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ABSTRACT 

The paper describes an approach to the integration of 
qualitative and quantitative modeling techniques for 
advanced life support (ALS) systems.  Developing 
reliable control strategies that scale up to fully integrated 
life support systems requires augmenting quantitative 
models and control algorithms with the abstractions 
provided by qualitative, symbolic models and their 
associated high-level control strategies.  This will allow 
for effective management of the combinatorics due to the 
integration of a large number of ALS subsystems.  By 
focusing control actions at different levels of detail and 
reactivity we can use faster, simpler responses at the 
lowest level and predictive but complex responses at the 
higher levels of abstraction.  In particular, methods from 
model-based planning and scheduling can provide 
effective resource management over long time periods.  
We describe a reference implementation of an advanced 
control system using the IDEA control architecture 
developed at NASA Ames Research Center.  IDEA uses 
planning/scheduling as the sole reasoning method for 
predictive and reactive closed loop control.  We describe 
preliminary experiments in planner-based control of ALS 
carried out on an integrated ALS simulation developed at 
NASA Johnson Space Center. 

 
INTRODUCTION 

Advanced life support (ALS) systems require complex 
control strategies that can maintain stable system 
performance and balanced resources with small margins 
and minimal buffers. In closed-loop life support systems 
there are complex interactions between sub-systems 
such as air, water, food production, solids processing, 
and the crew.  Recent research at NASA Johnson Space 
Center has led to significant insights into autonomous 

control of ALS systems [1, 2, 3].  Routine control of an 
ALS system is well within the reach of current 
techniques.  For example, the autonomous control 
system described in [4] operated around the clock for 73 
straight days during a 90 day crewed test with minimal 
human intervention. The autonomous control system for 
a recent test of an advanced water recovery system 
operated with minimal human intervention for over 
eighteen months [5].   The core of these systems is 
procedural reactive control. The execution of reactive 
rules activates control actions on the basis of sensory 
input accumulated over a short past time horizon. These 
systems also utilize planning primarily as a way of 
hierarchically expanding control actions over longer 
periods of time. However, these systems lack the ability 
to reason about subsystems interactions that are not 
explicitly captured in the hierarchical plan. This does not 
allow them to effectively coordinate the long term 
management of resources with the planning of mission 
activities carried out by humans.  For this reasons, these 
systems cannot demonstrate effective recovery from 
significant anomalies under significant resource limits. A 
solution to these issues is needed in order to 
demonstrate life support systems amenable to efficient 
long-duration missions such as the human exploration of 
Mars. 

Dealing effectively with resources is extremely important 
for ALS in the context of human exploration of space. 
Human activities need to satisfy deadlines (e.g., an EVA 
cannot take more than X hours), temporal constraints 
(e.g., an astronaut cannot undertake EVAs more 
frequently than once every Y days) and need to consume 
resources (e.g., O2 and water). Also, human activities are 
by nature more flexible than maintenance actions for the 
life support system (e.g., feed plants). This introduces the 
need to be able to quickly replan and revisit ALS 
maintenance actions so that they do not conflict with 



human activities. Human and ALS activities cannot be 
considered independently because they both use limited 
renewable resources (e.g., H2O) that are continuously 
recycled. Full decoupling would require the use of 
possibly large resource buffers which increase mass and 
ultimately affect the cost and viability of the mission at a 
fundamental level. Our emphasis is on developing a 
computational approach to ALS control that has the 
potential to reduce the need for resource buffers through 
the use of advanced planning and scheduling technology. 

This paper reports on a novel control system for ALS that 
integrates long-term planning and plan monitoring with 
short-term quantitative control. Our main focus is the 
augmentation of quantitative models with qualitative 
models on which we apply modern temporal planning 
algorithms. To ease the evaluation of several possible 
competing approaches to temporal planning, we are 
encoding the ALS planning models into the Planning 
Domain Definition Language (PDDL+).  PDDL+ is a 
representation language broadly used in the planning 
and scheduling community. To test our ALS models we 
use an existing planner-based controller called the 
Intelligent Distributed Execution Architecture (IDEA) 
system to control a simple advanced life support 
scenario.  IDEA was derived from the Remote Agent 
experiment for the New Millennium Deep Space 1 
mission [6] and the Mars Exploration Rover MAPGEN 
system [7]. 

