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Chapter 1

Introduction

This document is designed to be a gentle introduction to programming with the NASA Vision
Workbench, a C+4++ image processing and machine vision library. The Vision Workbench was
developed through a joint effort of the Intelligent Robotics Group (IRG) and the Adaptive Control
and Evolvable Systems Group (ACES) within the Intelligent Systems Division at the NASA Ames
Research Center in Moffett Field, California. It is distributed under the NASA Open Source
Agreement (NOSA) version 1.3, which has been certified by the Open Source Initiative (OSI). A
copy of this agreement is included with every distribution of the Vision Workbench in a file called
COPYING.

You can think of the Vision Workbench as a “second-generation” C/C++ image processing
library. It draws on the authors’ experiences over the past decade working with a number of
“first-generation” libraries, such as OpenCV and VXL, as well as direct implementations of image
processing algorithms in C. We have tried to select and improve upon the best features of each of
these approaches to image processing, always with an eye toward our particular range of NASA
research applications. The Vision Workbench has been used within NASA for a wide range of
image processing tasks, including alignment and stitching of panoramic images, high-dynamic-range
imaging, texture analysis and recognition, lunar and planetary map generation, and the production
of 3D models from stereo image pairs. A few examples of image data that has been processed with
the Vision Workbench are show in Figure 1.1.

The Vision Workbench was designed from the ground up to make it quick and easy to produce
efficient implementations of a wide range of image processing algorithms. Consider this example:

background_image += 0.1 * ( source_image - background_image );

Hopefully it is reasonably clear what this line of code does, even if you don’t know what an IIR
filter like this is good for. Higher level functions have similarly simple interfaces. For example, to
apply a Gaussian filter to an image with a sigma of 3 pixels you can simply say:

image = gaussian_filter( image, 3 );

In many cases like these, code written using the Vision Workbench is significantly smaller and more
readable than code written using more traditional approaches.

At the core of the Vision Workbench is a rich set of template-based image processing data
types representing pixels, images, and operations on those images, as well as mathematical entities
(like vectors and geometric transformations) and image file I/O. On top of this core the Vision
Workbench also provides a number of higher-level image processing and machine vision modules,
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Figure 1.1: Examples of image data processed with the help of the Vision Workbench. (a) A Martian
terrain map generated from stereo satellite imagery. (b,c) Original and high-dynamic-range image
mosaics from a NASA field test. (d) A lunar base map generated from the Clementine data set.
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providing features including camera geometry modeling, high-dynamic-range imaging, interest point
detection and matching, image mosaicing and blending, and geospatial data management.

That said, the Vision Workbench is not for everyone, and in particular it is not intended as a
drop-in replacement for any existing image processing toolkit. It is specifically designed for image
processing in the context of machine vision, so it lacks support for things like indexed color palettes
that are more common in other areas. It also lacks a number of common features that the authors
have simply not yet had a need for, such as morphological operations. If you encounter one of these
holes while using the Vision Workbench please let us know: if it is an easy hole to fill we may be able
to do so quickly. Finally, there are many application-level algorithms, such as face recognition, that
have been implemented using other computer vision systems and are not currently provided by the
Vision Workbench. If one of these meets your needs there is no compelling reason to re-implement
it using the Vision Workbench instead. On the other hand, if no existing high-level tool solves your
problem then you may well find that the Vision Workbench provides the most productive platform
for developing something new.

Since this is the first public release of the Vision Workbench, we thought we should also provide
you with some sense of the direction the project is headed. It is being actively developed by a small
but growing team at the NASA Ames Research Center. A number of features are currently being
developed internally and may released in the future, including improved mathematical optimization
capabilities, a set of Python bindings, and stereo image processing tools. Due to peculiarities of the
NASA open-source process we cannot provide snapshots of code that is under development and not
yet approved for public release. If you have a specific use for features that are under development,
or in general if you have suggestions or feature requests, please let us know. Knowing our users’
needs will help us prioritize our development and, in particular, our open-source release schedule.

