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Abstract- The Reconfigurable Hardware in Orbit (RHinO) 
project is focused on creating a set of design tools that facilitate 
and automate design techniques for reconfigurable computing 
in space, using SRAM-based field-programmable-gate-array 
(FPGA) technology. In the second year of the project, design 
tools that leverage an established FPGA design environment 
have been created to visualize and analyze an FPGA circuit for 
radiation weaknesses and power inefficiencies. For radiation, a 
single event Upset (SEU) emulator, persistence analysis tool, 
and a half-latch removal tool for Xilinx Virtex-II devices have 
been created.  Research is underway on a persistence mitigation 
tool and multiple bit upsets (MBU) studies. For power, synthesis 
level dynamic power visualization and analysis tools have been 
completed. Power optimization tools are under development 
and preliminary test results are positive. 
 

I. INTRODUCTION 

SRAM-based FPGAs have become a promising solution 
to processing on space-based payloads. They offer features 
that anti-fuse FPGAs do not, such as reprogrammability, 
embedded multipliers, and embedded processors, while also 
offering 5-10x more logic gates. These features allow 
SRAM-based FPGAs to address resource multiplexing, fault 
tolerance, mission obsolescence and design flaws in on-orbit 
payloads that directly impact design cost and mission risk, 
while also providing better processing performance. 
However, a significant barrier to developing space-ready 
SRAM-based FPGA applications is the difficulty in 
designing for the rigorous constraints mandated by the 
operational environment. Two main issues limit the use of 
conventional FPGAs to such designs: 1) SRAM-based 
FPGAs are sensitive to radiation effects, namely, total 
ionizing dose (TID), single event latchup (SEL), and single-
event-upsets (SEUs), because of their high proportion of 
memory structures; and 2) SRAM-based FPGAs designs 
tools optimize for throughput at the expense of power.  

 Current foundry process technology for Xilinx FPGA 
devices provides enough tolerance for a large number of ESE 
orbits for total dose and latch up (no destructive latchups 
have been reported), however the SEU presence is a major 
design/operational issue. The large amount of static memory 
within SRAM-based FPGAs, such as look-up tables, routing 
switch tables, etc., makes them sensitive to SEUs. While 
traditional hardware redundancy techniques improve the 
reliability of FPGA designs (at the expense of increases in 
hardware, power, etc.), novel FPGA-specific techniques are 
required to address the unique vulnerabilities of SRAM-
based FPGA architectures, while incurring less hardware 
overhead. Therefore, design automation tools evaluating and 

assessing the reliability of FPGA designs, inserting 
appropriate redundant hardware, and manipulating the low-
level structures of the FPGA design are needed for robust 
operation and SEU and latch-up tolerance. 

Available FPGA synthesis tools optimize for speed or 
area, but not for real-time power consumption. Limited 
power estimation tools are available, such as Xilinx’s 
XPower; however, these are difficult to use and have limited 
utility to the actual FPGA design process. Accurate power 
estimates are only achievable after completing an entire 
iteration of the design cycle and provide no power 
optimization guidance. To make effective use of FPGAs in 
space, tools providing accurate power estimation and 
dynamic power optimization, operating on the FPGA’s gate 
logic or on individual configurable logic blocks (CLBs), are 
needed; specifically: 1) to monitor power consumption early 
in the design process at a useful granularity (e.g., at CLB); 
2) to aid in the design analysis that captures data-dependent 
transients as well as overall power consumption; and 3) to 
perform automated dynamic power optimization. 

Both the radiation-induced and power consumption 
effects are currently handled through manual intervention or, 
at best, through ad-hoc in-house tools. There is a real need in 
the community for validated design tool automation to raise 
the technology readiness level (TRL) of SRAM-based FGPA 
user designs. The RHinO project is leveraging an 
established, open-source tool-suite that accepts output from 
commercially available synthesis tools to create tools that 
allow the developer of a space-based FPGA application to 
automatically analyze and optimize a Xilinx Virtex II FPGA 
circuit for both space radiation effects and power utilization. 

 In the second year of this effort, the space radiation 
effects and power analysis tools were refined and leveraged 
to build optimization tools. The final year of this effort will 
focus on validating and improving the optimization tools in 
the relevant environment. This paper will outline the JHDL 
tool suite and extensions made to it for the RHinO toolkit in 
section II. SEU effects tools are discussed in Section III, and 
power utilities are discussed in Section IV. Synergy with 
evolvable algorithms for mitigating SEL effects are discussed 
in Section V. Section VI will summarize the progress to date 
and draw conclusions.  

