
1500. In the simulation, this failure was modeled by adding
200% noise to the output of the rovers’ neural network con-
troller. As the output of the controllers for non-failing rovers
was bounded between 0.0 and 1.0, the failure was modeled
by adding a random value to this output sampled from the
uniform distribution between 0.0 and 2.0. The resulting
noise caused failed rovers to take almost random actions.
Figure 8 shows the performance of the evaluation functions
under this failure condition.

The failure caused a significant performance hit at time
step 1500. Because in this case the failed rovers were taking

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500

Sy
st

em
 E

va
lu

at
io

n
Ac

hi
ev

ed

Number of Steps

Difference Evaluation
System Evaluation

Baseline (Random Evaluation)

Figure 7: Performance of a 30-rover system for two
evaluation functions when 60% of the rovers are
unable to communicate with other rovers in order
to compute evaluation functions. Rover-sensitive
evaluations are superior, allowing rovers to quickly
adapt to failure.

nearly random actions, this was a significantly more com-
plex control problem. Rovers using the difference evalua-
tions were able to re-evolve and improve performance after
the failure. However, in this instance, agents evolved with
the difference evaluation were not able to achieve as high as
performance after the failures than right before the failures.
This was not an unexpected result, since a rover with a noisy
controller not only failed to contribute to the system goals,
but could prevent other rovers from achieving their tasks.
While the difference evaluation effectively removed a lot of
noise from other agents, it could help when noise was being
added to the end of the control process.

Figure 9 illustrates the different effects the different faults
had on the multi-rover systems. While rovers using the
system evaluation function performed poorly in general, no
particular fault stands out statistically as being more prob-
lematic than others. For the difference evaluation though,
failures involving noisy control were clearly more difficult to
overcome.

6. DISCUSSION
This paper shows that distributed evolutionary computa-

tion is a powerful tool in creating robust control policies for
large systems. The key to making evolutionary computation
effective is to use evaluation functions that are aligned with
the system evaluation, yet much more sensitive to the ac-
tions of individual controllers. This paper showed that one
such evaluation is the difference evaluation, D. Systems of
rovers evolved using D perform at much high performance
levels than systems of rovers evolved directly with the sys-
tem evaluation. More importantly systems using D con-
tinue to achieve high performance levels when a majority of
the rovers in the system experience various types of failures.
These results show that evolutionary computation combined
with the difference evaluation could be very successful in
providing the robustness needed in high risk domains, in-
cluding many aerospace and defense applications.

The results also show that the system more readily han-

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500

Sy
st

em
 E

va
lu

at
io

n
Ac

hi
ev

ed

Number of Steps

Difference Evaluation
System Evaluation

Baseline (Random Evaluation)

Figure 8: Performance of a 30-rover system for two
evaluation functions when at time step 1500, 60%
of the rovers have control failures. Rover-sensitive
evaluations are superior, allowing rovers to quickly
adapt to failure.

dles certain types of failures. These differences in failure
responses can help mission planners decide what risks are
acceptable to take for a particular mission. For example,
having some rovers take actions that may cause them to
loose communications is likely an acceptable risk, since other
rovers can adapt to this loss. However having a rover take
an action that may cause loss in control is much riskier,
since it is harder for other rovers to adapt to such a failure.
Knowledge of these tradeoffs can allow mission designers to
make tradeoffs that optimize scientific payoff for long dura-
tion missions in challenging environments.

7. REFERENCES
[1] A. Agah and G. A. Bekey. A genetic algorithm-based

controller for decentralized multi-agent robotic
systems. In In Proc. of the IEEE International
Conference of Evolutionary Computing, Nagoya,
Japan, 1996.

[2] A. Agogino, K. Stanley, and R. Miikkulainen. Online
interactive neuro-evolution. Neural Processing Letters,
11:29–38, 2000.

[3] A. Agogino and K. Tumer. Efficient evaluation
functions for multi-rover systems. In The Genetic and
Evolutionary Computation Conference, pages 1–12,
Seatle, WA, June 2004.

[4] G. Baldassarre, S. Nolfi, and D. Parisi. Evolving
mobile robots able to display collective behavior.
Artificial Life, pages 9: 255–267, 2003.

[5] M. Dorigo and L. M. Gambardella. Ant colony
systems: A cooperative learning approach to the
travelling salesman problem. IEEE Transactions on
Evolutionary Computation, 1(1):53–66, 1997.

[6] S. Farritor and S. Dubowsky. Planning methodology
for planetary robotic exploration. In ASME Journal of
Dynamic Systems, Measurement and Control, volume
124, pages 4: 698–701, 2002.

[7] D. Floreano and F. Mondada. Automatic creation of
an autonomous agent: Genetic evolution of a

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500

Sy
st

em
 E

va
lu

at
io

n
Ac

hi
ev

ed

Number of Steps

No Fault
60% Mobility Faults
60% Comm. Faults

60% Controller Faults

Figure 9: Performance of a 30-rover system under
different failure scenarios. Upper plots correspond
to rovers using difference evaluations. Lower plots
correspond to rovers using system evaluation.

neural-network driven robot. In Proc. of Conf. on
Simulation of Adaptive Behavior, 1994.

[8] F. Gomez and R. Miikkulainen. Active guidance for a
finless rocket through neuroevolution. In Proceedings
of the Genetic and Evolutionary Computation
Conference, Chicago, Illinois, 2003.

[9] F. Hoffmann, T.-J. Koo, and O. Shakernia.
Evolutionary design of a helicopter autopilot. In
Advances in Soft Computing - Engineering Design and
Manufacturing, Part 3: Intelligent Control, pages
201–214, 1999.

[10] A. Martinoli, A. J. Ijspeert, and F. Mondala.
Understanding collective aggregation mechanisms:
From probabilistic modelling to experiments with real
robots. Robotics and Autonomous Systems, 29:51–63,
1999.

[11] M. J. Mataric. Coordination and learning in
multi-robot systems. In IEEE Intelligent Systems,
pages 6–8, March 1998.

[12] K. Stanley and R. Miikkulainen. Efficient
reinforcement learning through evolving neural
network topologies. In Proceedings of the Genetic and
Evolutionary Computation Conference
(GECCO-2002), San Francisco, CA, 2002.

[13] K. Tumer and A. Agogino. Coordinating multi-rover
systems: Evaluation functions for dynamic and noisy
environments. In The Genetic and Evolutionary
Computation Conference, Washington, DC, June 2005.

[14] K. Tumer and D. H. Wolpert. Collective intelligence
and Braess’ paradox. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence, pages
104–109, Austin, TX, 2000.

[15] D. Whitley, F. Gruau, and L. Pyeatt. Cellular
encoding applied to neurocontrol. In International
Conference on Genetic Algorithms, 1995.

[16] D. H. Wolpert and K. Tumer. Optimal payoff
functions for members of collectives. Advances in
Complex Systems, 4(2/3):265–279, 2001.