We hope that you enjoy using the Vision Workbench as much as we have enjoyed developing
it! If you have any questions, suggestions, compliments or concerns, please let us know. Contact
information is available at the bottom of the README file included with your distribution.
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Chapter 2

Getting Started

This chapter describes how to set up and start using the Vision Workbench. It explains how to
obtain the Vision Workbench and its prerequisite libraries, how to build and install it, and how to
build a simple example program. This chapter does not discuss how to program using the Vision
Workbench. If that’s what you're looking for then skip ahead to Chapter 3.

2.1 Obtaining the Vision Workbench

Most likely if you are reading this document then you already know where to obtain a copy of the
Vision Workbench sources if you haven’t obtained them already. However, if not, a link to the most
up-to-date distribution will always be available from the NASA Ames open-source software website,
at opensource.arc.nasa.gov.

In addition to obtaining the Vision Workbench, you will also need to obtain and install whatever
pre-requisite libraries you will need. The only strict requirement is the Boost C++ Libraries,
a set of extensions to the standard C++ libraries that is available from www.boost.org. Many
modern Linux systems come with some version of Boost already installed, generally in the directory
/usr/include/boost. The Vision Workbench has been tested with Boost versions 1.32 and later.

Other libraries are required only if you want to use particular features of the Vision Workbench.
A summary of the various libraries that the Vision Workbench will detect and use if present is given
in Table 2.1. It lists the particular Vision Workbench module that uses the library, whether it is
required or optional for that module, and where the library can be obtained. Details of each of
the modules and the features that are enabled by each dependency are given in the corresponding
sections of this book. If you are just starting out with the Vision Workbench, it is generally fine
to begin only with Boost. You can always go back and rebuild the Vision Workbench with support
for additional features later if you discover that you need them.

One dependency that is worth discussing briefly is LAPACK, which provides Vision Workbench
with a computational linear algebra back end. LAPACK is a comprehensive and widely used linear
algebra support library in the public domain. LAPACK also require the Basic Linear Algebra
Subroutines (BLAS) library, which is usually bundled with LAPACK.

The basic matrix and vector algebra in the Math module does not depend on LAPACK and
BLAS, however the routines in <vw/Math/LinearAlgebra.h> will only be built if LAPACK is
detected by the build system. For your convenience, we provide a stand-alone LAPACK and BLAS
distribution on the Vision Workbench web page. This distribution has been tested with the Vision
Workbench, so we recommend its use if you are installing LAPACK for the first time. However,
other versions of LAPACK and BLAS that come pre-installed on your system will probably work

13



14 CHAPTER 2. GETTING STARTED

’ Name ‘ Used By ‘ Source ‘
Boost All http://www.boost.org/
LAPACK | Portions of Math, HDR | See note in Section 2.1
PNG FileIO (opt.) http://www.libpng.org/
JPEG FileIO (opt.) http://wuw.ijg.org/
TIFF FileIO (opt.) http://www.libtiff.org/
OpenEXR | FilelO (opt.) http://www.openexr.com/
PROJ.4 Cartography (req.) http://www.remotesensing.org/proj/
GDAL Cartography (opt.) http://www.remotesensing.org/gdal/

Table 2.1: A summary of Vision Workbench dependencies.

just as well. In particular, Mac OS X users do not need to install LAPACK; machine optimized
linear algebra support is provided by Apple’s veclib framework on Mac OS X. Remember to add
the -framework veclib flag when linking your application against the Vision Workbench if you
are using the functions in <vw/Math/LinearAlgebra.h> on the mac platform.

2.2 Building the Vision Workbench

If you are using a UNIX-like platform such as Linux or Mac OS it is generally straightforward
to build the Vision Workbench once you have installed any necessary libraries. First unpack the
distribution, go to the distribution’s root directory, and configure the build system by running
“./configure”. This script will examine your machine to determine what build tools to use and
what libraries are installed as well as where they are located. Near the end of its output it will list
whether or not it was able to find each library and which Vision Workbench modules it is going to
build. You should examine this output to confirm that it was able to find all the libraries that you
had expected it to. If not then you may need to configure the build system to search in the right
places, as discussed in Section 2.4.