II. The JHDL Tool Suite 

A. Background 

As outlined in [1], the RHinO tools suite is built upon the 
open-sourced JHDL [2] FPGA design environment. The tool 



suite, shown in Figure 1, contains a digital circuit simulator, 
a circuit hierarchy browser, FPGA library primitives, and 
tools for exporting user designs into EDIF and VHDL. JHDL 
provides an open API into the circuit structure to facilitate 
the creation of application-specific design aids for viewing, 
revising, manipulating, or interacting with a user design. The 
integrated design aids, circuit API, and flexibility of JHDL 
make it an ideal tool for aiding the development of radiation-
hardened and power-aware space-based FPGA designs. A 
variety of application-specific tools can be created to analyze 
and improve the reliability of FPGA circuits. 

 
Figure 1. JHDL Tool Suite 

Under this effort, RHinO is devising new features for 
JHDL, specific to space environments, which would enable 
SRAM-based FPGA payload developers to confidently 
manage the limiting on-board spacecraft design constraints 
for power, radiation effects, fault-tolerance, reliability, etc. A 
key goal of the effort is interoperation with existing 
commercial tool flows based on VHDL/Verilog, through 
seamless JHDL-EDIF translation.  Alternatively, the user can 
work entirely in the JHDL design environment, using the 
RHinO power and SEU tools in concert with the normal 
JHDL features for simulation, netlisting, and runtime control, 
all within a single user interface.    

 
B. RHinO Enhancements 
 During the first year of this effort the JHDL infrastructure 
was enhanced to support the desired SEU mitigation and 
power tool functionality. A GUI event API was developed to 
support intercommunication and interoperability with other 
modules, or tools that could be dropped into JHDL. As 
shown in Figure 2, this has led to the development of 
multiple tool modules being able to leverage the core JHDL 
capabilities.  
 Recently, considerable effort was spent enhancing the 
EDIF netlist tool, originally created to support importing 3rd 
party IP. The EDIF netlist parser and data structure software 
provides the central design database for both the RHinO 
power analysis tools and RHinO design reliability and 
mitigation tools. These tools provide two important 
capabilities for the RHinO tool suite. First, these tools 
provide the capability of importing an FPGA design created 
with a third-party tool into the RHinO infrastructure. Second, 
these tools provide a consistent circuit database for each of 
the tools created in the RHinO project. 

The relationship between the EDIF tools and other 
RHinO tools is shown below in Figure 2. An FPGA design is 
loaded into the RHinO suite through the EDIF parser and 
into the EDIF data structure. At this point, the design can be 
manipulated or analyzed using one of several RHinO tool 
components. For example, power estimates of the design can 
be made by using the JHDL/RHinO power estimator tool 
chain. In this mode, a dynamic simulation of the design is 
created in JHDL to obtain the activity rates of design 
components and nets. The power estimation and viewer tools 
are available for browsing and viewing the results of this 
design simulation.  Alternatively, the design reliability 
analysis tools may be invoked from the EDIF data structure. 
With these tools, the reliability of the design can be analyzed 
and presented to the user. As the project matures, design 
mitigation and power optimization techniques can be applied 
to improve the design over its original specification. 

 
 
 

Figure 2. Tool Infrastructure 

C. Cross Tool Naming and Correlation 
An important capability required within this design 

infrastructure is the ability to correlate design resources 
between the various tool stages and with the COTS tool flow. 
For example in power analysis, design resources are 
represented in three different design databases. First, design 
resources are specified in the original EDIF source and are 
captured within the EDIF design environment. Second, the 
EDIF design is translated to the JHDL for dynamic 
simulation. Third, the EDIF design is translated to the FPGA 
technology specific netlist after technology mapping. The 
power capacitive loading values are made available at this 
level, but need to be relayed to higher levels to make power a 
first class design constraint. 

To properly analyze and estimate the power consumption 
of FPGA designs, design resources must be correlated 
between the three design representations. Figure 3 below 
represents the relationship between these design 
representations. The difficulty in name correlation occurs due 
to the difference in the way that the vendor specific names 
and the JHDL simulation environment interpret names. The 
vendor-specific “Xilinx” naming scheme uses the EDIF 
“original” name for naming each of these resources. These 
names are the names chosen for design resources by the 
original design synthesis tool. JHDL uses the “valid” EDIF 



name to represent each of its design resources. A name 
management resource was added (represented by the red 
arrow to the right) to provide a fast matching capability 
between the simulation environment in JHDL and the 
capacitive loading resources defined by Xilinx. 
 