Our approach focuses on the coordination of all ALS 
subsystems and, unlike previous approaches, provides a 
uniform representational framework to describe both the 
functioning and control of each subsystem and the 
interaction and coordination strategy for all subsystems. 
The use of PDDL+ to uniformly represent the functioning 
of multiple levels of the control hierarchy is an important 
feature for the purpose of understanding the functioning 
of the system and, potentially, applying formal 
methodologies to the validation of the system. Also, the 
adoption of an “operator based” representation of the 
hybrid (discrete/continuous) dynamics has interesting 
potential consequences on the solution strategies to the 
control problem. Our approach synthesizes effective 
long-term courses of action that are continuously re-
adjusted to account for actual operating conditions, in a 
way similar in spirit to Model-Predictive Control methods 
[8]. Model-Predictive control, however, typically follows a 
strategy that iterates between the simulation of the 
effects of an assumed course of action and the 
consequent adjustment of the course of action to satisfy 
the problem’s constraints (e.g., actions that must be 
executed, resource limits within which to operate, 
deadlines).  The use of a planner-based representation, 
instead, opens up the possibility of exploring constraint-
based representations, the dynamic expansion of search 
spaces and the opportunistic synthesis of courses of 
actions, techniques that are currently widely explored by 
the Artificial Intelligence planning research community. 

In the next section of this paper we describe a life 
support simulation that we will use to test our planner-

based controller.  Then we discuss the issues in merging 
qualitative and quantitative models.  Next we introduce 
our prototype planner-based controller.  Finally, we give 
preliminary results and conclusions.    

SIMULATION OF ALS SYSTEMS 

Most existing models of advanced life support systems 
are quantitative and continuous (see for example [9]).  
While these models are useful for analysis it is difficult to 
translate them into the qualitative, symbolic 
representations that advanced planning and scheduling 
systems use.  These continuous models don’t make 
explicit the types of information that are required for 
integrated, qualitative reasoning.  Quantitative, 
continuous models are necessary for understanding 
subsystem dynamics, but cross-system analysis offer the 
ability to reason over multiple subsystems and to project 
consequences of actions into the future [10].   

Our approach to simulation of an ALS system has been 
developed at NASA Johnson Space Center.  We have 
simulated most of the advanced life support modules 
using the best available information.  The simulation is a 
process model in that each module takes in certain 
resources and produces other resources.  It gives a more 
abstract characterization of the function of each 
component, such as valves, pumps, etc., without 
modeling in detail the physical functioning of the 
components (e.g., through a fluidodynamics simulation). 
The simulation consists of multiple modules, each 
representing a subsystem of an advanced life support 
system.  Figure 1 shows the modules and connections in 
our simulation. The simulator is fully described in [11]. 

For the experiments in this paper we implemented a 
specific instance of the simulation to reflect a lunar 
habitat. The instance was designed with information from 
an internal JSC memo describing a lunar reference 
mission [12]. The reference mission assumes a four 
person crew with equal numbers of men and women. 
Mission length is 90 days with the habitat initiated and 
operating nominally upon crew arrival. The landing site is 
the lunar South Pole with the sun above the horizon 80% 
of the time and surface temperatures between 210K and 
230K during the day. The habitat atmosphere is 
composed of 29% oxygen at an overall pressure of 65.5 
kPa and a leakage rate of 0.00224 kg/day. Food is 
shipped in most circumstances (although we looked at 
the addition of a small number of crops) and is 0.257 
kg/crewmember-day moist food and 0.665 
kg/crewmember-day of dry food. Air, water, and waste 
recovery systems are part of the habitat. One four-hour 
EVA by one crew member was performed each day of 
the mission. The EVA takes place through an airlock that 
is 3.7 m3 in size and 10% of the airlock atmosphere is lost 
each time the airlock is used.  

Air revitalization is obtained by multiple subsystems and 
is based on a recently completed test at the NASA 
Johnson Space Center.  Gasses like CO2 and O2 
produced by the system are stored (as in the case of CO2 



and O2), vented (as in the case of methane) or re-injected 
in other stages of the system. Injectors are available to 
take gases from the stores and inject them into the 
atmospheres.  A control challenge requires three 
objectives.  The first, and most important, is to maintain 

an optimal gas mixture in the crew and biomass 
environments.  Secondly, the controller needs to 
minimize energy use by the accumulator and air 
revitalization module.  Last, the controller should seek to 
minimize store use.  