Assuming the output of the configure script looks good, you can now proceed to build the
Vision Workbench itself by running “make”. Most of the Vision Workbench is header-only, so
“building” the Vision Workbench should be relatively quick. Once the build is complete, confirm
that things are working properly by building and running the unit tests by typing “make check”.
If there are no errors, the final step is to install the Vision Workbench headers, library, and sample
programs using “make install”. By default the installation location is the directory /usr/local,
so you will need to obtain the necessary privileges to write to this directory using a command such
as su or sudo. If you do not have administrator privileges on you computer then see Section 2.4 for
information on how to specify an alternative installation directory.

Building the Vision Workbench under Windows is possible, but it is not currently automatically
supported. The easiest thing to do is to include the .cc files from the Vision Workbench modules
that you want to use directly in your own project file. You will of course still need to install
the Boost libraries as well as any other libraries you want to use. Pre-built Windows versions
of a number of libraries, such as the JPEG, PNG, and TIFF libraries, are available online from
the GnuWin32 project at gnuwin32.sourceforge.net. You will need to configure your project’s
include file and library search paths appropriately. Also be sure to configure your project to define
the preprocessor symbol NOMINMAX to disable the non-portable Windows definitions of min() and
max () macros, which interfere with the standard C++ library functions of the same names.
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1 // __BEGIN_LICENSE__

2 // Copyright (C) 2006, 2007 United States Government as represented by
3 // the Administrator of the National Aeronautics and Space Administration.
4 // All Rights Reserved.

5 // __END_LICENSE__

6

7

8  #include <iostream>

9  #include <vw/Image.h>

10 #include <vw/FileI0.h>

11

12 int main( int argc, char *argv[] ) {

13 try {

14 VW_ASSERT( argc==3, vw::ArgumentErr() << "Invalid command-line args." );
15 vw::ImageView<vw: :PixelRGBA<float> > image;

16 read_image( image, argv([1l] );

17 write_image( argv[2], image );

18 }

19 catch( vw::Exception& e ) {
20 std::cerr << "Error: " << e.what() << std::endl;
21 std::cerr << "Usage: vwconvert <source> <destination>" << std::endl;
22 return 1;
23 }
24 return O;
25 }

Listing 1: [vwconvert.cc| A simple demonstration program that can copy image files and convert
them from one file format to another.

2.3 A Trivial Example Program

Now that you’ve built and installed the Vision Workbench let’s start off with a simple but fully-
functional example program to test things out. The full source code is shown in Listing 1. You
should be able to obtain an electronic copy of this source file (as well as all the others listed in this
book) from wherever you obtained this document. For now don’t worry about how this program
works, though we hope it is fairly self-explanatory. Instead, just make sure that you can build and
run it successfully. This will ensure that you have installed the Vision Workbench properly on your
computer and that you have correctly configured your programming environment to use it.

The program reads in an image from a source file on disk and writes it back out to a destination
file, possibly using a different file format. When reading and writing images, the Vision Workbench
infers the file format from the file extension of the filename. This example program takes the source
and destination filenames as two command-line arguments. For example, to convert a JPEG image
called image. jpg in the current directory into a PNG image you might say:

vwconvert image.jpg image.png

Note that exactly what image file formats are support will depend on what file format libraries you
have installed on your system.
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In order to to build this program you will need to configure your compiler to find the Vision
Workbench headers and then configure your linker to find not only the Vision Workbench libraries
but also all of the libraries that the Vision Workbench in turn requires.

Some Vision Workbench header files include boost headers, and the compiler needs to be able
to find these files when you build your application. No additional configuration is necessary if
boost is installed in a stardard system directory, however for non-standard installations, you will
need to direct the compiler (usually using the -I flag) to the right directory. Note that the Vision
Workbench’s dependency on boost is unique in this regard; you do not normally need to configure
the compiler to find header files for Vision Workbench third party library dependencies.

