
2005-01-2961

Planner-Based Control of Advanced Life Support Systems

Nicola Muscettola
NASA Ames Research Center

David Kortenkamp

NASA Johnson Space Center/ER2/Metrica Inc.

Chuck Fry

NASA Ames Research Center/QSS Group Inc.

Scott Bell

NASA Johnson Space Center/ER2/SKT Inc.

Copyright © 2005 SAE International

ABSTRACT

The paper describes an approach to the integration of
qualitative and quantitative modeling techniques for
advanced life support (ALS) systems. Developing
reliable control strategies that scale up to fully integrated
life support systems requires augmenting quantitative
models and control algorithms with the abstractions
provided by qualitative, symbolic models and their
associated high-level control strategies. This will allow
for effective management of the combinatorics due to the
integration of a large number of ALS subsystems. By
focusing control actions at different levels of detail and
reactivity we can use faster, simpler responses at the
lowest level and predictive but complex responses at the
higher levels of abstraction. In particular, methods from
model-based planning and scheduling can provide
effective resource management over long time periods.
We describe a reference implementation of an advanced
control system using the IDEA control architecture
developed at NASA Ames Research Center. IDEA uses
planning/scheduling as the sole reasoning method for
predictive and reactive closed loop control. We describe
preliminary experiments in planner-based control of ALS
carried out on an integrated ALS simulation developed at
NASA Johnson Space Center.

INTRODUCTION

Advanced life support (ALS) systems require complex
control strategies that can maintain stable system
performance and balanced resources with small margins
and minimal buffers. In closed-loop life support systems
there are complex interactions between sub-systems
such as air, water, food production, solids processing,
and the crew. Recent research at NASA Johnson Space
Center has led to significant insights into autonomous

control of ALS systems [1, 2, 3]. Routine control of an
ALS system is well within the reach of current
techniques. For example, the autonomous control
system described in [4] operated around the clock for 73
straight days during a 90 day crewed test with minimal
human intervention. The autonomous control system for
a recent test of an advanced water recovery system
operated with minimal human intervention for over
eighteen months [5]. The core of these systems is
procedural reactive control. The execution of reactive
rules activates control actions on the basis of sensory
input accumulated over a short past time horizon. These
systems also utilize planning primarily as a way of
hierarchically expanding control actions over longer
periods of time. However, these systems lack the ability
to reason about subsystems interactions that are not
explicitly captured in the hierarchical plan. This does not
allow them to effectively coordinate the long term
management of resources with the planning of mission
activities carried out by humans. For this reasons, these
systems cannot demonstrate effective recovery from
significant anomalies under significant resource limits. A
solution to these issues is needed in order to
demonstrate life support systems amenable to efficient
long-duration missions such as the human exploration of
Mars.

Dealing effectively with resources is extremely important
for ALS in the context of human exploration of space.
Human activities need to satisfy deadlines (e.g., an EVA
cannot take more than X hours), temporal constraints
(e.g., an astronaut cannot undertake EVAs more
frequently than once every Y days) and need to consume
resources (e.g., O2 and water). Also, human activities are
by nature more flexible than maintenance actions for the
life support system (e.g., feed plants). This introduces the
need to be able to quickly replan and revisit ALS
maintenance actions so that they do not conflict with

human activities. Human and ALS activities cannot be
considered independently because they both use limited
renewable resources (e.g., H2O) that are continuously
recycled. Full decoupling would require the use of
possibly large resource buffers which increase mass and
ultimately affect the cost and viability of the mission at a
fundamental level. Our emphasis is on developing a
computational approach to ALS control that has the
potential to reduce the need for resource buffers through
the use of advanced planning and scheduling technology.

This paper reports on a novel control system for ALS that
integrates long-term planning and plan monitoring with
short-term quantitative control. Our main focus is the
augmentation of quantitative models with qualitative
models on which we apply modern temporal planning
algorithms. To ease the evaluation of several possible
competing approaches to temporal planning, we are
encoding the ALS planning models into the Planning
Domain Definition Language (PDDL+). PDDL+ is a
representation language broadly used in the planning
and scheduling community. To test our ALS models we
use an existing planner-based controller called the
Intelligent Distributed Execution Architecture (IDEA)
system to control a simple advanced life support
scenario. IDEA was derived from the Remote Agent
experiment for the New Millennium Deep Space 1
mission [6] and the Mars Exploration Rover MAPGEN
system [7].