 
Figure 3. Signal Naming Relationships 

 
 These tool enhancements were critical to better 
interoperation with the commercial-off-the-shelf (COTS) 
synthesis, placement and routing (PAR) tools, as well as to 
provide what until now has been low-level bit-stream 
information at higher levels. Bringing this information to 
higher levels allows the tools outlined in sections III and IV 
to operate on smaller, faster files and databases, and more 
easily relay information to the user at the design entry level. 
 

III. SEU Radiation Effects 

A. Background 
 To further advance the TRL level of Virtex-II FPGAs for 
space applications, the RHinO project has a goal of 
improving the reliability of user designs in the presence of 
SEUs.  SEUs are the main radiation concern since these 
FPGAs have been shown to have acceptable tolerance to TID 
as well as to SEL for low earth orbits (LEO).  SEUs can 
occur in several memory structures on these SRAM-based 
FPGAs [3 4], namely in the support and control logic, the 
user design state, the programming memory (often called the 
configuration memory), and half-latches.  Upsets in the 
support and control logic can have a range of effects, from 
fairly benign to totally erasing the contents of the FPGA 
configuration memory.  Upsets in the user design state, such 
as in flip-flops and on-chip memories, may cause faults to 
occur in the user design's operation, while upsets in the 
configuration memory may change the user's design directly 
by changing the connectivity of logic or changing the logic 
functions themselves.  

This year, the SEU radiation research completed the 
development of the SEU emulator and half-latch mitigation 
tool and focused on two specific areas, error persistence and 
multi-bit upsets (MBUs). Error persistence refers to length of 
time an error persists once a circuit experiences an SEU.  
Circuits with feedback paths or containing state machines 
may experience a significant degree of error persistence. For 
some applications, it may be enough to apply triple-modular 
redundancy (TMR) to the parts of the circuit exhibiting the 
most error persistence, drastically reducing the amount of 
overhead usually associated with TMR. MBUs due to a 
single charged particle are important since they could 
potentially affect multiple modules in TMR and produce 
incorrect circuit values. 

B. SEU Analysis and Emulation 
To analyze an FPGA design for SEU robustness for half-
latches, persistence, and MBUs, an effective SEU emulation 
platform, the Virtex-II SEU Emulator (V2SE), was 
completed for characterizing individual designs for their 
particular set of SEU sensitivities.  The V2SE is a 
combination of COTS hardware, custom software, and a 
single, low-cost (<$150) custom printed circuit board (PCB). 
  
 

 
Figure 4. COTS-based SEU Emulator 

 
The V2SE has been validated using a series of different 

tests and designs. Further, a graphical interface was 
developed to allow the user to better visualize the results of a 
particular execution of the V2SE on a design. Since the 
results of the SEU emulation sessions have the same 
floorplan as the user FPGA designs themselves, the 
visualization tools also suggest that SEU emulator is 
performing well. 

The object of SEU emulation is to provide a cost-
effective and quick alternative to accelerator testing for 
understanding user FPGA designs’ SEU sensitivities.  To 
validate this goal, the cost of upsetting 1.5 million 
programming bits through irradiation was compared against 
the costs of the V2SE.  The V2SE, including the cost of a 
Linux PC to control the boards, costs about $6000.  The 
V2SE can inject 1.5 million bit upsets in about 30 minutes 
given the above criteria.  At an accelerator, a similar number 
of upsets with the same ability to distinguish the cause of 
output errors would take about 11 days of test time 
(assuming about 1.5 SEUs per second).  Further, the V2SE 
provides considerably more control over what gets upset and 
when than the accelerator. 

C. Half-Latch Mitigation 
To meet the goals for automated SEU mitigation of 

Virtex-II user designs, the V2SE was employed in validating 
the RadDRC-II tool, which was developed to eliminate half-
latch SEU sensitivities from user FPGA designs.  Unlike the 
results of using SEU emulation for Virtex, SEU emulation 
for Virtex-II does not seem to upset half-latches as 
frequently.  In fact, there was no noticeable difference 
between unmitigated Virtex-II designs and those mitigated 



by RadDRC-II. 
The V2SE was then used for a proton radiation test at 

Crocker Nuclear Laboratory to further validate the effects of 
the RadDRC-II.  The initial results with 63 MeV protons 
suggest that RadDRC-II does improve the reliability of 
designs, but more test data is required to confirm this.   

More specifically, two hard lockups of the unmitigated 
designs were observed—lockups that were typical of half-
latch behavior with the earlier Virtex family.  During one 
test, the unmitigated design also showed significant 
sequences of design lockups (>10 consecutive lockups).  The 
mitigated designs did not show either of these behaviors. 

