
Radiation Mitigation and Power Optimization Design Tools for
Reconfigurable Hardware in Orbit

Matthew French1, Paul Graham2, Michael Wirthlin3, Li Wang1 and Gregory Larchev4

1University of Southern California, Information Sciences Institute, Arlington, VA
2Los Alamos National Laboratory, Los Alamos, NM

3Brigham Young University, Proto, UT
4 QSS Group Inc., NASA Ames Research Center, Moffett Field, CA

Abstract- The Reconfigurable Hardware in Orbit (RHinO)
project is focused on creating a set of design tools that facilitate
and automate design techniques for reconfigurable computing
in space, using SRAM-based field-programmable-gate-array
(FPGA) technology. In the second year of the project, design
tools that leverage an established FPGA design environment
have been created to visualize and analyze an FPGA circuit for
radiation weaknesses and power inefficiencies. For radiation, a
single event Upset (SEU) emulator, persistence analysis tool,
and a half-latch removal tool for Xilinx Virtex-II devices have
been created. Research is underway on a persistence mitigation
tool and multiple bit upsets (MBU) studies. For power, synthesis
level dynamic power visualization and analysis tools have been
completed. Power optimization tools are under development
and preliminary test results are positive.

I. INTRODUCTION

SRAM-based FPGAs have become a promising solution
to processing on space-based payloads. They offer features
that anti-fuse FPGAs do not, such as reprogrammability,
embedded multipliers, and embedded processors, while also
offering 5-10x more logic gates. These features allow
SRAM-based FPGAs to address resource multiplexing, fault
tolerance, mission obsolescence and design flaws in on-orbit
payloads that directly impact design cost and mission risk,
while also providing better processing performance.
However, a significant barrier to developing space-ready
SRAM-based FPGA applications is the difficulty in
designing for the rigorous constraints mandated by the
operational environment. Two main issues limit the use of
conventional FPGAs to such designs: 1) SRAM-based
FPGAs are sensitive to radiation effects, namely, total
ionizing dose (TID), single event latchup (SEL), and single-
event-upsets (SEUs), because of their high proportion of
memory structures; and 2) SRAM-based FPGAs designs
tools optimize for throughput at the expense of power.

 Current foundry process technology for Xilinx FPGA
devices provides enough tolerance for a large number of ESE
orbits for total dose and latch up (no destructive latchups
have been reported), however the SEU presence is a major
design/operational issue. The large amount of static memory
within SRAM-based FPGAs, such as look-up tables, routing
switch tables, etc., makes them sensitive to SEUs. While
traditional hardware redundancy techniques improve the
reliability of FPGA designs (at the expense of increases in
hardware, power, etc.), novel FPGA-specific techniques are
required to address the unique vulnerabilities of SRAM-
based FPGA architectures, while incurring less hardware
overhead. Therefore, design automation tools evaluating and

assessing the reliability of FPGA designs, inserting
appropriate redundant hardware, and manipulating the low-
level structures of the FPGA design are needed for robust
operation and SEU and latch-up tolerance.

Available FPGA synthesis tools optimize for speed or
area, but not for real-time power consumption. Limited
power estimation tools are available, such as Xilinx’s
XPower; however, these are difficult to use and have limited
utility to the actual FPGA design process. Accurate power
estimates are only achievable after completing an entire
iteration of the design cycle and provide no power
optimization guidance. To make effective use of FPGAs in
space, tools providing accurate power estimation and
dynamic power optimization, operating on the FPGA’s gate
logic or on individual configurable logic blocks (CLBs), are
needed; specifically: 1) to monitor power consumption early
in the design process at a useful granularity (e.g., at CLB);
2) to aid in the design analysis that captures data-dependent
transients as well as overall power consumption; and 3) to
perform automated dynamic power optimization.

Both the radiation-induced and power consumption
effects are currently handled through manual intervention or,
at best, through ad-hoc in-house tools. There is a real need in
the community for validated design tool automation to raise
the technology readiness level (TRL) of SRAM-based FGPA
user designs. The RHinO project is leveraging an
established, open-source tool-suite that accepts output from
commercially available synthesis tools to create tools that
allow the developer of a space-based FPGA application to
automatically analyze and optimize a Xilinx Virtex II FPGA
circuit for both space radiation effects and power utilization.

 In the second year of this effort, the space radiation
effects and power analysis tools were refined and leveraged
to build optimization tools. The final year of this effort will
focus on validating and improving the optimization tools in
the relevant environment. This paper will outline the JHDL
tool suite and extensions made to it for the RHinO toolkit in
section II. SEU effects tools are discussed in Section III, and
power utilities are discussed in Section IV. Synergy with
evolvable algorithms for mitigating SEL effects are discussed
in Section V. Section VI will summarize the progress to date
and draw conclusions.