Our approach focuses on the coordination of all ALS
subsystems and, unlike previous approaches, provides a
uniform representational framework to describe both the
functioning and control of each subsystem and the
interaction and coordination strategy for all subsystems.
The use of PDDL+ to uniformly represent the functioning
of multiple levels of the control hierarchy is an important
feature for the purpose of understanding the functioning
of the system and, potentially, applying formal
methodologies to the validation of the system. Also, the
adoption of an “operator based” representation of the
hybrid (discrete/continuous) dynamics has interesting
potential consequences on the solution strategies to the
control problem. Our approach synthesizes effective
long-term courses of action that are continuously re-
adjusted to account for actual operating conditions, in a
way similar in spirit to Model-Predictive Control methods
[8]. Model-Predictive control, however, typically follows a
strategy that iterates between the simulation of the
effects of an assumed course of action and the
consequent adjustment of the course of action to satisfy
the problem’s constraints (e.g., actions that must be
executed, resource limits within which to operate,
deadlines). The use of a planner-based representation,
instead, opens up the possibility of exploring constraint-
based representations, the dynamic expansion of search
spaces and the opportunistic synthesis of courses of
actions, techniques that are currently widely explored by
the Artificial Intelligence planning research community.

In the next section of this paper we describe a life
support simulation that we will use to test our planner-

based controller. Then we discuss the issues in merging
qualitative and quantitative models. Next we introduce
our prototype planner-based controller. Finally, we give
preliminary results and conclusions.

SIMULATION OF ALS SYSTEMS

Most existing models of advanced life support systems
are quantitative and continuous (see for example [9]).
While these models are useful for analysis it is difficult to
translate them into the qualitative, symbolic
representations that advanced planning and scheduling
systems use. These continuous models don’t make
explicit the types of information that are required for
integrated, qualitative reasoning. Quantitative,
continuous models are necessary for understanding
subsystem dynamics, but cross-system analysis offer the
ability to reason over multiple subsystems and to project
consequences of actions into the future [10].

Our approach to simulation of an ALS system has been
developed at NASA Johnson Space Center. We have
simulated most of the advanced life support modules
using the best available information. The simulation is a
process model in that each module takes in certain
resources and produces other resources. It gives a more
abstract characterization of the function of each
component, such as valves, pumps, etc., without
modeling in detail the physical functioning of the
components (e.g., through a fluidodynamics simulation).
The simulation consists of multiple modules, each
representing a subsystem of an advanced life support
system. Figure 1 shows the modules and connections in
our simulation. The simulator is fully described in [11].

For the experiments in this paper we implemented a
specific instance of the simulation to reflect a lunar
habitat. The instance was designed with information from
an internal JSC memo describing a lunar reference
mission [12]. The reference mission assumes a four
person crew with equal numbers of men and women.
Mission length is 90 days with the habitat initiated and
operating nominally upon crew arrival. The landing site is
the lunar South Pole with the sun above the horizon 80%
of the time and surface temperatures between 210K and
230K during the day. The habitat atmosphere is
composed of 29% oxygen at an overall pressure of 65.5
kPa and a leakage rate of 0.00224 kg/day. Food is
shipped in most circumstances (although we looked at
the addition of a small number of crops) and is 0.257
kg/crewmember-day moist food and 0.665
kg/crewmember-day of dry food. Air, water, and waste
recovery systems are part of the habitat. One four-hour
EVA by one crew member was performed each day of
the mission. The EVA takes place through an airlock that
is 3.7 m3 in size and 10% of the airlock atmosphere is lost
each time the airlock is used.

Air revitalization is obtained by multiple subsystems and
is based on a recently completed test at the NASA
Johnson Space Center. Gasses like CO2 and O2
produced by the system are stored (as in the case of CO2

and O2), vented (as in the case of methane) or re-injected
in other stages of the system. Injectors are available to
take gases from the stores and inject them into the
atmospheres. A control challenge requires three
objectives. The first, and most important, is to maintain

an optimal gas mixture in the crew and biomass
environments. Secondly, the controller needs to
minimize energy use by the accumulator and air
revitalization module. Last, the controller should seek to
minimize store use.