D. Persistence 
Characterizing the error persistence within FPGA designs 

[5 6] is of interest because it can lead to a way of gaining 
design robustness without extensive redundancy.  For 
instance, for a certain test signal processing design, SEU 
emulation was performed on the design (i.e., intentionally 
injecting faults into the FPGA’s programming data) and the 
FPGA programming bits that caused persistent errors were 
characterized. For this particular design, about 10% of the 
FPGA’s configuration bits caused an output error while only 
about 0.24% of the configuration bits caused a persistent 
error—almost two orders of magnitude fewer bits (see Figure 
4).  This suggests that to have a design that continues to 
operate in the presence of SEUs without the need of a design 
reset, a significantly smaller amount of redundancy may be 
needed than full triple modular redundancy for the design. 

 
Figure 4. Comparison of Total Sensitive Cross-section 

(middle) to Persistent Cross-section (right) for a test DSP 
design (left) 

 
During multiple tests at Crocker Nuclear Laboratory 

using 63 MeV protons, the SEU emulation predicting SEU 
error persistence for designs was verified. Four designs were 
tested, including the test digital signal processing (DSP) 
design (as mentioned above), a pipelined array of multipliers 
and adders, a design with an array of 8-bit counters, and a 
TMR version of the counter array design.  

The bitstream SEU sensitivity observed at the accelerator 
matched the predicted sensitivity using SEU emulation quite 
well.  For the unmitigated designs, greater than 90% of the 
bits that caused output errors in the accelerator testing also 
caused output errors during  SEU emulation.  With the TMR 
design we tested, only 60% of the bits that caused an output 
error seen by the accelerator were predicted by SEU 
emulation, but this was not a big concern since the design 
had very few problem bits to begin with at the accelerator (a 
total of 5), so the actual difference in only a few bits. 

With regards to error persistence, the proton tests 

confirmed that SEU emulation is effective at predicting the 
statistics of the persistent errors.  For the four test designs, 
the accelerator’s results were within 15% of what was 
predicted through SEU emulation.  Further, it was confirmed 
that there are no “hidden” structures in the FPGA (other than 
unmitigated half-latches) that will cause this persistence 
behavior. 

The results also point out, though, that the prediction of a 
particular persistent failure can be very difficult due to the 
large state space for significant digital designs and the 
variable amount of time required for certain errors to be 
flushed out of the system.   In other words, the persistent 
failures often depend heavily on when an SEU occurs, what 
was upset, and what data was being processed at the very 
moment of the upset.  Further, for some designs, the longer 
one waits for values to flush out of the system, the fewer 
upsets will be classified as persisent since more and more 
will eventually flush out of the system.  In other words, 
persistence as tested through SEU emulation and sampled at 
the accelerator is always relative to the amount of time 
allowed for errors to flush out of the system. 

E .MBU Analysis 
The main concern with respect to MBUs is whether or 

not MBUs can affect user FPGA designs that employ TMR 
or other forms of redundancy.  To better understand the 
frequency of multi-bit upsets due to individual strikes by 
charged particles, Xilinx FPGAs from the Virtex, Virtex-II, 
and Virtex-4 families were irradiated with 63 MeV protons 
during multiple visits to Crocker Nuclear Laboratory. For 
these experiments, the occurrence of SEUs in these FPGAs 
was sampled and then the sampled SEUs were clustered 
based on their physical locations on the devices. An 8-bit 
neighborhood was used around each bit to determine 
adjacency.  It was observed that 0.045% of the upset events 
experienced by Virtex XCV1000 FPGAs were MBUs while 
about 1.07% of all upset events experienced by Virtex-II 
XC2V250 and XC2V1000 FPGAs were MBU events—an 
increase in frequency of about 24 times between the FPGA 
families.  As expected by Xilinx, Virtex-II exhibited a 
significant bias in the location of MBUs—88% of the MBUs 
were within the same configuration data frame—while Virtex 
MBUs were entirely within the same row of configuration 
data (adjacent configuration data frames with the same bit 
offsets).  The Virtex-4 data has not been completely 
analyzed, but initial real-time feedback provided at the test 
suggested that about 1% of the events were MBUs. 

For test data verification, the probability of causing false 
MBUs randomly was calculated and then compared against 
Monte Carlo simulations to verify these predictions.  The 
results of this analysis are shown in Table 1.   In the worst 
case, the actual observed MBU rates were more than 25 
times the predicted false MBU rates, suggesting that an 
actual MBU phenomenon has been observed. 