 

  Figure 1: An integrated simulation of a life support system 

 

All stages of the system consume power in the form of 
electricity. The simulation has two models of power 
production.  One simulates a nuclear-style power system 
that supplies a continuous, fixed amount of power.  A 
second simulates a solar-style power system that 
supplies a varying amount of power.  For our 
experiments a solar panel was used.  

Testing effective and robust control strategies requires 
dealing with malfunctions in any component and any 
module. Each module of the simulation provides an 
application programmer’s interface (API) to introduce 
these malfunctions at any time in the simulation.  Each 
module can have malfunctions of varying degrees of 
severity and temporal length.  For simplicity, the 

malfunctions have been divided into two categories 
based on temporal length: permanent and temporary; 
and three subcategories of severity: low, medium and 
high.  These malfunctions are interpreted differently by 
each module.  For example, a temporary but severe 
malfunction in the potable water store would be a large 
water leak.  A permanent but low severity malfunction in 
the power production module would be the loss of a part 
of a solar array.   

Each module can experience multiple malfunctions at the 
same time and the control system must detect them, 
schedule the crew to repair them (if repairable), and 
monitor to make sure the repairs went accordingly.  
Permanent malfunctions are non- repairable and require 



the control system to reallocate resources to continue the 
mission.  A permanent malfunction with the water 
recovery system, for example, might cause a decrease in 
potable water.  The control system could react by 
lowering available water to the plants to provide enough 
water to the crew. 

The simulation also models stochastic processes.  
Because the real world is not deterministic, neither is the 
simulation.  For example, the exact amount of air that is 
breathed in by a crew member is different with every 
breath.  We model this by using a Gaussian function with 
adjustable parameters.  The Gaussian can be set to zero 
to produce a deterministic simulation. 

The simulation is controlled via virtual sensors and 
actuators which mimic collections of physical sensors 
and actuators of an advanced life support system.  
Sensors report on values of the underlying simulation.  
For example, an O2 sensor would report the amount of O2 
in the atmosphere.  Sensors in the real-world are noisy – 
that is they do not always return ground truth.  We model 
sensors with an adjustable Gaussian noise function.  
Sensor noise can be turned off so that the sensors report 
ground truth. 

Actuators are mirror images of sensors – they allow for 
control actions to be taken on the simulation.  Like 
sensors, actuators in the real-world are noisy.  For 
example, an injector that is told to open for one second 
will open for slightly more or less than one second given 
its mechanical tolerances.  We model this noise as a 
Gaussian function.  The parameters of the noise function 
are adjustable and the function can be turned off.   

INTEGRATING QUALITATIVE AND 
QUANTITATIVE MODELS 

The simulation described above is based on time-
stepped, forward-time integration of continuous 
differential equations.  While this is excellent for 
continuous simulations these kinds of models do not 
translate easily into the declarative and procedural 
models required by intelligent control systems.  They 
need to be augmented with models that capture the 
interactions amongst subsystems, the causes and effects 
of malfunctions and the duration and times of control 
actions.  This poses many challenges including:  

• Abstraction:  How detailed do the models need 
to be for effective reasoning?  A continuous 
curve, like the evolution of ambient temperature 
over time, could be represented as a discretized, 
piecewise constant/linear function. In how many 
pieces should the curve be split?  

• Compactness: We want the models to be as 
compact as possible.  Some qualitative and 
quantitative modeling approaches lead to a 
proliferation of state variables and task types. 
Also the models must describe the states in 

which a subsystem does not want some other 
subsystem to be in over time. For example, 
suppose that while a subsystem is in state A, 
another subsystem cannot be in state B. This 
does not prescribe that the second subsystem 
holds a constant state different than B for the 
entire duration of A on the first subsystem. The 
requirement can actually be satisfied by a series 
of contiguous transitions, e.g., while the 
subsystem in state A the other subsystem can 
transition periodically between C and D an 
arbitrary number of times.  Representing these 
behavioral constraints is a key challenge. 

• Maintenance: As we model more and more 
complicated systems maintaining accurate 
models becomes important.  First there is the 
verification and validation of the models 
themselves – are they correct?  Second, how 
can we easily change models when the 
underlying system changes? 