Keeping track of nested library dependencies like this can be difficult. The Vision Workbench
addresses this problem using the GNU libtool utility, and we suggest that you use it too. All Vi-
sion Workbench libraries are built with an accompanying 1ibvw<module_name>.la file that encodes
dependency information that 1ibtool later uses to pull in all required library dependencies auto-
matically. It’s easy to use, and it lets you take advantage of the work that the Vision Workbench
build system does to locate your libraries and sort out their dependencies.

Listing 2 shows a sample Makefile that demonstrates how to build a Vision Workbench appli-
cation using libtool, among other things. If you already have your own Makefile or other build
system, the important section to look at is the section titled “Linking rule”. It demonstrates how
to invoke libtool to build a program: invoke the compiler as you usually would, but prefix the
command with “libtool --mode=1link”. This will make 1libtool interpret the command line it
has been given as a linking command, filling in all the specifics about library dependencies. In this
case it will recognize the -1vw option, and will expand it to include references to all the libraries
upon which the Vision Workbench depends.

You can test this by creating an empty directory and copying the files vwconvert.cc and
Makefile.example into it, renaming the latter as simply Makefile. (Both of these files are included
in the Vision Workbench source distribution in the directory docs/workbook.) You should then be
able to build the program by running “make”. This assumes that you have libtool installed on
your computer. If not, don’t worry: the Vision Workbench includes a copy of the 1ibtool script in
the base directory of the source distribution. If you see an error message suggesting that libtool
cannot be found you may need to modify your Makefile so that the LIBTOOL variable explicitly
points to this file.

If you choose not to use 1ibtool then you will need to manually ensure that all the necessary
dependencies are linked in to your program. The easiest way to be sure that you aren’t missing any is
to look inside the same files that 1ibtool would use to generate the list, the .1a files. For example,
the vw library that is included by the -1lvw option points to the file 1ib/libvw.la underneath
whatever directory you installed the Vision Workbench in. This is a human-readable file that lists
this library’s dependencies, among other things. If any of these dependency libraries are themselves
.1a files then you will need to examine them in turn to find all the recursive dependencies. As you
can imagine, this is a cumbersome process, and we suspect that in then end you’ll be much happier
using libtool directly instead.

Using libtool on Mac OS X

Users of Mac OS X should be aware that the libtool command available in this environ-
ment is different than the GNU libtool we are discussing here. On these systems, you will need
to use the glibtool command or use the 1ibtool script in the root of the Vision Workbench
source distribution directory.
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HDR || Mosaic || Cartography | Application-specific Algorithms
FileIO Camera High Level Primitives
Math Image Low-level Image Processing/Math
Core Programming Utilities

Figure 2.1: Vision Workbench inter-module dependencies. Module in this figure depend on those be-
neath them. These dependencies split the modules into four general classes of increasing complexity
and sophistication. The modules surrounded by the bold outline are considered the “foundation”
modules that are part of the most basic Vision Workbench distribution.

2.4 Configuring the Build System

The Vision Workbench build system offers a variety of configuration options that you provide
as command-line flags to the configure script. We’ll discuss a few of the most important op-
tions here, but for a complete list you can run “./configure --help”. As an alternative to
specifying command-line flags every time, you may instead create a file called config.options
with your preferences in the base directory of the Vision Workbench repository. A file called
config.options.example is provided that you can copy and edit to your liking. Note that none
of this has any impact on Visual Studio users, who must instead configure their projects by hand.

The single most important option is the ——with-paths=PATHS flag, where you replace PATHS
with a whitespace-separated list of paths that the build system should search when looking for
installed libraries. For example if you specify the option --with-paths=/foo/bar then it will
search for header files in /foo/bar/include, library files in /foo/bar/1lib, and so on. The default
search path includes a number of common locations for user-installed libraries, such as /usr/local,
$(HOME) /1local, and /sw. The PKG_PATHS configuration file variable has the same effect as this
option.