 Figure 1: An integrated simulation of a life support system

All stages of the system consume power in the form of
electricity. The simulation has two models of power
production. One simulates a nuclear-style power system
that supplies a continuous, fixed amount of power. A
second simulates a solar-style power system that
supplies a varying amount of power. For our
experiments a solar panel was used.

Testing effective and robust control strategies requires
dealing with malfunctions in any component and any
module. Each module of the simulation provides an
application programmer’s interface (API) to introduce
these malfunctions at any time in the simulation. Each
module can have malfunctions of varying degrees of
severity and temporal length. For simplicity, the

malfunctions have been divided into two categories
based on temporal length: permanent and temporary;
and three subcategories of severity: low, medium and
high. These malfunctions are interpreted differently by
each module. For example, a temporary but severe
malfunction in the potable water store would be a large
water leak. A permanent but low severity malfunction in
the power production module would be the loss of a part
of a solar array.

Each module can experience multiple malfunctions at the
same time and the control system must detect them,
schedule the crew to repair them (if repairable), and
monitor to make sure the repairs went accordingly.
Permanent malfunctions are non- repairable and require

the control system to reallocate resources to continue the
mission. A permanent malfunction with the water
recovery system, for example, might cause a decrease in
potable water. The control system could react by
lowering available water to the plants to provide enough
water to the crew.

The simulation also models stochastic processes.
Because the real world is not deterministic, neither is the
simulation. For example, the exact amount of air that is
breathed in by a crew member is different with every
breath. We model this by using a Gaussian function with
adjustable parameters. The Gaussian can be set to zero
to produce a deterministic simulation.

The simulation is controlled via virtual sensors and
actuators which mimic collections of physical sensors
and actuators of an advanced life support system.
Sensors report on values of the underlying simulation.
For example, an O2 sensor would report the amount of O2
in the atmosphere. Sensors in the real-world are noisy –
that is they do not always return ground truth. We model
sensors with an adjustable Gaussian noise function.
Sensor noise can be turned off so that the sensors report
ground truth.

Actuators are mirror images of sensors – they allow for
control actions to be taken on the simulation. Like
sensors, actuators in the real-world are noisy. For
example, an injector that is told to open for one second
will open for slightly more or less than one second given
its mechanical tolerances. We model this noise as a
Gaussian function. The parameters of the noise function
are adjustable and the function can be turned off.

INTEGRATING QUALITATIVE AND
QUANTITATIVE MODELS

The simulation described above is based on time-
stepped, forward-time integration of continuous
differential equations. While this is excellent for
continuous simulations these kinds of models do not
translate easily into the declarative and procedural
models required by intelligent control systems. They
need to be augmented with models that capture the
interactions amongst subsystems, the causes and effects
of malfunctions and the duration and times of control
actions. This poses many challenges including:

• Abstraction: How detailed do the models need
to be for effective reasoning? A continuous
curve, like the evolution of ambient temperature
over time, could be represented as a discretized,
piecewise constant/linear function. In how many
pieces should the curve be split?

• Compactness: We want the models to be as
compact as possible. Some qualitative and
quantitative modeling approaches lead to a
proliferation of state variables and task types.
Also the models must describe the states in

which a subsystem does not want some other
subsystem to be in over time. For example,
suppose that while a subsystem is in state A,
another subsystem cannot be in state B. This
does not prescribe that the second subsystem
holds a constant state different than B for the
entire duration of A on the first subsystem. The
requirement can actually be satisfied by a series
of contiguous transitions, e.g., while the
subsystem in state A the other subsystem can
transition periodically between C and D an
arbitrary number of times. Representing these
behavioral constraints is a key challenge.

• Maintenance: As we model more and more
complicated systems maintaining accurate
models becomes important. First there is the
verification and validation of the models
themselves – are they correct? Second, how
can we easily change models when the
underlying system changes?