The RHinO team has also started analyzing heavy ion 
data that was taken by Xilinx and the Xilinx Radiation Test 
Consortium for Virtex-II.  The early analysis of the data has 
been for LETs of 1.5-60 MeV/mg/cm2.  For these LETs, 1% 



to 35% of the events observed are MBUs.  A more detailed 
report on  MBUs in SRAM FPGAs can be found in [7]. 

  
Table 1.  Comparison of the probability of false MBUs 

with observed MBU rates 
 

IV. Power 

A. Background 
 Current SRAM-based FPGA design tools have been 
created with only speed or area optimizations as their goal 
and only recently have accurate power measurement tools 
become commercially available. These tools, such as the 
Xilinx XPower tool, are limited in the content of the power 
information they provide, readability, and their entry point in 
the FPGA design flow. Pre-place and route estimates are 
currently performed by manually entering and estimating 
device utilization, toggling rates, and routing interconnect, 
and automated power measurements are only available after 
going through a complete iteration of the entire design flow. 
This process can be ad hoc and time consuming, as a 
designer needs to interact with multiple tools that generate 
multiple memory-hungry intermediary files. At this level, the 
machine-generated signal names are difficult to resolve with 
their functional level counterparts in order to make 
optimizations. In other words, very little guidance is given to 
the designer on how to optimize if the power specifications 
were not met.  

The goal of the power analysis and optimization tools is 
to make power a first-class design constraint by moving 
power analysis and optimization closer to the design entry 
point, with the help of the tool improvements outlined in 
Section II. Whereas the first year of this effort focused on 
developing accurate time-based power simulations of placed 
and routed circuits and enabling capabilities to rapidly sort, 
find, and cross probe signal and components, the second year 
used this infrastructure to develop more sophisticated power 
modeling to do power estimation and analysis at the post 
synthesis level, without the need for going through place and 
route. 

 
B. Post Synthesis Power Modeling 
 

Modeling at the post synthesis level has the following 
advantages: 1) early power feedback in the design flow, 2) 
power results are displayed at a high level, closer to the 
logical design entry point 3) and bulky, low-level timing 
accurate simulation and stimulus files are eliminated. These 
three aspects allow a designer to quickly and easily generate 
power estimates, relate the results back to their original 

logical level design entry, and explore design trade-off 
scenarios. The results presented here were derived using 

Xilinx Virtex-II FPGAs and tool suites, however the 
techniques apply to all FPGAs. 

The technical approach can be broken into two parts, 
developing a tool infrastructure to support synthesis level 
simulation and circuit queries, and developing a synthesis-
level power model. The tool infrastructure was discussed in 
section II to develop power tools to support querying and 
assigning capacitance values, and tracking wire toggle rates 

during simulation. Additionally, interoperability with the 
Xilinx tool flow was added, allowing XPower reports and 
.ncd files to be imported for detailed analysis of a placed and 
routed circuit’s power characteristics. This environment 
allows a synthesized circuit to be directly compared against 
its placed and routed form to track what factors at the 
synthesis level lead to high power consumption at the placed 
and routed level. This environment allows the development 
and experimentation of several power models, from generic 
‘toggle rate only’ models to the exact timing-level placed and 
routed circuit. After the power models have been created and 
verified, the end user can import their design into the JHDL 
environment using the EDIF import tool and simulate using 
the Synthesis Power Model (SPM), to generate synthesis 
level power reports, as depicted in Figure 5. 

  
Figure 5. Power Modeling Tool Infrastructure 

For generation of the SPM, placed and routed circuit 
power consumption was analyzed and then compared with 
the available information at the synthesis level. Dynamic 
power consumption is described as: 
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4VLX25 7900864 750 0.0379% 0.0379% 1.000% 26.38
2V1000 3744768 280 0.0298% 0.0298% 1.070% 35.89
2V250 1588244 60 0.0149% 0.0149% 1.070% 71.83
V1000 5810048 10 0.000620% 0.000621% 0.045% 72.44

where F is the frequency, T is the toggling rate, C is the 
capacitance and V is the voltage of the ith component. For 
our modeling, we will assume the voltage will be fixed as per 
device specifications. The frequency and toggling rate of 
each net can be tracked within the JHDL simulation 
environment, allowing multiple subcomponents of the design 
to be tracked and the window of time that the power is 
averaged over to be changed dynamically during simulation, 
as shown in Figure 6. 

The final term, the capacitance of each component, can 
be broken into two parts, the capacitance of the FPGA logic 
resource (ie LUT, BlockRAM, Multiplier etc) and of the 
interconnect route that it drives. Some capacitance 



information of FPGA resources has been published and other 
resources’ capacitance values can be extracted from the 
XPower reports to create a complete resource capacitance 
model for any Xilinx device. 