The field of Artificial Intelligence planning relies on 
representations of actions and dynamic processes. A 
planner [13] uses a compositional model of the world 
expressed as a collection of operators. An operator 
represents the pre-conditions, post-conditions and 
maintenance conditions around a change of state in the 
world. Pre-conditions must hold before the change. Post-
condition will hold after, and maintenance conditions 
must occur throughout the change. Two kinds of change 
can be modeled. The first, actions, are typically used to 
represent state transitions explicitly initiated by the 
control system.  The second, events, typically represent a 
spontaneous change in the world without the explicit 
interventions of a controller. An operator-based 
representation gives the means to address the 
challenges described before. Since one of our goals is to 
establish a strong connection between the planning 
community and the life-support community, it is important 
that our representation of the life support domain be 
expressed in a language that is as accessible and 
standard as possible. This led us to select the PDDL+ 
domain modeling language [14], an extension to the 
original Planning Domain Definition Language (PDDL) 
[15] that has become the standard mean for expressing 
benchmark problems in the bi-annual planning 
competition [16]. PDDL+ extends PDDL by allowing 
expression of continuous processes that act on states in 
the system.   

Figure 2 shows the representation of a fragment of the 
ALS system in PDDL+1.The action increase-flow, for 
example, allows the controller to increase the flow 
through the pipe ?pipe in order to raise the level of the 
material contained in the tank above the allowable lower 
limit.  The lower limit is represented as the difference of 
the set-point level and a given deadband, (- ?target 
                                                      
1 Note that PDDL+ uses a prefix notation (operator 
operand operand …) like the LISP programming 
language instead of the more familiar infix notation. 



?deadband). The action can be executed any time the 
level of material in the tank, (level ?tank), reaches 
the lower limit. The effect of the action is to increase flow 
through the pipe.  We can then give the planning system 
initial parameters (e.g., store targets, deadbands, etc.) 
and a goal, e.g., (:goal (level-maintained 
potable_water_store) and the planning system will 
achieve and maintain that goal using the actions and 
processes.  Between control actions, the tank evolves 
according to a process, maintain-flow, which at this 
level of abstraction is simply represented as a period of 
time during which the tank level remain within a 
deadband around the target level. The process is 
terminated by an event, store-level-not-within-
target which is triggered by the tank level falling 
outside the setpoint range. Depending on which “out of 
bounds” condition causes the event, the appropriate 
control action between increase-flow and 
decrease-flow should then be applied to restore the 
control goal. 

PLANNER-BASED SUPERVISORY CONTROL 

A representation of the system and control actions in 
terms of planning operators is not sufficient to build viable 
controllers. We also need a framework for supervisory 
control that can interpret these models, build plans, 
monitor their execution and modify the plan within the 
real-time constraints imposed by the physics of the plant. 

The control framework that we are adopting is the IDEA 
system [17]. IDEA evolved from the experience of the 
Remote Agent.  Different approaches, like Remote Agent 
and other three-layered control system, use reasoning 
mechanisms and control machinery at different levels.  
By contrast, each IDEA agent strictly adheres to a single 
formal virtual machine and uses a model-based reactive 
planner as its core engine for reasoning. The IDEA 
architecture is service-based in the sense that it provides 
unifying services for fundamental functions needed for a 
planner-based controller. It does not, however, impose 
the selection of a specific planning approach, planning 
algorithm, or reasoning method to select the control 
actions. IDEA defines a virtual machine that organizes 
these services and a set of expectations with regard to 
the functionalities needed by a planner.  For example, 
IDEA considers the possibility of multiple planning 
algorithms to operate on the same plan-database 
concurrently and specifies the rules regulating access of 
multiple planners to the same section of the database. 
Any planner that is capable of satisfying the requirements 
of IDEA can be used as the core of an IDEA control 
agent. To this date, IDEA agents have been implemented 
using EUROPA [18]. These planning technology and 
planning algorithms derive from the on-board planner of 
the Remote Agent and have been successfully used 
throughout the Mars Exploration Rover (MER) mission to 
implement MAPGEN. MAPGEN is the science activity 
planning system successfully used by the ground 
operators that have been operating the Spirit and 
Opportunity rovers on Mars. 