The next most important options have the form --enable-module-foo[=no], where foo is
replaced by the lower-case name of a module such as mosaic or hdr. This allows you to control
whether or not certain modules are built. Disabling modules that you do not use can speed up
compilation and testing time, which is especially useful if you are making changes to the Vision
Workbench source and need to recompile often. The corresponding configuration file variables have
the form ENABLE_MODULE_FQQ, in all-caps, and are set to either yes or no.

It is worth mentioning that the Vision Workbench has several inter-module dependencies that
you should take into account when enabling and disabling modules. These are shown in Figure 2.4.

Two handy options, -~—enable-optimize and --enable-debug, determine the compiler options
used when building the few library files. You can again specify an optional argument of the form
=no to disable the corresponding feature, and you can also specify a particular optimization level in
the same manner. For example, if you want to make it as easy as possible to debug Vision Work-
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bench code using a debugger you might use --enable-optimize=no --enable-debug to disable
all optimizations and include debugging symbols. The corresponding configuration file variables
are ENABLE_OPTIMIZE and ENABLE_DEUBG. Keep in mind that since most Vision Workbench code
is header-only you should remember to configure your own project similarly or you may not notice
any difference. For normal non-debugging use, we strongly recommend that you enable moderate
compiler optimization; much of the heavily templatized and generic Vision Workbench code requires
basic optimizations such as function inlining to achieve a reasonable level of performance.

Finally, to specify that the build system should install the Vision Workbench someplace other
than /usr/local, specify the path using the ——prefix=PATH option. The corresponding configura-
tion file variable is, of course, called PREFIX.
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1  # The Vision Workbench installation prefix (/usr/local by default)
2 VWPREFIX = /usr/local

3

4 # If you don’t have libtool installed, you can specify the full

5 # path to the libtool script in the base directory of your Vision
6  # Workbench source tree, e.g. $(HOME)/VisionWorkbench-1.0/1libtool
7 LIBTOOL = libtool

8

9 # Compilation flags:

10 # -03  turns on optimization, which you should almost always do
11 # -g enables debugging support

12 # -Wall turns on all compiler warnings

13 CXXFLAGS = -I$(VWPREFIX)/include -03 -g -Wall

14

15  # Boost:

16 # The Vision Workbench header files require the boost headers. If
17  # boost is installed in a non-standord location, you may need

18 # to uncomment this line and insert the path to the boost headers.
19  # CXXFLAGS += -I<path to boost include dir>

20

21  # Linking flags:

22  # -lvw includes the Vision Workbench core libraries

23  LDFLAGS = -L$(VWPREFIX)/1lib -lvw

24

25  # Object files:

26  # List the object files needed to build your program here.

27  OBJECTS = vwconvert.o

28

29  # Linking rule:
30  # Duplicate and modify this rule to build multiple programs.
31  vwconvert: $(0OBJECTS)
32 $ (LIBTOOL) --mode=link $(CXX) $(LDFLAGS) -o $@ $~
33
34 # Clean-up rule:
35 clean:
36 rm —-f *x.0 *7 \#x

Listing 2: [Makefile.example] An example Makefile that shows how to build a Vision Workbench
program using libtool.
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Chapter 3

Working with Images

This chapter is designed to be a first introduction to programming using the Vision Workbench.
It describes images, pixels, color spaces, image file I/O, and basic image manipulation, setting the
stage for the fundamental image processing operations described in Chapter 4.

3.1 The ImageView Class

The ImageView class is the centerpiece of the Vision Workbench in most applications. Simply put,
it represents an image in memory. The class is similar to related classes that appear in other C++
computer vision libraries, including VXL, GIL, and VIGRA, so if you are already familiar with one
of those libraries you should find nothing too foreign here.