II. The JHDL Tool Suite

A. Background

As outlined in [1], the RHinO tools suite is built upon the
open-sourced JHDL [2] FPGA design environment. The tool

suite, shown in Figure 1, contains a digital circuit simulator,
a circuit hierarchy browser, FPGA library primitives, and
tools for exporting user designs into EDIF and VHDL. JHDL
provides an open API into the circuit structure to facilitate
the creation of application-specific design aids for viewing,
revising, manipulating, or interacting with a user design. The
integrated design aids, circuit API, and flexibility of JHDL
make it an ideal tool for aiding the development of radiation-
hardened and power-aware space-based FPGA designs. A
variety of application-specific tools can be created to analyze
and improve the reliability of FPGA circuits.

Figure 1. JHDL Tool Suite

Under this effort, RHinO is devising new features for
JHDL, specific to space environments, which would enable
SRAM-based FPGA payload developers to confidently
manage the limiting on-board spacecraft design constraints
for power, radiation effects, fault-tolerance, reliability, etc. A
key goal of the effort is interoperation with existing
commercial tool flows based on VHDL/Verilog, through
seamless JHDL-EDIF translation. Alternatively, the user can
work entirely in the JHDL design environment, using the
RHinO power and SEU tools in concert with the normal
JHDL features for simulation, netlisting, and runtime control,
all within a single user interface.

B. RHinO Enhancements
 During the first year of this effort the JHDL infrastructure
was enhanced to support the desired SEU mitigation and
power tool functionality. A GUI event API was developed to
support intercommunication and interoperability with other
modules, or tools that could be dropped into JHDL. As
shown in Figure 2, this has led to the development of
multiple tool modules being able to leverage the core JHDL
capabilities.
 Recently, considerable effort was spent enhancing the
EDIF netlist tool, originally created to support importing 3rd
party IP. The EDIF netlist parser and data structure software
provides the central design database for both the RHinO
power analysis tools and RHinO design reliability and
mitigation tools. These tools provide two important
capabilities for the RHinO tool suite. First, these tools
provide the capability of importing an FPGA design created
with a third-party tool into the RHinO infrastructure. Second,
these tools provide a consistent circuit database for each of
the tools created in the RHinO project.

The relationship between the EDIF tools and other
RHinO tools is shown below in Figure 2. An FPGA design is
loaded into the RHinO suite through the EDIF parser and
into the EDIF data structure. At this point, the design can be
manipulated or analyzed using one of several RHinO tool
components. For example, power estimates of the design can
be made by using the JHDL/RHinO power estimator tool
chain. In this mode, a dynamic simulation of the design is
created in JHDL to obtain the activity rates of design
components and nets. The power estimation and viewer tools
are available for browsing and viewing the results of this
design simulation. Alternatively, the design reliability
analysis tools may be invoked from the EDIF data structure.
With these tools, the reliability of the design can be analyzed
and presented to the user. As the project matures, design
mitigation and power optimization techniques can be applied
to improve the design over its original specification.

Figure 2. Tool Infrastructure

C. Cross Tool Naming and Correlation
An important capability required within this design

infrastructure is the ability to correlate design resources
between the various tool stages and with the COTS tool flow.
For example in power analysis, design resources are
represented in three different design databases. First, design
resources are specified in the original EDIF source and are
captured within the EDIF design environment. Second, the
EDIF design is translated to the JHDL for dynamic
simulation. Third, the EDIF design is translated to the FPGA
technology specific netlist after technology mapping. The
power capacitive loading values are made available at this
level, but need to be relayed to higher levels to make power a
first class design constraint.

To properly analyze and estimate the power consumption
of FPGA designs, design resources must be correlated
between the three design representations. Figure 3 below
represents the relationship between these design
representations. The difficulty in name correlation occurs due
to the difference in the way that the vendor specific names
and the JHDL simulation environment interpret names. The
vendor-specific “Xilinx” naming scheme uses the EDIF
“original” name for naming each of these resources. These
names are the names chosen for design resources by the
original design synthesis tool. JHDL uses the “valid” EDIF

name to represent each of its design resources. A name
management resource was added (represented by the red
arrow to the right) to provide a fast matching capability
between the simulation environment in JHDL and the
capacitive loading resources defined by Xilinx.

Figure 3. Signal Naming Relationships

 These tool enhancements were critical to better
interoperation with the commercial-off-the-shelf (COTS)
synthesis, placement and routing (PAR) tools, as well as to
provide what until now has been low-level bit-stream
information at higher levels. Bringing this information to
higher levels allows the tools outlined in sections III and IV
to operate on smaller, faster files and databases, and more
easily relay information to the user at the design entry level.