 

 
Figure 6. Power Tool Simulation 

 The final and perhaps most difficult piece is modeling 
the routing interconnect. While an unoptimized list of the 
resources is known at after synthesis, the exact routing 
interconnect is unknown until placement and routing is 
performed, which can account for 50-70% of the dynamic 
power consumption of a circuit. In the Xilinx Virtex 2 device 
for example there are 4 types of interconnect (direct connect, 
doubles, hex, and long lines), each with a different 
capacitance and they can be joined in any number of 
combinations. Slight logic changes or different random seed 
inputs to the Xilinx place and route tools can yield large 
differences of a particular net’s length as the router is purely 
timing constraint driven. 

Using the JHDL power infrastructure, several designs on 
a Virtex-II 6000 varying in functionality and utilization, as 
shown in Table 2, were profiled and relationships between 
wire capacitance and fanout, wire length, number of switch 
boxes etc, were explored. Fanout proved to not only be a 
strong predictor of net capacitance; it also correlates well 
from the placed and routed circuit to the synthesized circuit. 
Though wire length and the number of switch boxes also 
correlated well with placed and routed net capacitance, this 
information is not available at the synthesis level. Figure 7 
depicts the capacitance versus fanout plot for the nets in the 
Counter circuit. The fanout relationship was aggregated over 
all the designs in the circuit modeling pool to develop the 
SPM. It should be noted it is not expected to achieve precise 
power estimation at the post synthesis level, but rather to be 
accurate enough to guide the user to design-level hot-spots in 
the circuit. Single net outliers from the fanout behavior are 
best left to lower level analysis and optimization in XPower 
and FPGA Editor. 

After the SPM was developed, we modeled the power 
consumption of the circuits in Table 1 and compared them to 
the values obtained by using the corresponding placed and 

routed circuit and XPower results. For the counter circuit a 
mean power error of 3.2% per net and load, with a standard 
deviation of 1.6% is achieved. Further enhancements to the 
model, such as predicting routing congestion based on total 
device utilization, are also being evaluated.  

 
Design  Utilization Flip-Flops Multipliers 

Test Circuit 2% 1,737 8 

Config. Controller 4% 1,240 0 

Network Interface 8% 3,083 0 

Counters 10% 3,658 0 

FP Multiplier 10%  4,243 52 

Design 1 11% 5,254 12 

DSP Soft Core 16% 1,981 0 

Image Conv. Kernel 22% 7,231 18 

8x8 Image Conv. 30%  11,293 130 

FFT core 47%  23,098 96 

Design 2 49%  23,291 84 

Design 3 64%  19,389 120 

Table 2. Circuit Power Modeling Pool 

 
Figure 7. Net Capacitance vs. Fanout  

C. Power Optimization  

Dynamic power consumption can be reduced by reducing 
any term in equation 1, however as the voltage is fixed and 
the operating frequency and toggling rates are largely 
application driven, the most robust approach is to lower the 
switching capacitance. Dynamic power spans I/O power, 
logic component power, and signal power. The initial focus 
of the power optimization tools is to reduce the signal and 
clocking power of a circuit as I/O power is determined more 
by external interfacing requirements off chip, and logic 
component, such as CLBs, block RAMs, block multipliers, 
and DLL/DCMs are determined during synthesis. 

At the level in the COTS tool flow that the RHinO tools 
are currently capable of addressing, the biggest power 
variable we can address is length, and therefore capacitance 
of the signal interconnects. In the following sections, two 
methods for optimizing signal power within the context of 
the COTS PAR tools without altering FPGA design 



functionality are discussed.  Both of these methods work 
based on shortening signal routing paths for reducing signal 
capacitances.  

Figure 8 depicts the power optimization tool flow on the 
left hand side, and the verification tool flow on the right hand 
side. The power optimization tools for both methods generate 
user constraint files, which are input to the Xilinx PAR tools. 
With these added constraints, the COTS tools are able to 
create more power efficient circuits. The first power 
optimization method presented is to add timing constraints 
on signals. The second method is to add location constraints 
on flip-flops. Both methods have the effect of over 
constraining power sensitive parts of the circuit, forcing the 
PAR tools to use shorter, lower capacitance interconnects.  

 
Figure 8. Power Tool Flow 

Timing Constraint Based Power Optimization 

In the timing constraint power optimization approach, 
timing constraints are added to signal wires to essentially 
translate power interconnect specifications into timing 
constraint specifications that the Xilinx PAR tools can work 
with. By raising timing constraints above the minimum 
operating frequency for high capacitance signals in a design, 
the PAR tools work to achieve shorter, or more power 
efficient, routes. From VLSI interconnect technology[8], the 
delay of a wire is proportional to wire capacitance C, 
therefore minimizing delays has the added benefit of 
minimizing capacitance and therefore power. In this way, 
power optimization is achieved by over-constraining the 
timing on signal wires to get lower signal capacitances.    