The field of Artificial Intelligence planning relies on
representations of actions and dynamic processes. A
planner [13] uses a compositional model of the world
expressed as a collection of operators. An operator
represents the pre-conditions, post-conditions and
maintenance conditions around a change of state in the
world. Pre-conditions must hold before the change. Post-
condition will hold after, and maintenance conditions
must occur throughout the change. Two kinds of change
can be modeled. The first, actions, are typically used to
represent state transitions explicitly initiated by the
control system. The second, events, typically represent a
spontaneous change in the world without the explicit
interventions of a controller. An operator-based
representation gives the means to address the
challenges described before. Since one of our goals is to
establish a strong connection between the planning
community and the life-support community, it is important
that our representation of the life support domain be
expressed in a language that is as accessible and
standard as possible. This led us to select the PDDL+
domain modeling language [14], an extension to the
original Planning Domain Definition Language (PDDL)
[15] that has become the standard mean for expressing
benchmark problems in the bi-annual planning
competition [16]. PDDL+ extends PDDL by allowing
expression of continuous processes that act on states in
the system.

Figure 2 shows the representation of a fragment of the
ALS system in PDDL+1.The action increase-flow, for
example, allows the controller to increase the flow
through the pipe ?pipe in order to raise the level of the
material contained in the tank above the allowable lower
limit. The lower limit is represented as the difference of
the set-point level and a given deadband, (- ?target

1 Note that PDDL+ uses a prefix notation (operator
operand operand …) like the LISP programming
language instead of the more familiar infix notation.

?deadband). The action can be executed any time the
level of material in the tank, (level ?tank), reaches
the lower limit. The effect of the action is to increase flow
through the pipe. We can then give the planning system
initial parameters (e.g., store targets, deadbands, etc.)
and a goal, e.g., (:goal (level-maintained
potable_water_store) and the planning system will
achieve and maintain that goal using the actions and
processes. Between control actions, the tank evolves
according to a process, maintain-flow, which at this
level of abstraction is simply represented as a period of
time during which the tank level remain within a
deadband around the target level. The process is
terminated by an event, store-level-not-within-
target which is triggered by the tank level falling
outside the setpoint range. Depending on which “out of
bounds” condition causes the event, the appropriate
control action between increase-flow and
decrease-flow should then be applied to restore the
control goal.

PLANNER-BASED SUPERVISORY CONTROL

A representation of the system and control actions in
terms of planning operators is not sufficient to build viable
controllers. We also need a framework for supervisory
control that can interpret these models, build plans,
monitor their execution and modify the plan within the
real-time constraints imposed by the physics of the plant.

The control framework that we are adopting is the IDEA
system [17]. IDEA evolved from the experience of the
Remote Agent. Different approaches, like Remote Agent
and other three-layered control system, use reasoning
mechanisms and control machinery at different levels.
By contrast, each IDEA agent strictly adheres to a single
formal virtual machine and uses a model-based reactive
planner as its core engine for reasoning. The IDEA
architecture is service-based in the sense that it provides
unifying services for fundamental functions needed for a
planner-based controller. It does not, however, impose
the selection of a specific planning approach, planning
algorithm, or reasoning method to select the control
actions. IDEA defines a virtual machine that organizes
these services and a set of expectations with regard to
the functionalities needed by a planner. For example,
IDEA considers the possibility of multiple planning
algorithms to operate on the same plan-database
concurrently and specifies the rules regulating access of
multiple planners to the same section of the database.
Any planner that is capable of satisfying the requirements
of IDEA can be used as the core of an IDEA control
agent. To this date, IDEA agents have been implemented
using EUROPA [18]. These planning technology and
planning algorithms derive from the on-board planner of
the Remote Agent and have been successfully used
throughout the Mars Exploration Rover (MER) mission to
implement MAPGEN. MAPGEN is the science activity
planning system successfully used by the ground
operators that have been operating the Spirit and
Opportunity rovers on Mars.