III. SEU Radiation Effects

A. Background
 To further advance the TRL level of Virtex-II FPGAs for
space applications, the RHinO project has a goal of
improving the reliability of user designs in the presence of
SEUs. SEUs are the main radiation concern since these
FPGAs have been shown to have acceptable tolerance to TID
as well as to SEL for low earth orbits (LEO). SEUs can
occur in several memory structures on these SRAM-based
FPGAs [3 4], namely in the support and control logic, the
user design state, the programming memory (often called the
configuration memory), and half-latches. Upsets in the
support and control logic can have a range of effects, from
fairly benign to totally erasing the contents of the FPGA
configuration memory. Upsets in the user design state, such
as in flip-flops and on-chip memories, may cause faults to
occur in the user design's operation, while upsets in the
configuration memory may change the user's design directly
by changing the connectivity of logic or changing the logic
functions themselves.

This year, the SEU radiation research completed the
development of the SEU emulator and half-latch mitigation
tool and focused on two specific areas, error persistence and
multi-bit upsets (MBUs). Error persistence refers to length of
time an error persists once a circuit experiences an SEU.
Circuits with feedback paths or containing state machines
may experience a significant degree of error persistence. For
some applications, it may be enough to apply triple-modular
redundancy (TMR) to the parts of the circuit exhibiting the
most error persistence, drastically reducing the amount of
overhead usually associated with TMR. MBUs due to a
single charged particle are important since they could
potentially affect multiple modules in TMR and produce
incorrect circuit values.

B. SEU Analysis and Emulation
To analyze an FPGA design for SEU robustness for half-
latches, persistence, and MBUs, an effective SEU emulation
platform, the Virtex-II SEU Emulator (V2SE), was
completed for characterizing individual designs for their
particular set of SEU sensitivities. The V2SE is a
combination of COTS hardware, custom software, and a
single, low-cost (<$150) custom printed circuit board (PCB).

Figure 4. COTS-based SEU Emulator

The V2SE has been validated using a series of different

tests and designs. Further, a graphical interface was
developed to allow the user to better visualize the results of a
particular execution of the V2SE on a design. Since the
results of the SEU emulation sessions have the same
floorplan as the user FPGA designs themselves, the
visualization tools also suggest that SEU emulator is
performing well.

The object of SEU emulation is to provide a cost-
effective and quick alternative to accelerator testing for
understanding user FPGA designs’ SEU sensitivities. To
validate this goal, the cost of upsetting 1.5 million
programming bits through irradiation was compared against
the costs of the V2SE. The V2SE, including the cost of a
Linux PC to control the boards, costs about $6000. The
V2SE can inject 1.5 million bit upsets in about 30 minutes
given the above criteria. At an accelerator, a similar number
of upsets with the same ability to distinguish the cause of
output errors would take about 11 days of test time
(assuming about 1.5 SEUs per second). Further, the V2SE
provides considerably more control over what gets upset and
when than the accelerator.

C. Half-Latch Mitigation
To meet the goals for automated SEU mitigation of

Virtex-II user designs, the V2SE was employed in validating
the RadDRC-II tool, which was developed to eliminate half-
latch SEU sensitivities from user FPGA designs. Unlike the
results of using SEU emulation for Virtex, SEU emulation
for Virtex-II does not seem to upset half-latches as
frequently. In fact, there was no noticeable difference
between unmitigated Virtex-II designs and those mitigated

by RadDRC-II.
The V2SE was then used for a proton radiation test at

Crocker Nuclear Laboratory to further validate the effects of
the RadDRC-II. The initial results with 63 MeV protons
suggest that RadDRC-II does improve the reliability of
designs, but more test data is required to confirm this.

More specifically, two hard lockups of the unmitigated
designs were observed—lockups that were typical of half-
latch behavior with the earlier Virtex family. During one
test, the unmitigated design also showed significant
sequences of design lockups (>10 consecutive lockups). The
mitigated designs did not show either of these behaviors.

D. Persistence
Characterizing the error persistence within FPGA designs

[5 6] is of interest because it can lead to a way of gaining
design robustness without extensive redundancy. For
instance, for a certain test signal processing design, SEU
emulation was performed on the design (i.e., intentionally
injecting faults into the FPGA’s programming data) and the
FPGA programming bits that caused persistent errors were
characterized. For this particular design, about 10% of the
FPGA’s configuration bits caused an output error while only
about 0.24% of the configuration bits caused a persistent
error—almost two orders of magnitude fewer bits (see Figure
4). This suggests that to have a design that continues to
operate in the presence of SEUs without the need of a design
reset, a significantly smaller amount of redundancy may be
needed than full triple modular redundancy for the design.