3.1.1 The Basics

An ImageView represents a two-dimensional rectangular array of data, such as an image of pix-
els. It is actually a class template, and when you declare an ImageView object you specify the
particular kind of data that it should contain. For example, you can make an ImageView of RGB
(red/green/blue) pixels to represent a full-color image or an ImageView of vectors to represent a
vector field. You specify the pixel type as a template parameter to the ImageView class like this:

ImageView<PixelRGB<float32> > my_image;

In this case we've made a full-color RGB image. Notice that PixelRGB is itself a template: here
we’ve specified that we want each channel of each RGB pixel to be stored as a 32-bit floating-point
number. All of the core pixel types in the Vision Workbench are themselves templates like this.

The ImageView class is defined in the C++ header file <vw/Image/ImageView.h>, and the
standard pixel types are defined in the header <vw/Image/PixelTypes.h>. Thus, for the above line
of code to compile you must include those two headers at the top of your program. (Alternatively,
all of the header files relating to basic image manipulation are collected together in the convenience
header <vw/Image.h>.) Furthermore, all of the core classes and functions of the Vision Workbench
are defined in the C++ namespace vw. One way to use them is to be fully specific:

vw: :ImageView<vw: :PixelRGB<vw::float32> > my_image;

The other way, which may be simpler for new users, is to bring the entire vw namespace into the
global scope by saying

21



22 CHAPTER 3. WORKING WITH IMAGES

using namespace Vw;

at the top of your program after you've included the necessary headers. For brevity, in the examples
in this book we will often assume that you have included the necessary headers and we will omit
explicit references to namespace vw. The exception to this is the complete programs, such as
vwconvert.cc (Listing 1, above), which are intended to be fully self-contained.

By default the dimensions of an ImageView are zero, which may not be what you want. One
option is to specify an image’s dimensions when we construct it:

ImageView<PixelRGB<float> > my_image( 320, 240 );

This creates an image with 320 columns and 240 rows. If we ever want to set or change the size of
an image later on in the code we can use the set_size() method:

my_image.set_size( 640, 480 );

You can also find out how many columns or rows an image has using the cols() and rows()
methods, respectively:

int width = my_image.cols();
int height = my_image.rows();

Note that when you call set_size() with new image dimensions the Vision Workbench allocates a
new chunk of memory of the appropriate size. This is a destructive operation: any old data is not
copied into the new buffer, and the old buffer will be automatically deallocated if no other objects
are using it.

Once you've made an ImageView, the simplest way to access a particular pixel is by indexing
directly into it:

PixelRGB<float> some_pixel = my_image( x, y );

In this example we've assumed that x and y are integer variables with the desired pixel’s coordinates.
For a less trivial example, one way to fill our image with the color red would be to loop over all the
rows and columns, setting each pixel at a time:

PixelRGB<float> red(1.0, 0.0, 0.0);
for ( int y=0; y<my_image.rows(); ++y )
for ( int x=0; x<my_image.cols(); ++x )
my_image(x,y) = red;

This is not the fastest way to access the pixels of an image, but it is arguably the most flexible.
(Later we will learn about much simpler ways to fill an image with a single color.)

3.1.2 The Standard Pixel Types

The Vision Workbench provides a number of standard pixel types that you can use to manipulate the
most common sorts of images. We’ve already encountered PixelRGB, the standard RGB pixel type.
As we mentioned earlier, this is a template class whose template parameter specifies the underlying
numeric data type used to store each channel of the pixel. This is called the pixel’s channel type. The
Vision Workbench defines convenient platform-independent names for the standard channel types,
so that you never have to worry about whether int or short is 16 bits wide on your platform.
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’ Type ‘Description ‘Notes ‘

int8 Signed 8-bit integer
uint8 | Unsigned 8-bit integer | Common for low-dynamic-range imaging
int16 | Signed 16-bit integer
uint16 | Unsigned 16-bit integer
int32 | Signed 32-bit integer
uint32 | Unsigned 32-bit integer
int64 | Signed 64-bit integer
uint64 | Unsigned 64-bit integer
float32 | 32-bit floating point Common for high-dynamic-range imaging
float64 | 64-bit floating point

Table 3.1: The standard Vision Workbench channel types.