THE IDEA VIRTUAL MACHINE

Fig. 3 gives an overview of the components of an IDEA
agent. The agent communicates with other agents (either
controlling or controlled by the agent) using an Agent
Relay. The agent relay maintains the IDEA agent’s
execution context by sending or receiving message
invocations (respectively, goals sent to controlled agents
or received from controlling agents) and receiving or
sending method return values (i.e. the achievement of a
goal). The execution context is synchronized with the
internal state of a Reactive Planner (RP). The RP is the
control engine of the IDEA agent: given a declarative
(temporal) model of the agent activities (i.e. the planning
model maintained by the Model Manager) and the
execution context. It operates by subgoaling search,
recursively selecting an action with open pre-conditions
or expanding a process or an event whose pre-condition
can be found in the current PD. selecting effects or initial
conditions already in the partial plan that may achieve the
an open precondition and checking consistency of the
new partial plan. Backtracking occurs if the partial plan is
found inconsistent. A plan is reached if a consistent plan
is found covering an appropriate time horizon around the
current time. RP is responsible for generating the control
procedure invocations. Although IDEA’s modeling
language is different from PDDL+, it uses very similar
concepts as constructs, making the translation between
the two straightforward.

(:action increase-flow
 :parameters
 (?tank ?pipe ?target ?deadband)
 :precondition
 (< (level ?tank) (- ?target ?deadband))
 :effect
 (increase (commanded-flow ?pipe)
 (calculate-amount ?pipe (level

?tank) ?target))
)

(:action decrease-flow
 :parameters
 (?tank ?pipe ?target ?deadband)
 :precondition
 (> (level ?tank) (+ ?target ?deadband))
 :effect
 (decrease (commanded-flow ?pipe)
 (calculate-amount ?pipe (level ?tank)

?target))
)

(:process maintain-flow
 :parameters
 (?tank ?pipe ?target ?deadband)
 :precondition
 (and
 (> (level ?tank) (- ?target ?deadband))
 (< (level ?tank) (+ ?target ?deadband)))
 :effect
 (= (level-maintained ?tank) TRUE)
)

(:event store-level-not-within-target
 :parameters
 (?tank ?target ?deadband)
 :preconditions
 (or
 (> (level ?tank) (+ ?target ?deadband))
 (< (level ?tank) (- ?target ?deadband)))
 :effect
 (= (level-maintained ?tank) FALSE)

Figure 2: A sample of PDDL+

IDEA EXECUTION CYCLE

The Plan Runner (PR) executes a simple, finite state
machine that implements the sense/plan/act cycle of the
IDEA agent. Each cycle must be completed within a finite
time interval, the execution latency. At present, an
agent’s latency corresponds to the minimum quantum of
time that can be measured by an agent, the agent tick.
Time is measured by a Timing Service that is also
capable of warping time, a capability extremely useful in
simulation to significantly compress the time needed to
run multi-day scenarios. The PR operates as follows:

• The PR wakes up at the first tick after a message
has been received from another agent, or at the
tick when a wakeup timer has gone off;

• The state of the Agent Relay is updated with
respect to the information resulting from the
wakeup event (e.g., an event representing the
return value of a control action has been
received);

• The RP is invoked and the planner synchronizes
its internal state with the Agent Relay through the
Plan Service Layer.

• When the RP terminates, the agent relay loads
the new context of execution and sends
appropriate messages to the external agents.
For example, if a control action has been
terminated by the reactive planner, an event
corresponding to the procedure’s return value
(determined by the RP) is sent to the agent’s
goal-setting interface (the controlling agent)

• The RP is invoked to determine what is the next
time at which execution is expected to occur

(barred any external communication). The time is
set in the Timing Services module as the next
wakeup time for the agent;

• The plan runner goes to sleep and waits for an
external message or the expiration of a wakeup
timer.

PLAN DATABASE

The reactive planner continuously updates a data
structure, called Plan Database (PD) (see Fig. 4), which
represents the I/O and internal state of the agent. The
PD describes the past and the future execution state of
the agent as a set of timelines (one for each state
variable). A timeline represents the history of a state
variable over a period of time. Each history is a sequence
of tokens built by the RP keeping the consistency with
respect to the IDEA model. The reactive planning is to
refine the plan database checking for the consistency of
the PD with respect to the current execution state and
providing an execution plan up to a planning horizon.
For a given timeline the past history represents ended
activities and states while the future history is a complete
plan of activities with maximum flexibility, i.e., the start
and end times are defined only if necessary.