Currently, the power optimization tools provide the user 
with a wire table, which can be sorted by simulated power 
consumption, load, fanout, etc. This helps the user to identify 
the most power critical wires, and rapidly create timing 
constraints on every net in a design if desired. For 
preliminary results to verify our methodology, we used a 
memory diagnostic and EDAC circuit for testing which 
contained 10,259 signals. The average toggling rate per wire 
during simulation was 12.5%. Testing was done on a variety 
of cases such as putting constraints on all toggling nets, 
constraints on nets with fanout of 10 or less, the top 25% 
most power hungry nets, etc. Preliminary results showed 
better placed and routed circuits with up to a 12% decrease in 
dynamic power consumption without changing the 
functionality of the circuit. Experiments are also underway to 
determine the effects of how much timing delay tightening 
should or can be applied. 

 

Location Constraint Power Optimization 

Another way to affect the commercial PAR tools is 
through specified location primitives that either defines 
relative placement to other macros in a circuit or absolute 
placement within the device. By defining the placement with 
an eye towards power optimization, potentially high 
capacitance signal lines with high fanout or high toggle rates 
can be grouped together to minimize routing interconnect. 
Also, another important effect of this approach is that it can 
pare down the clock distribution tree, further reducing 
power. 

 Global clock signals in FPGAs have dedicated low-skew 
nets with short delays.  In the Xilinx Virtex-II FPGAs, the 
clock nets are distributed like a tree into 4 clock zones: 
northwest, northeast, southwest, and southeast [9]. 
Furthermore, each clock zone quadrant branches further into 
sub-zones. In the chip investigated here, the Vertex-II 6000, 
each clock zone had 6 clock sub-zones, 88 x 16 slices in each 
sub-zone. The main clock trunk travels in the north south 
direction across the middle of the chip, with clock branches 
extending out from the trunk to the west and east into the 
sub-clock zones and clock sink cells. Clock sink cells include 
flip-flops, which dominate clock sink components, block 
RAMs, block multipliers etc. Unused clock branches remain 
static, so moving logic to trim the clock tree reduces power 
consumption. Figure 9 depicts two different placements of 
two flip-flops. On the right hand side, it can be seen that by 
placing two flip flops of the same clock domain near each 
other an entire quadrant of the clock tree can be trimmed, 
reducing power.  

 
Figure 9. Logic Placement Clock Tree Effects 

The power optimization tools for placement currently 
provides the mechanisms to help users decide where to put 
flip-flops and how many FPGA slices are need to 
accommodate a groups of flip-flops. The tool generates 
location constraints automatically. For the same test design 
used in the timing constraint experiments, there are 4 clocks, 
with fanout ranging from 488 to 2825. Preliminary test 
results were obtained for two cases. In the first case, the 
circuit was treated as a module, where I/O logic was free to 
be moved. In this case, dynamic power was reduced by up to 
23%. For the second case, the I/O logic was left in specified 
IOBs, as in a typical full chip design. In this case the power 
was reduced by up to 11%. 

 
D. Current Status and Future Direction 

 The preliminary power optimization results are 
encouraging. It should be noted that these tools currently are 
at a level where user guidance is still required for 
optimization and only a few of the possible optimization 
techniques have been experimented with. In the upcoming 



year, the research will focus on automating the optimization 
process through various algorithmic techniques. Also, the 
timing constraint approach and the placement approach are 
not mutually exclusive, so the effects of combining these two 
methods will also be explored.  

 Finally, the JHDL module generators will be expanded to 
include power (and SEU tolerance) as a design entry 
constraint, in addition to traditional throughput and precision 
constraints. The module generators can then use the known 
performance and capacitance information of FPGA 
components to create optimal modules for a particular 
design.  
 

V. Evolvable Techniques 

A. Background 
Though SEUs are the primary radiation concern when 

dealing with SRAM-based FPGAs, for certain orbits and life-
spans, TID and SEL do become a concern. Since it is 
virtually impossible to replace spacecraft components in-situ, 
there is a clear opportunity for fault-tolerant FPGA circuits. 

Evolutionary algorithm (EA) methods hold promise in 
their ability to search across the space of FPGA 
configurations for those that can function in the presence of 
certain types of faults. Since SRAM-based FPGAs are fully 
reprogrammable, it is possible to restore the functionality of 
the compromised FPGA by re-routing a circuit around 
corrupted resources, a property which the RHinO team is 
exploring. 