THE IDEA VIRTUAL MACHINE  

Fig. 3 gives an overview of the components of an IDEA 
agent. The agent communicates with other agents (either 
controlling or controlled by the agent) using an Agent 
Relay. The agent relay maintains the IDEA agent’s 
execution context by sending or receiving message 
invocations (respectively, goals sent to controlled agents 
or received from controlling agents) and receiving or 
sending method return values (i.e. the achievement of a 
goal). The execution context is synchronized with the 
internal state of a Reactive Planner (RP). The RP is the 
control engine of the IDEA agent: given a declarative 
(temporal) model of the agent activities (i.e. the planning 
model maintained by the Model Manager) and the 
execution context. It operates by subgoaling search, 
recursively selecting an action with open pre-conditions 
or expanding a process or an event whose pre-condition 
can be found in the current PD. selecting effects or initial 
conditions already in the partial plan that may achieve the 
an open precondition and checking consistency of the 
new partial plan. Backtracking occurs if the partial plan is 
found inconsistent. A plan is reached if a consistent plan 
is found covering an appropriate time horizon around the 
current time. RP is responsible for generating the control 
procedure invocations. Although IDEA’s modeling 
language is different from PDDL+, it uses very similar 
concepts as constructs, making the translation between 
the two straightforward. 

(:action increase-flow 
 :parameters  
  (?tank ?pipe ?target ?deadband) 
 :precondition 
  (< (level ?tank) (- ?target ?deadband)) 
 :effect 
  (increase (commanded-flow ?pipe) 
                   (calculate-amount ?pipe (level 

?tank) ?target)) 
) 
 
(:action decrease-flow 
 :parameters  
  (?tank ?pipe ?target ?deadband) 
 :precondition 
  (> (level ?tank) (+ ?target ?deadband)) 
 :effect 
  (decrease (commanded-flow ?pipe) 
         (calculate-amount ?pipe (level ?tank) 

?target)) 
) 
 
(:process maintain-flow 
 :parameters 
  (?tank ?pipe ?target ?deadband) 
 :precondition 
  (and 
   (> (level ?tank) (- ?target ?deadband)) 
   (< (level ?tank) (+ ?target ?deadband))) 
 :effect  
  (= (level-maintained ?tank) TRUE) 
) 
 
(:event store-level-not-within-target 
 :parameters 
  (?tank ?target ?deadband) 
 :preconditions 
  (or 
   (> (level ?tank) (+ ?target ?deadband)) 
   (< (level ?tank) (- ?target ?deadband))) 
 :effect 
  (= (level-maintained ?tank) FALSE) 
 

Figure 2: A sample of PDDL+ 



 

IDEA EXECUTION CYCLE 

The Plan Runner (PR) executes a simple, finite state 
machine that implements the sense/plan/act cycle of the 
IDEA agent. Each cycle must be completed within a finite 
time interval, the execution latency. At present, an 
agent’s latency corresponds to the minimum quantum of 
time that can be measured by an agent, the agent tick. 
Time is measured by a Timing Service that is also 
capable of warping time, a capability extremely useful in 
simulation to significantly compress the time needed to 
run multi-day scenarios. The PR operates as follows:  

• The PR wakes up at the first tick after a message 
has been received from another agent, or at the 
tick when a wakeup timer has gone off; 

• The state of the Agent Relay is updated with 
respect to the information resulting from the 
wakeup event (e.g., an event representing the 
return value of a control action has been 
received); 

• The RP is invoked and the planner synchronizes 
its internal state with the Agent Relay through the 
Plan Service Layer.   

• When the RP terminates, the agent relay loads 
the new context of execution and sends 
appropriate messages to the external agents. 
For example, if a control action has been 
terminated by the reactive planner, an event 
corresponding to the procedure’s return value 
(determined by the RP) is sent to the agent’s 
goal-setting interface (the controlling agent) 

• The RP is invoked to determine what is the next 
time at which execution is expected to occur 

(barred any external communication). The time is 
set in the Timing Services module as the next 
wakeup time for the agent; 

• The plan runner goes to sleep and waits for an 
external message or the expiration of a wakeup 
timer. 

PLAN DATABASE  

The reactive planner continuously updates a data 
structure, called Plan Database (PD) (see Fig. 4), which 
represents the I/O and internal state of the agent. The 
PD describes the past and the future execution state of 
the agent as a set of timelines (one for each state 
variable). A timeline represents the history of a state 
variable over a period of time. Each history is a sequence 
of tokens built by the RP keeping the consistency with 
respect to the IDEA model. The reactive planning is to 
refine the plan database checking for the consistency of 
the PD with respect to the current execution state and 
providing an execution plan up to a planning horizon.  
For a given timeline the past history represents ended 
activities and states while the future history is a complete 
plan of activities with maximum flexibility, i.e., the start 
and end times are defined only if necessary.   