Figure 4. Comparison of Total Sensitive Cross-section

(middle) to Persistent Cross-section (right) for a test DSP
design (left)

During multiple tests at Crocker Nuclear Laboratory

using 63 MeV protons, the SEU emulation predicting SEU
error persistence for designs was verified. Four designs were
tested, including the test digital signal processing (DSP)
design (as mentioned above), a pipelined array of multipliers
and adders, a design with an array of 8-bit counters, and a
TMR version of the counter array design.

The bitstream SEU sensitivity observed at the accelerator
matched the predicted sensitivity using SEU emulation quite
well. For the unmitigated designs, greater than 90% of the
bits that caused output errors in the accelerator testing also
caused output errors during SEU emulation. With the TMR
design we tested, only 60% of the bits that caused an output
error seen by the accelerator were predicted by SEU
emulation, but this was not a big concern since the design
had very few problem bits to begin with at the accelerator (a
total of 5), so the actual difference in only a few bits.

With regards to error persistence, the proton tests

confirmed that SEU emulation is effective at predicting the
statistics of the persistent errors. For the four test designs,
the accelerator’s results were within 15% of what was
predicted through SEU emulation. Further, it was confirmed
that there are no “hidden” structures in the FPGA (other than
unmitigated half-latches) that will cause this persistence
behavior.

The results also point out, though, that the prediction of a
particular persistent failure can be very difficult due to the
large state space for significant digital designs and the
variable amount of time required for certain errors to be
flushed out of the system. In other words, the persistent
failures often depend heavily on when an SEU occurs, what
was upset, and what data was being processed at the very
moment of the upset. Further, for some designs, the longer
one waits for values to flush out of the system, the fewer
upsets will be classified as persisent since more and more
will eventually flush out of the system. In other words,
persistence as tested through SEU emulation and sampled at
the accelerator is always relative to the amount of time
allowed for errors to flush out of the system.

E .MBU Analysis
The main concern with respect to MBUs is whether or

not MBUs can affect user FPGA designs that employ TMR
or other forms of redundancy. To better understand the
frequency of multi-bit upsets due to individual strikes by
charged particles, Xilinx FPGAs from the Virtex, Virtex-II,
and Virtex-4 families were irradiated with 63 MeV protons
during multiple visits to Crocker Nuclear Laboratory. For
these experiments, the occurrence of SEUs in these FPGAs
was sampled and then the sampled SEUs were clustered
based on their physical locations on the devices. An 8-bit
neighborhood was used around each bit to determine
adjacency. It was observed that 0.045% of the upset events
experienced by Virtex XCV1000 FPGAs were MBUs while
about 1.07% of all upset events experienced by Virtex-II
XC2V250 and XC2V1000 FPGAs were MBU events—an
increase in frequency of about 24 times between the FPGA
families. As expected by Xilinx, Virtex-II exhibited a
significant bias in the location of MBUs—88% of the MBUs
were within the same configuration data frame—while Virtex
MBUs were entirely within the same row of configuration
data (adjacent configuration data frames with the same bit
offsets). The Virtex-4 data has not been completely
analyzed, but initial real-time feedback provided at the test
suggested that about 1% of the events were MBUs.

For test data verification, the probability of causing false
MBUs randomly was calculated and then compared against
Monte Carlo simulations to verify these predictions. The
results of this analysis are shown in Table 1. In the worst
case, the actual observed MBU rates were more than 25
times the predicted false MBU rates, suggesting that an
actual MBU phenomenon has been observed.

The RHinO team has also started analyzing heavy ion
data that was taken by Xilinx and the Xilinx Radiation Test
Consortium for Virtex-II. The early analysis of the data has
been for LETs of 1.5-60 MeV/mg/cm2. For these LETs, 1%

to 35% of the events observed are MBUs. A more detailed
report on MBUs in SRAM FPGAs can be found in [7].

Table 1. Comparison of the probability of false MBUs

with observed MBU rates

IV. Power

A. Background
 Current SRAM-based FPGA design tools have been
created with only speed or area optimizations as their goal
and only recently have accurate power measurement tools
become commercially available. These tools, such as the
Xilinx XPower tool, are limited in the content of the power
information they provide, readability, and their entry point in
the FPGA design flow. Pre-place and route estimates are
currently performed by manually entering and estimating
device utilization, toggling rates, and routing interconnect,
and automated power measurements are only available after
going through a complete iteration of the entire design flow.
This process can be ad hoc and time consuming, as a
designer needs to interact with multiple tools that generate
multiple memory-hungry intermediary files. At this level, the
machine-generated signal names are difficult to resolve with
their functional level counterparts in order to make
optimizations. In other words, very little guidance is given to
the designer on how to optimize if the power specifications
were not met.