Autonomous repair can either provide an alternative 
to or supplement redundancy as a means of restoring lost 
capability. Some circuit configurations are more responsive 
to evolutionary repair than others. If a particular circuit has 
been shown to respond well to evolutionary repair, then EAs 
can be relied on as a primary source of fault tolerance. This 
allows the engineers to avoid the increased size, weight, and 
power consumption, traditionally associated with providing 
redundant spares. In cases when EAs have difficulties 
producing fully functional repairs, it is still possible to use 
these methods alongside traditional redundancy techniques. 
By repairing each individual triplet of a triple-modular-
redundant system, it is possible to improve the performance 
of each triplet by a large enough margin so that the majority 
output is 100% correct (even if each individual output is not.) 
 The objective of the work described here was to 
investigate how various small circuits (some of which are 
commonly used in spacecraft electronics design) respond to a 
pre-determined level of simulated radiation damage. One 
sequential and three combinational circuits were tested. The 
sequential circuit was the quadrature decoder (a 4-state state 
machine.) The combinational circuits were a 3-by-3 
multiplier, a 3-by-3 bit adder and a 4-to-7 bit decoder (a 
circuit used to control the individual segments of a 7-
segment LED display.) The circuits were subject to a number 
of simulated faults, where at least 10% of the circuit’s LUTs 
would be set to produce either a constant 0 or a 1 (simulating 
an output short to power or ground.) In addition, between 

1.5% and 2% of all the LUT bits were “hard-wired” to 0 or 1. 
Such fault scheme was undertaken in order to try and take 
into account the actual logic vs. routing transistor distribution 
on an FPGA. 
 With the specified fault penetration, the average repair 
rate (percentage of circuits which achieved 100% repair) 
ranged from 0% (for the multiplier) to 90% (for the 4-to-7 bit 
decoder.) However, the average improvement in circuit 
performance over the course of each run ranged between 
12.6% and 22.8%. What these results tell us is that while 
some circuits respond better to evolutionary repair than 
others, the EA methods result in noticeable improvement in 
performance in all the circuits tested. The chance of 
successful repair usually depends on the size and complexity 
of the circuit as well as the number and location of the faults; 
but even if EA approach cannot completely repair each 
individual circuit, there is a good chance that it can restore 
100% overall functionality when used in conjunction with 
TMR. 
 
B. Current Status and Future Directions 
 The evolutionary algorithm is being further refined to 
handle larger, more sophisticated circuits using the Virtex-II 
FPGA architecture, with the goal of showing that the 
algorithm is robust enough to solve SELs in the project’s 
benchmark 3x3 image convolution kernel and other real-life 
applications. When a fault occurs in a large, complex circuit, 
the plan is to isolate the fault to a simpler component and 
then to re-evolve the component. Operating on full-sized 
applications on FPGA hardware will be a major thrust of this 
effort. 
 All of the team’s FPGA evolution work to date uses 
bitstring chromosomal representation. This representation is 
the simplest but also the least efficient one. As larger circuits 
are considered, the shortcomings of bitstring representation 
will become more apparent. Therefore, work is underway to 
change the algorithm to a generative (tree-like) 
representation. By being more conducive to component 
reuse, generative representation shortens the chromosome 
length and makes the evolution of the larger circuits more 
manageable. 
 In the upcoming year, the algorithm will be proven on 
larger application circuits and integrated with the rest of the 
RHinO toolkit. Ultimately, the evolutionary algorithm will 
evolve circuits which are not only immune to existing SELs 
but also use guidance from the rest of the RHinO toolkit to 
create circuits that are SEU tolerant as well. 
 

VI. Conclusions 

 In the second year of this effort, the baseline tool 
infrastructure was built upon enabling breakthroughs in  
radiation analysis tools and power analysis tools. The JHDL 
infrastructure was enhanced to allow better GUI 
development and fully support EDIF file import from a 
variety of commercial synthesis tools, which allowed 
multiple tools to be added to the JHDL backbone. In the 
radiation arena, the SEU emulator was completed, the half-



latch tool was verified, and work has begun on persistence 
and MBU analysis. Finally, the power analysis modeling 
tools were completed, allowing a user to obtain accurate 
power estimations early in the design flow and power 
optimization tools have been developed, yielding promising 
initial returns. The next year’s efforts seek to leverage the 
infrastructure, further, validating and verifying the tools and 
measuring the power trade-offs of various radiation 
mitigation schemes. 
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