Inconsistencies between expectations and actual events 
occurring in execution (e.g., a mismatch between actual 
and expected time of occurrence for a store-level-
not-within-target) must be reconciled by the RP 
before execution can continue (but still within the agent 
latency constraint). Only when the plan fully conforms to 
the model for a specified horizon following the current tick 
can the execution cycle be completed.  

 

Figure 3:  An Overview of the IDEA control architecture 



 

REACTIVE AND DELIBERATIVE PLANNING  

In IDEA reactive planning determines the next action on 
the basis of sensory input and time lapse wakeups. The 
key parameter for the reactive planner is the reactive 
planning horizon whose choice is critical to obtain the 
correct balance between reactivity (i.e., the required 
latency for the agent) and effectiveness of control. The 
longer the horizon is, the more robust the control actions 
(due to a better proactive capability with respect to future 
effects) but the less reactive the agent (due to a 
potentially exponential increase in the search space with 
every additional step in the plan). Note that limiting 
reactive planning to a horizon of a single latency 
guarantees that the reactive planning process has 
minimum possible duration, making reactive planning 
effectively equivalent to reactive action expansion in 
procedural executives. 

More complex problem solving (e.g., long-term task 
planning) typically requires more time than the latency 
allows. IDEA provides a rich environment for integrating 
any number of deliberative planners within the core 
execution cycle (Fig. 4). IDEA does not impose limits on 
the search methods that can be used by the deliberative 
planners. The only requirement is that the deliberative 
planners eventually communicate plans into the PD to 
which the reactive planner also has access. Note that it is 
perfectly reasonable for the deliberative planner to use 
the same search engine and heuristics of the reactive 
planner, with the deliberative planning horizon being the 
only key difference with respect to reactive planning. In 
this project we plan on using this approach to 
differentiate between deliberative and reactive planner. 

Different specialized planners can cooperate in building a 
single plan coherently with the agent’s model. In IDEA 
the activation for a deliberative planner is programmed in 
the model. This can be obtained by modeling the planner 
like any other subsystem, i.e., by specifying a timeline 
that can take tokens whose execution explicitly invokes 
the planner. This makes it possible to appropriately plan 

the time at which deliberate planning can occur 
compatibly with the internal and external state modeled 
by the agent. 

PRELIMINARY RESULTS 

We have just begun implementing an IDEA controller for 
the BioSim application.  In this section we discuss our 
experimental scenario and we discuss the very first 
IDEA, planner-based controllers that we have 
implemented.    

DEMONSTRATION SCENARIO 

Our demonstration scenario is a 90-day expedition on the 
lunar surface. It assumes a four-person crew, performing 
one extra-vehicular activity per day. A separate biomass 
(plant growth) chamber contains two crops, wheat and 
white potatoes, and maintains a separate atmosphere. 
Both crew and biomass environments share a common 
drinking water supply; both environments also have small 
air leaks.  

The air recycling system includes an oxygen generator, 
which electrolyzes drinking water to oxygen and 
hydrogen gases, and a carbon dioxide scrubber. The 
biomass chamber also serves as part of the air recycling 
system, converting carbon dioxide into oxygen and plant 
matter via photosynthesis. Storage tanks hold oxygen, 
hydrogen, nitrogen, and carbon dioxide gases. A modest 
amount of oxygen, nitrogen, and carbon dioxide are 
provided at the start of the scenario, to account for losses 
due to leakage.  

The water recycling system takes grey water and dirty 
water from the crew chamber and other sources, and 
converts them to potable water and solid waste by a 
variety of processes. Dehumidifiers in the crew and 
biomass chambers extract excess moisture from the air. 
A food processor converts biomass into food for the 
crew, dry waste, and grey and dirty water. Electrical 
power is generated by a solar cell array, and stored in a 
large battery.  

Figure 4:  The plan database 



The scenario allows for some uncertainty and calamity. 
The simulator can induce stochastic errors in the values 
reported by sensors, and the commanded positions of 
actuators. The simulator can also introduce failures in 
components and crops, and unexpected losses of air and 
water. The simulated failures we plan to demonstrate will 
range from the trivial to the catastrophic. 