Type \ Description \ Channels

PixelGray<T> | Grayscale Grayscale value (v)

PixelGrayA<T> | Grayscale w/ alpha Grayscale value (v), alpha (a)
PixelRGB<T> | RGB Red (r), green (g), blue (b)
PixelRGBA<T> | RGB w/ alpha Red (r), green (g), blue (b), alpha (a)
PixelHSV<T> | HSV Hue (h), saturation (s), value (v)
PixelXYZ<T> | XYZ CIE 1931 X (%), Y (y), and Z (z) channels
Vector<T,N> | An N-dimensional vector | N vector components

T A unitless scalar N/A

Table 3.2: The standard Vision Workbench pixel types. The channel type T should generally be
one of the types from Table 3.1.

These Vision Workbench channel types are listed in Table 3.1. These are the only channel types
with which the Vision Workbench has been tested, so it is best to stick to these unless you have a
compelling reason not to.

The standard pixel types are listed in Table 3.2. The first four, used for grayscale and RGB
images with and without alpha channels, are the most common. (For those of you who are unfamiliar
with the term, an alpha channel is used to represent the opacity of a pixel. For the rest of you, note
that the Vision Workbench generally stores alpha pixels in pre-multiplied form.)

Each of the channels in a pixel can be accessed by indexing into it directly, as in my_pixel (i)
or my_pixel[i]. The order of the channels is the same as the order in which they appear in the
name of the type. If you know a particular pixel’s type you can also access it’s channels by name,
so for example my_rgb_pixel.r() access an RGB pixel’s red channel. (Note that grayscale values
are accessed via v(), for “value”.)

When you are writing Vision Workbench programs you may often find yourself working with
only one pixel type at a time. In this case it can be convenient to place a typedef near the top of
your file defining a convenient shorthand:

typedef vw::ImageView<vw::PixelRGB<float32> > Image;

This way you can refer to your RGB image type by the much shorter identifier Image. In the
remainder of this book when we say Image you may assume that you may substitute the ImageView
class type that is most appropriate for your application.



24 CHAPTER 3. WORKING WITH IMAGES

Standard conversions are provided among all the RGB and grayscale pixel types, and also
between PixelRGB and the special color types PixelHSV and PixelXYZ. The ImageView class can
take advantage of these pixel conversions to perform color space conversion on entire images. For
example, images are generally stored on disk in an RGB color space but it is sometimes helpful to
convert them to HSV for processing. This is easy with the Vision Workbench:

ImageView<PixelRGB<float> > rgb_image;

read_image( rgb_image, filename );

// Convert the RGB image to HSV:
ImageView<PixelHSV<float> > hsv_image = rgb_image;

(We'll have more to say about read_image () shortly, but it does what you’d expect.) Later you
could assign the HSV image back to an RGB image prior to saving it to disk.

3.1.3 Copying ImageViews

In the Vision Workbench, ImageView objects have shallow copy semantics. That is, when you copy
an ImageView you're making a new ImageView that points to the same data, rather than a new
copy of the data. This is a relatively inexpensive operation, which makes it perfectly reasonable
to do things like construct a std: :vector of ImageViews. The underlying image data is reference-
counted, and when the last ImageView stops using a block of image data it is deallocated.

Though this behavior can be quite powerful, it may not always be what you want. If you ever
need to make a duplicate of an ImageView, so that you can modify one without affecting the other,
you should use the copy () function found in <vw/Image/Algorithms.h>.

// This makes a shallow copy, pointing to the same:

Image new_image_1 = my_image;

// This makes a deep copy, pointing to new, identical data:
Image new_image_2 = copy( my_image );

It is important to understand that this shallow copy behavior only applies when the source and
destination image types—and in particular the source and destination pixel types—are identical.
If the pixel types are different then you are not actually making a copy in the C++ sense of the
word but are instead assigning one image view to another. In the above example involving RGB
and HSV images, even though the source and destination objects are both ImageViews they in fact
have different types because they have different template parameters. Therefore the data is copied
deeply while being converted to the new pixel type. This holds even if the source and destination
pixel types differ only in their underlying channel type.