Inconsistencies between expectations and actual events
occurring in execution (e.g., a mismatch between actual
and expected time of occurrence for a store-level-
not-within-target) must be reconciled by the RP
before execution can continue (but still within the agent
latency constraint). Only when the plan fully conforms to
the model for a specified horizon following the current tick
can the execution cycle be completed.

Figure 3: An Overview of the IDEA control architecture

REACTIVE AND DELIBERATIVE PLANNING

In IDEA reactive planning determines the next action on
the basis of sensory input and time lapse wakeups. The
key parameter for the reactive planner is the reactive
planning horizon whose choice is critical to obtain the
correct balance between reactivity (i.e., the required
latency for the agent) and effectiveness of control. The
longer the horizon is, the more robust the control actions
(due to a better proactive capability with respect to future
effects) but the less reactive the agent (due to a
potentially exponential increase in the search space with
every additional step in the plan). Note that limiting
reactive planning to a horizon of a single latency
guarantees that the reactive planning process has
minimum possible duration, making reactive planning
effectively equivalent to reactive action expansion in
procedural executives.

More complex problem solving (e.g., long-term task
planning) typically requires more time than the latency
allows. IDEA provides a rich environment for integrating
any number of deliberative planners within the core
execution cycle (Fig. 4). IDEA does not impose limits on
the search methods that can be used by the deliberative
planners. The only requirement is that the deliberative
planners eventually communicate plans into the PD to
which the reactive planner also has access. Note that it is
perfectly reasonable for the deliberative planner to use
the same search engine and heuristics of the reactive
planner, with the deliberative planning horizon being the
only key difference with respect to reactive planning. In
this project we plan on using this approach to
differentiate between deliberative and reactive planner.

Different specialized planners can cooperate in building a
single plan coherently with the agent’s model. In IDEA
the activation for a deliberative planner is programmed in
the model. This can be obtained by modeling the planner
like any other subsystem, i.e., by specifying a timeline
that can take tokens whose execution explicitly invokes
the planner. This makes it possible to appropriately plan

the time at which deliberate planning can occur
compatibly with the internal and external state modeled
by the agent.

PRELIMINARY RESULTS

We have just begun implementing an IDEA controller for
the BioSim application. In this section we discuss our
experimental scenario and we discuss the very first
IDEA, planner-based controllers that we have
implemented.

DEMONSTRATION SCENARIO

Our demonstration scenario is a 90-day expedition on the
lunar surface. It assumes a four-person crew, performing
one extra-vehicular activity per day. A separate biomass
(plant growth) chamber contains two crops, wheat and
white potatoes, and maintains a separate atmosphere.
Both crew and biomass environments share a common
drinking water supply; both environments also have small
air leaks.

The air recycling system includes an oxygen generator,
which electrolyzes drinking water to oxygen and
hydrogen gases, and a carbon dioxide scrubber. The
biomass chamber also serves as part of the air recycling
system, converting carbon dioxide into oxygen and plant
matter via photosynthesis. Storage tanks hold oxygen,
hydrogen, nitrogen, and carbon dioxide gases. A modest
amount of oxygen, nitrogen, and carbon dioxide are
provided at the start of the scenario, to account for losses
due to leakage.

The water recycling system takes grey water and dirty
water from the crew chamber and other sources, and
converts them to potable water and solid waste by a
variety of processes. Dehumidifiers in the crew and
biomass chambers extract excess moisture from the air.
A food processor converts biomass into food for the
crew, dry waste, and grey and dirty water. Electrical
power is generated by a solar cell array, and stored in a
large battery.

Figure 4: The plan database

The scenario allows for some uncertainty and calamity.
The simulator can induce stochastic errors in the values
reported by sensors, and the commanded positions of
actuators. The simulator can also introduce failures in
components and crops, and unexpected losses of air and
water. The simulated failures we plan to demonstrate will
range from the trivial to the catastrophic.