The IDEA agent is charged with managing several 
variables in this scenario: 

• Potable H2O tank level, via control of power to 
the water recycling system, and control of water 
flow rate to crops 

• O2 tank level, via control of the flow rate from the 
biomass chamber accumulator, and control of 
power to the oxygen generating system 

• CO2 level in biomass chamber, via control of CO2 
injector flow rate 

• Wheat planting time and amount planted 

• Wheat crop harvest time 

• White potato crop planting time and amount 
planted 

• White potato crop harvest 

• Biomass chamber light level 

The demonstration is a success if the IDEA agent can 
keep the crew and plants alive with smaller initial stocks 
of consumables (initial O2, H20 and crop seeds) and lower 
system mass (smaller potable H20 tank, smaller O2 tank, 
smaller power supply, smaller cabin volume, etc.) when 
compared to a default control scheme on the same 
variables and the same failures. 

To do this, the IDEA agent must successfully integrate 
two kinds of control: fairly continuous, real-time control of 
variables such as the O2 accumulator and CO2 injector; 
and fairly discrete, long duration control of variables such 
as crop planting and harvesting. It must also successfully 
represent and reason with qualitative information 
(planting times, etc.) and quantitative information (diff. 
equations underlying plant growth, 02 and H2O production 
and CO2 consumption). 

PRELIMINARY IDEA CONTROLLER 

As a first step, we have implemented a simple reactive 
controller which maintains the levels in the potable water 
tank and the oxygen tank. The reactive controller is 
intended to be used at the lower level of a hierarchy of 
controllers. The desired minimum and maximum levels 
for both tanks can be specified manually, or by a master 
controller. The reactive control algorithm attempts to 
keep the actual levels within those limits, using only 

knowledge of the current state of the system and its 
immediate past. 

The potable water tank’s level is controlled by managing 
electrical power to the water recycling system, and by 
directly controlling the water supply valve to the biomass 
chamber. If the level is too low, the water recycling 
system is powered to its maximum capacity, or the water 
supply valve to the biomass chamber is closed, or both. 
Likewise, if the level is too high, the water recycling 
system is switched off, or the output to the biomass 
chamber is opened to its maximum capacity, or both. 

The level in the oxygen tank is controlled similarly by 
controlling two sources of oxygen. One of these is the 
oxygen generating system, which is controlled by 
managing its electrical power. The other source is the 
oxygen accumulator, which extracts oxygen produced by 
photosynthesis in the biomass chamber; it is controlled 
via a valve in the return line to the oxygen tank. 

The controller currently uses a simple “on or off” 
algorithm, with local memory of the current state of the 
controls. For example, if the water tank has been below 
the target minimum level for 3 simulation ticks, and the 
water recycling system is already at full power and the 
water supply valve to the biomass chamber is already 
closed, it knows that it can do nothing further, and just 
waits for the water level to rise. 

Commanding is closed-loop. The IDEA agent expects 
confirmation from the simulation that each command has 
been completed. This is to allow for recoveries in cases 
of transient or persistent faults. The agent does not 
currently support retrying commands in the event of a 
fault; it simply transitions to a fault state. Nor does the 
agent monitor the flow rate sensors to judge the effect of 
a command. These are extensions we plan to add in the 
near future. 

At present the two tanks are controlled independently 
from each other. There is one direct interaction between 
the two tanks, and several potential indirect interactions. 
Control of the oxygen generating system has a direct 
effect on the level of the potable water tank. As more 
electrical power is fed to the Oxygen Generation System 
(OGS) in an attempt to produce more oxygen, its 
demand on the potable water the supply increases. 
Indirect interactions include contention for limited 
electrical power, water flow rate to the biomass chamber 
affecting the rate of photosynthesis, and so forth. Such 
interactions will be modeled in the future. 

CONCLUSION 

An effective life support control system can reduce 
system mass, reliance on ground controllers, and crew 
time spent monitoring life support functions.  For these 
reasons, life support control systems are an enabling 
technology for long-duration space missions.  This paper 
describes the need for qualitative modeling and 
reasoning in order to more effectively control the 



interactions and resource constraints of advanced life 
support systems.  We hope to engage the planning 
community by representing the life support domain in a 
language that they understand.  A first step is to encode 
life support models in PDDL+.  A second step is to test 
those models in a planner-based control architecture.  
We are just beginning this process.   
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ACRONYMS 

ALS Advanced Life Support 

IDEA Intelligent Distributed Execution Architecture 

PD Plan Database 

PDDL Planning Domain Definition Language 

PR Plan Runner 

RP Reactive Planner 

 

 