The goal of the power analysis and optimization tools is
to make power a first-class design constraint by moving
power analysis and optimization closer to the design entry
point, with the help of the tool improvements outlined in
Section II. Whereas the first year of this effort focused on
developing accurate time-based power simulations of placed
and routed circuits and enabling capabilities to rapidly sort,
find, and cross probe signal and components, the second year
used this infrastructure to develop more sophisticated power
modeling to do power estimation and analysis at the post
synthesis level, without the need for going through place and
route.

B. Post Synthesis Power Modeling

Modeling at the post synthesis level has the following
advantages: 1) early power feedback in the design flow, 2)
power results are displayed at a high level, closer to the
logical design entry point 3) and bulky, low-level timing
accurate simulation and stimulus files are eliminated. These
three aspects allow a designer to quickly and easily generate
power estimates, relate the results back to their original

logical level design entry, and explore design trade-off
scenarios. The results presented here were derived using

Xilinx Virtex-II FPGAs and tool suites, however the
techniques apply to all FPGAs.

The technical approach can be broken into two parts,
developing a tool infrastructure to support synthesis level
simulation and circuit queries, and developing a synthesis-
level power model. The tool infrastructure was discussed in
section II to develop power tools to support querying and
assigning capacitance values, and tracking wire toggle rates

during simulation. Additionally, interoperability with the
Xilinx tool flow was added, allowing XPower reports and
.ncd files to be imported for detailed analysis of a placed and
routed circuit’s power characteristics. This environment
allows a synthesized circuit to be directly compared against
its placed and routed form to track what factors at the
synthesis level lead to high power consumption at the placed
and routed level. This environment allows the development
and experimentation of several power models, from generic
‘toggle rate only’ models to the exact timing-level placed and
routed circuit. After the power models have been created and
verified, the end user can import their design into the JHDL
environment using the EDIF import tool and simulate using
the Synthesis Power Model (SPM), to generate synthesis
level power reports, as depicted in Figure 5.

Figure 5. Power Modeling Tool Infrastructure

For generation of the SPM, placed and routed circuit
power consumption was analyzed and then compared with
the available information at the synthesis level. Dynamic
power consumption is described as:

∑ ∗∗∗=
i

iiii VCTFPower 2 (1)

FPGA

Bits in
bit-
stream

Upsets
per
read-
back

Prob. of
false MBU
events
(Analys is)

Prob of
false MBU
events
(Monte
Carlo)

Observ
ed,
Actual
Rates

Ratio of
Actual vs .
False
MBU
Rates

4VLX25 7900864 750 0.0379% 0.0379% 1.000% 26.38
2V1000 3744768 280 0.0298% 0.0298% 1.070% 35.89
2V250 1588244 60 0.0149% 0.0149% 1.070% 71.83
V1000 5810048 10 0.000620% 0.000621% 0.045% 72.44

where F is the frequency, T is the toggling rate, C is the
capacitance and V is the voltage of the ith component. For
our modeling, we will assume the voltage will be fixed as per
device specifications. The frequency and toggling rate of
each net can be tracked within the JHDL simulation
environment, allowing multiple subcomponents of the design
to be tracked and the window of time that the power is
averaged over to be changed dynamically during simulation,
as shown in Figure 6.

The final term, the capacitance of each component, can
be broken into two parts, the capacitance of the FPGA logic
resource (ie LUT, BlockRAM, Multiplier etc) and of the
interconnect route that it drives. Some capacitance

information of FPGA resources has been published and other
resources’ capacitance values can be extracted from the
XPower reports to create a complete resource capacitance
model for any Xilinx device.

Figure 6. Power Tool Simulation

 The final and perhaps most difficult piece is modeling
the routing interconnect. While an unoptimized list of the
resources is known at after synthesis, the exact routing
interconnect is unknown until placement and routing is
performed, which can account for 50-70% of the dynamic
power consumption of a circuit. In the Xilinx Virtex 2 device
for example there are 4 types of interconnect (direct connect,
doubles, hex, and long lines), each with a different
capacitance and they can be joined in any number of
combinations. Slight logic changes or different random seed
inputs to the Xilinx place and route tools can yield large
differences of a particular net’s length as the router is purely
timing constraint driven.

Using the JHDL power infrastructure, several designs on
a Virtex-II 6000 varying in functionality and utilization, as
shown in Table 2, were profiled and relationships between
wire capacitance and fanout, wire length, number of switch
boxes etc, were explored. Fanout proved to not only be a
strong predictor of net capacitance; it also correlates well
from the placed and routed circuit to the synthesized circuit.
Though wire length and the number of switch boxes also
correlated well with placed and routed net capacitance, this
information is not available at the synthesis level. Figure 7
depicts the capacitance versus fanout plot for the nets in the
Counter circuit. The fanout relationship was aggregated over
all the designs in the circuit modeling pool to develop the
SPM. It should be noted it is not expected to achieve precise
power estimation at the post synthesis level, but rather to be
accurate enough to guide the user to design-level hot-spots in
the circuit. Single net outliers from the fanout behavior are
best left to lower level analysis and optimization in XPower
and FPGA Editor.