The IDEA agent is charged with managing several
variables in this scenario:

• Potable H2O tank level, via control of power to
the water recycling system, and control of water
flow rate to crops

• O2 tank level, via control of the flow rate from the
biomass chamber accumulator, and control of
power to the oxygen generating system

• CO2 level in biomass chamber, via control of CO2
injector flow rate

• Wheat planting time and amount planted

• Wheat crop harvest time

• White potato crop planting time and amount
planted

• White potato crop harvest

• Biomass chamber light level

The demonstration is a success if the IDEA agent can
keep the crew and plants alive with smaller initial stocks
of consumables (initial O2, H20 and crop seeds) and lower
system mass (smaller potable H20 tank, smaller O2 tank,
smaller power supply, smaller cabin volume, etc.) when
compared to a default control scheme on the same
variables and the same failures.

To do this, the IDEA agent must successfully integrate
two kinds of control: fairly continuous, real-time control of
variables such as the O2 accumulator and CO2 injector;
and fairly discrete, long duration control of variables such
as crop planting and harvesting. It must also successfully
represent and reason with qualitative information
(planting times, etc.) and quantitative information (diff.
equations underlying plant growth, 02 and H2O production
and CO2 consumption).

PRELIMINARY IDEA CONTROLLER

As a first step, we have implemented a simple reactive
controller which maintains the levels in the potable water
tank and the oxygen tank. The reactive controller is
intended to be used at the lower level of a hierarchy of
controllers. The desired minimum and maximum levels
for both tanks can be specified manually, or by a master
controller. The reactive control algorithm attempts to
keep the actual levels within those limits, using only

knowledge of the current state of the system and its
immediate past.

The potable water tank’s level is controlled by managing
electrical power to the water recycling system, and by
directly controlling the water supply valve to the biomass
chamber. If the level is too low, the water recycling
system is powered to its maximum capacity, or the water
supply valve to the biomass chamber is closed, or both.
Likewise, if the level is too high, the water recycling
system is switched off, or the output to the biomass
chamber is opened to its maximum capacity, or both.

The level in the oxygen tank is controlled similarly by
controlling two sources of oxygen. One of these is the
oxygen generating system, which is controlled by
managing its electrical power. The other source is the
oxygen accumulator, which extracts oxygen produced by
photosynthesis in the biomass chamber; it is controlled
via a valve in the return line to the oxygen tank.

The controller currently uses a simple “on or off”
algorithm, with local memory of the current state of the
controls. For example, if the water tank has been below
the target minimum level for 3 simulation ticks, and the
water recycling system is already at full power and the
water supply valve to the biomass chamber is already
closed, it knows that it can do nothing further, and just
waits for the water level to rise.

Commanding is closed-loop. The IDEA agent expects
confirmation from the simulation that each command has
been completed. This is to allow for recoveries in cases
of transient or persistent faults. The agent does not
currently support retrying commands in the event of a
fault; it simply transitions to a fault state. Nor does the
agent monitor the flow rate sensors to judge the effect of
a command. These are extensions we plan to add in the
near future.

At present the two tanks are controlled independently
from each other. There is one direct interaction between
the two tanks, and several potential indirect interactions.
Control of the oxygen generating system has a direct
effect on the level of the potable water tank. As more
electrical power is fed to the Oxygen Generation System
(OGS) in an attempt to produce more oxygen, its
demand on the potable water the supply increases.
Indirect interactions include contention for limited
electrical power, water flow rate to the biomass chamber
affecting the rate of photosynthesis, and so forth. Such
interactions will be modeled in the future.

CONCLUSION

An effective life support control system can reduce
system mass, reliance on ground controllers, and crew
time spent monitoring life support functions. For these
reasons, life support control systems are an enabling
technology for long-duration space missions. This paper
describes the need for qualitative modeling and
reasoning in order to more effectively control the

interactions and resource constraints of advanced life
support systems. We hope to engage the planning
community by representing the life support domain in a
language that they understand. A first step is to encode
life support models in PDDL+. A second step is to test
those models in a planner-based control architecture.
We are just beginning this process.

ACKNOWLEDGMENTS

This work is funded through a grant from NASA’s Office
of Biological and Physical Research, Advanced
Environmental Monitoring and Control program and from
the Intelligent Systems Project of NASA's Exploration
Mission Directorate

REFERENCES

1. Jorge Leon, David Kortenkamp and Debra
Schreckenghost, “A Planning, Scheduling and
Control Architecture for Advanced Life Support
Systems,” Proceedings of the NASA Workshop on
Planning and Scheduling in Space, 1997.

2. David Kortenkamp, R. Peter Bonasso and Devika
Subramanian, “Distributed, Autonomous Control of
Space Habitats,” IEEE Aerospace Conference, 2001.

3. Schreckenghost, Debra, Carroll Thronesbery, R.
Peter Bonasso, David Kortenkamp and Cheryl
Martin, “Intelligent Control of Life Support for Space
Missions,” in IEEE Intelligent Systems Magazine, Vol.
17, No. 5, September/October 2002.

4. Debra Schreckenghost, Mary Beth Edeen, R. Peter
Bonasso, and Jon Erickson, “Intelligent Control of the
Product Gas Transfer for Air Revitalization,”
Proceedings of the 28th Conference on
Environmental Systems, 1998.

5. R. P. Bonasso, David Kortenkamp and Carroll
Thronesbery, Intelligent Control of a Water Recovery
System. In AI Magazine, Vol. 24, No. 1, Spring 2003.

6. Muscettola, N. P. Pandurang Nayak, B. Pell and B.
Williams, “Remote Agent: To Boldly Go Where No AI
System Has Gone Before,” Artificial Intelligence, Vol.
103, No. 1, pp. 5-47, 1998.

7. John Bresina, Ari Jonsson, Paul Morris, and Kanna
Rajan, "Activity Planning for Mars Exploration
Rovers", in Proceedings of 15th International
Conference on Automated Planning and Scheduling
(ICAPS), 2005.

8. Abdelwahed, S., J. Wu, G. Biswas, J. Ramirez and
E. J. Manders, “Online Fault Adaptive Control for
Efficient Resource Management in Advanced Life
Support Systems,” Habitation: International Journal
for Human Support Research, Vol. 10, No. 2, pp.
105-116, 2005.

9. Finn, Cory K. “Dynamic System Modeling of
Regenerative Life Support Systems,” 29th
International Conference on Environmental Systems,
SAE paper 1999-01-2040.

10. Benjamin Kuipers, Qualitative Reasoning: Modeling
and Simulation with Incomplete Knowledge, MIT
Press, Cambridge MA, 1994.

11. David Kortenkamp and Scott Bell, “Simulating
Advanced Life Support Systems for Integrated
Controls Research,” to appear in 33rd International
Conference on Environmental Systems, SAE paper
2003-01-2546, 2003.

12. Hanford, T., "Transient Modeling Challenge: A Lunar
Reference Mission for a 90-Day Habitat," NASA JSC
Draft Document, 2004.

13. David E. Smith, Jeremy Frank and Ari K. Jonsson,
“Bridging the Gap Between Planning and
Scheduling,” Knowledge Engineering Review, 15(1),
2000.

14. M. Fox and D. Long, “PDDL+: Modeling continuous
time dependent effects,” in Proceedings of the 3rd
International NASA Workshop on Planning and
Scheduling for Space.

15. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A.
Ram, D. Weld and D. Wilkins, “PDDL – The Planning
Domain Definition Language,” Technical Report, Yale
Center for Computational Vision and Control,
available as part of the PDDL distribution at
http://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar
.gz, 1998.

16. Drew McDermott, “The 1998 AI Planning Systems
Competition,” AI Magazine, 21(2), 2000.

17. Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.;
and Plaunt, C. IDEA: Planning at the core of
autonomous reactive agents. In Proc. 3rd Int. NASA
WS on Planning and Scheduling for Space, 2002.

18. Jeremy Frank, and Ari K. Jonsson, "Constraint-based
Attribute and Interval Planning", in Constraints, 8(4),
p 339-364, 2003.

CONTACT

Nicola Muscettola, Intelligent Systems Division, NASA
Ames Research Center, MS-269-2, Moffett Field
California 94035, mus@email.arc.nasa.gov

ACRONYMS

ALS Advanced Life Support

IDEA Intelligent Distributed Execution Architecture

PD Plan Database

PDDL Planning Domain Definition Language

PR Plan Runner

RP Reactive Planner