After the SPM was developed, we modeled the power
consumption of the circuits in Table 1 and compared them to
the values obtained by using the corresponding placed and

routed circuit and XPower results. For the counter circuit a
mean power error of 3.2% per net and load, with a standard
deviation of 1.6% is achieved. Further enhancements to the
model, such as predicting routing congestion based on total
device utilization, are also being evaluated.

Design Utilization Flip-Flops Multipliers

Test Circuit 2% 1,737 8

Config. Controller 4% 1,240 0

Network Interface 8% 3,083 0

Counters 10% 3,658 0

FP Multiplier 10% 4,243 52

Design 1 11% 5,254 12

DSP Soft Core 16% 1,981 0

Image Conv. Kernel 22% 7,231 18

8x8 Image Conv. 30% 11,293 130

FFT core 47% 23,098 96

Design 2 49% 23,291 84

Design 3 64% 19,389 120

Table 2. Circuit Power Modeling Pool

Figure 7. Net Capacitance vs. Fanout

C. Power Optimization

Dynamic power consumption can be reduced by reducing
any term in equation 1, however as the voltage is fixed and
the operating frequency and toggling rates are largely
application driven, the most robust approach is to lower the
switching capacitance. Dynamic power spans I/O power,
logic component power, and signal power. The initial focus
of the power optimization tools is to reduce the signal and
clocking power of a circuit as I/O power is determined more
by external interfacing requirements off chip, and logic
component, such as CLBs, block RAMs, block multipliers,
and DLL/DCMs are determined during synthesis.

At the level in the COTS tool flow that the RHinO tools
are currently capable of addressing, the biggest power
variable we can address is length, and therefore capacitance
of the signal interconnects. In the following sections, two
methods for optimizing signal power within the context of
the COTS PAR tools without altering FPGA design

functionality are discussed. Both of these methods work
based on shortening signal routing paths for reducing signal
capacitances.

Figure 8 depicts the power optimization tool flow on the
left hand side, and the verification tool flow on the right hand
side. The power optimization tools for both methods generate
user constraint files, which are input to the Xilinx PAR tools.
With these added constraints, the COTS tools are able to
create more power efficient circuits. The first power
optimization method presented is to add timing constraints
on signals. The second method is to add location constraints
on flip-flops. Both methods have the effect of over
constraining power sensitive parts of the circuit, forcing the
PAR tools to use shorter, lower capacitance interconnects.

Figure 8. Power Tool Flow

Timing Constraint Based Power Optimization

In the timing constraint power optimization approach,
timing constraints are added to signal wires to essentially
translate power interconnect specifications into timing
constraint specifications that the Xilinx PAR tools can work
with. By raising timing constraints above the minimum
operating frequency for high capacitance signals in a design,
the PAR tools work to achieve shorter, or more power
efficient, routes. From VLSI interconnect technology[8], the
delay of a wire is proportional to wire capacitance C,
therefore minimizing delays has the added benefit of
minimizing capacitance and therefore power. In this way,
power optimization is achieved by over-constraining the
timing on signal wires to get lower signal capacitances.

Currently, the power optimization tools provide the user
with a wire table, which can be sorted by simulated power
consumption, load, fanout, etc. This helps the user to identify
the most power critical wires, and rapidly create timing
constraints on every net in a design if desired. For
preliminary results to verify our methodology, we used a
memory diagnostic and EDAC circuit for testing which
contained 10,259 signals. The average toggling rate per wire
during simulation was 12.5%. Testing was done on a variety
of cases such as putting constraints on all toggling nets,
constraints on nets with fanout of 10 or less, the top 25%
most power hungry nets, etc. Preliminary results showed
better placed and routed circuits with up to a 12% decrease in
dynamic power consumption without changing the
functionality of the circuit. Experiments are also underway to
determine the effects of how much timing delay tightening
should or can be applied.

Location Constraint Power Optimization

Another way to affect the commercial PAR tools is
through specified location primitives that either defines
relative placement to other macros in a circuit or absolute
placement within the device. By defining the placement with
an eye towards power optimization, potentially high
capacitance signal lines with high fanout or high toggle rates
can be grouped together to minimize routing interconnect.
Also, another important effect of this approach is that it can
pare down the clock distribution tree, further reducing
power.

 Global clock signals in FPGAs have dedicated low-skew
nets with short delays. In the Xilinx Virtex-II FPGAs, the
clock nets are distributed like a tree into 4 clock zones:
northwest, northeast, southwest, and southeast [9].
Furthermore, each clock zone quadrant branches further into
sub-zones. In the chip investigated here, the Vertex-II 6000,
each clock zone had 6 clock sub-zones, 88 x 16 slices in each
sub-zone. The main clock trunk travels in the north south
direction across the middle of the chip, with clock branches
extending out from the trunk to the west and east into the
sub-clock zones and clock sink cells. Clock sink cells include
flip-flops, which dominate clock sink components, block
RAMs, block multipliers etc. Unused clock branches remain
static, so moving logic to trim the clock tree reduces power
consumption. Figure 9 depicts two different placements of
two flip-flops. On the right hand side, it can be seen that by
placing two flip flops of the same clock domain near each
other an entire quadrant of the clock tree can be trimmed,
reducing power.

Figure 9. Logic Placement Clock Tree Effects

The power optimization tools for placement currently
provides the mechanisms to help users decide where to put
flip-flops and how many FPGA slices are need to
accommodate a groups of flip-flops. The tool generates
location constraints automatically. For the same test design
used in the timing constraint experiments, there are 4 clocks,
with fanout ranging from 488 to 2825. Preliminary test
results were obtained for two cases. In the first case, the
circuit was treated as a module, where I/O logic was free to
be moved. In this case, dynamic power was reduced by up to
23%. For the second case, the I/O logic was left in specified
IOBs, as in a typical full chip design. In this case the power
was reduced by up to 11%.

D. Current Status and Future Direction

 The preliminary power optimization results are
encouraging. It should be noted that these tools currently are
at a level where user guidance is still required for
optimization and only a few of the possible optimization
techniques have been experimented with. In the upcoming

year, the research will focus on automating the optimization
process through various algorithmic techniques. Also, the
timing constraint approach and the placement approach are
not mutually exclusive, so the effects of combining these two
methods will also be explored.

 Finally, the JHDL module generators will be expanded to
include power (and SEU tolerance) as a design entry
constraint, in addition to traditional throughput and precision
constraints. The module generators can then use the known
performance and capacitance information of FPGA
components to create optimal modules for a particular
design.

V. Evolvable Techniques

A. Background
Though SEUs are the primary radiation concern when

dealing with SRAM-based FPGAs, for certain orbits and life-
spans, TID and SEL do become a concern. Since it is
virtually impossible to replace spacecraft components in-situ,
there is a clear opportunity for fault-tolerant FPGA circuits.

Evolutionary algorithm (EA) methods hold promise in
their ability to search across the space of FPGA
configurations for those that can function in the presence of
certain types of faults. Since SRAM-based FPGAs are fully
reprogrammable, it is possible to restore the functionality of
the compromised FPGA by re-routing a circuit around
corrupted resources, a property which the RHinO team is
exploring.

Autonomous repair can either provide an alternative
to or supplement redundancy as a means of restoring lost
capability. Some circuit configurations are more responsive
to evolutionary repair than others. If a particular circuit has
been shown to respond well to evolutionary repair, then EAs
can be relied on as a primary source of fault tolerance. This
allows the engineers to avoid the increased size, weight, and
power consumption, traditionally associated with providing
redundant spares. In cases when EAs have difficulties
producing fully functional repairs, it is still possible to use
these methods alongside traditional redundancy techniques.
By repairing each individual triplet of a triple-modular-
redundant system, it is possible to improve the performance
of each triplet by a large enough margin so that the majority
output is 100% correct (even if each individual output is not.)
 The objective of the work described here was to
investigate how various small circuits (some of which are
commonly used in spacecraft electronics design) respond to a
pre-determined level of simulated radiation damage. One
sequential and three combinational circuits were tested. The
sequential circuit was the quadrature decoder (a 4-state state
machine.) The combinational circuits were a 3-by-3
multiplier, a 3-by-3 bit adder and a 4-to-7 bit decoder (a
circuit used to control the individual segments of a 7-
segment LED display.) The circuits were subject to a number
of simulated faults, where at least 10% of the circuit’s LUTs
would be set to produce either a constant 0 or a 1 (simulating
an output short to power or ground.) In addition, between

1.5% and 2% of all the LUT bits were “hard-wired” to 0 or 1.
Such fault scheme was undertaken in order to try and take
into account the actual logic vs. routing transistor distribution
on an FPGA.
 With the specified fault penetration, the average repair
rate (percentage of circuits which achieved 100% repair)
ranged from 0% (for the multiplier) to 90% (for the 4-to-7 bit
decoder.) However, the average improvement in circuit
performance over the course of each run ranged between
12.6% and 22.8%. What these results tell us is that while
some circuits respond better to evolutionary repair than
others, the EA methods result in noticeable improvement in
performance in all the circuits tested. The chance of
successful repair usually depends on the size and complexity
of the circuit as well as the number and location of the faults;
but even if EA approach cannot completely repair each
individual circuit, there is a good chance that it can restore
100% overall functionality when used in conjunction with
TMR.

B. Current Status and Future Directions
 The evolutionary algorithm is being further refined to
handle larger, more sophisticated circuits using the Virtex-II
FPGA architecture, with the goal of showing that the
algorithm is robust enough to solve SELs in the project’s
benchmark 3x3 image convolution kernel and other real-life
applications. When a fault occurs in a large, complex circuit,
the plan is to isolate the fault to a simpler component and
then to re-evolve the component. Operating on full-sized
applications on FPGA hardware will be a major thrust of this
effort.
 All of the team’s FPGA evolution work to date uses
bitstring chromosomal representation. This representation is
the simplest but also the least efficient one. As larger circuits
are considered, the shortcomings of bitstring representation
will become more apparent. Therefore, work is underway to
change the algorithm to a generative (tree-like)
representation. By being more conducive to component
reuse, generative representation shortens the chromosome
length and makes the evolution of the larger circuits more
manageable.
 In the upcoming year, the algorithm will be proven on
larger application circuits and integrated with the rest of the
RHinO toolkit. Ultimately, the evolutionary algorithm will
evolve circuits which are not only immune to existing SELs
but also use guidance from the rest of the RHinO toolkit to
create circuits that are SEU tolerant as well.

VI. Conclusions

 In the second year of this effort, the baseline tool
infrastructure was built upon enabling breakthroughs in
radiation analysis tools and power analysis tools. The JHDL
infrastructure was enhanced to allow better GUI
development and fully support EDIF file import from a
variety of commercial synthesis tools, which allowed
multiple tools to be added to the JHDL backbone. In the
radiation arena, the SEU emulator was completed, the half-

latch tool was verified, and work has begun on persistence
and MBU analysis. Finally, the power analysis modeling
tools were completed, allowing a user to obtain accurate
power estimations early in the design flow and power
optimization tools have been developed, yielding promising
initial returns. The next year’s efforts seek to leverage the
infrastructure, further, validating and verifying the tools and
measuring the power trade-offs of various radiation
mitigation schemes.

Acknowledgements

This research was completed under NASA AIST 02-0157.
Los Alamos release number LA-UR-05-3593.

References
1 French, et al., “Design Tools for Reconfigurable Hardware in Orbit,” Earth
Science Technology Conference 2004, Palo Alto, California, June 2004.
2 “Adaptive Computing Systems”; 1997- 2003 DARPA effort; see
www.jhdl.org
3 Carl Carmichael, Earl Fuller, Phil Blain, and Michael Caffrey, “SEU
Mitigation Techniques for Virtex FPGAs in Space Applications”,
Proceeding of the Military and Aerospace Programmable Logic Devices
International Conference (MAPLD), Sept. 1999, Laurel, MD, pp. C2.1-8.
4 Michael Caffrey, Paul Graham, Michael Wirthlin, Eric Johnson, and
Nathan Rollins, “Single-Event Upsets in SRAM FPGAs”, Proceedings of the
5th Annual International Conference on Military and Aerospace
Programmable Logic Devices (MAPLD), Sept. 2002, pp. P8.1-6.
5 E. Johnson, K. Morgan, M. Wirthlin, M. Caffrey, and P. Graham,
“Persistent Errors in SRAM-based FPGAs,” MAPLD ’04, Washington, D.C.,
September 2004.
6 K. Morgan, E. Johnson, B. Pratt, M. Wirthlin, M. Caffrey, and P. Graham,
“SEU Induced Error Propagation in FPGAs,” IEEE NSREC ’05, Seattle,
WA, July 2005, To be presented.
7 P. Graham, H. Quinn, J. Krone, M. Caffrey, and S. Rezgui, “Radiation-
Induced Multi-Bit Upsets in SRAM-Based FPGAs,” IEEE NSREC ’05,
Seattle, WA, July 2005, To be presented.
8 www.ece.utexas.edu/~adnan/vlsi-04/lec6Interconnect.ppt
9 http://www.xilinx.com/bvdocs/publications/ds031.pdf, page 36.

http://www.ece.utexas.edu/~adnan/vlsi-04/lec6Interconnect.ppt
http://www.xilinx.com/bvdocs/publications/ds031.pdf

	C. Cross Tool Naming and Correlation
	B. SEU Analysis and Emulation
	C. Half-Latch Mitigation
	D. Persistence
	E .MBU Analysis