3.1.4 ImageView as a STL-Compatible Container

An ImageView can be thought of as a container of pixels, and in fact you can use it as a standard
C++ container class. The iterator type is, as expected, called ImageView<T>::iterator, and it
allows you to access each of the pixels of an image one at a time. The begin() and end () methods
return iterators pointing to the first and one-past-the-last pixels, respectively. The first pixel is
located at position (0,0), and incrementing the iterator advances to the next column. After it
passes through the last column, the iterator wraps around to the beginning of the next row.

This C++ Standard Template Library (STL) compliant iterator exists mainly to allow you
to take advantage of the many algorithms provided by the STL that operate on containers. For
example, you can use sort () to sort all of the pixel values in an image.
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std: :sort( my_image.begin(), my_image.end() );

That particular example may be more cute than it is useful, but others occur more frequently.
For instance, you can use std: :count () to count the number of pixels with a particular value, or
std: :replace() to replace all pixels that have one value with another.

3.1.5 Image Planes

The ImageView class also supports another feature found in many other image processing libraries:
image planes. Like duct tape, planes are the wrong solution to almost every problem, and we
discourage their use. Basically, planes allow you to store some number of two-dimensional pixel
arrays of the same size (“planes”) together in a single object. Planes are different from channels
in that the number and meaning the planes is not specified at compile time. This means that the
Vision Workbench can not take advantage of that information as readily: for example, it has no
way to know whether a three-plane image is RGB, HSV, or something altogether different, and
it cannot optimize operations by unrolling inner loops as it is able to with channels. (It may not
be readily apparent, but the sample program shown in Listing 1 demonstrates one of the very few
possibly-legitimate uses of planes; this will be discussed more in the following section on File 1/0.)

To create a multi-plane image, pass the desired number of planes as a third argument to the
ImageView constructor or to the set_size() method. You can query the number of planes in an
image with the planes() method. To access a pixel in particular plane of an image, pass the plane
as a third argument when indexing into the image.

Image my_image(320,240,3); // A 3-plane image
my_image.set_size(320,240,3); // Same here

int planes = my_image.planes(); // Now planes ==
Pixel pix = my_image(x,y,p); // Access a pixel

Once again, if you are thinking about using planes we encourage you to first consider these alter-
natives. If you want a way to store a collection of related images, consider using a std: :vector of
ImageViews instead. If you just want to store a bunch of numbers at each pixel location, consider
using Vector<T,N> as a pixel type.

3.2 Image File I/0O

The most common way to get image data into and out of the Vision Workbench is by loading and
saving images using file I/O. There are several mechanisms for doing this, varying in complexity,
flexibility and (for the time being) completeness of implementation.

3.2.1 Reading and Writing Image Files

The simplest method for file I/O is to use the read_image () and write_image () functions, passing
them an ImageView and the filename of the image file on disk that you would like to read from or
write to.

read_image( image, filename );
write_image( filename, image );
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| Name | Extension(s) | Description |
PNG .png Standard for loss-less compression
JFIF/JPEG | .jpg, -jpeg | Standard for lossy compression, no alpha
TIFF .tif, .tiff | Highly flexible, complicated
OpenEXR | .exr High dynamic range
PDS .img Planetary Data System images

Table 3.3: The standard Vision Workbench image file formats. Which formats your installation
supports depends on what supporting libraries you have installed. Adding support for additional
file formats is discussed in Chapter 14.

Notice that the order of arguments to these two functions is reversed: in both cases the destination
is first and the source second.

Both functions determine the image file type by looking at the extension of the filename that you
provide them. The exact set of file formats that are supported depends on which file format libraries
the Vision Workbench found on your system when you build it. For example JPEG support depends
on libjpeg, and so forth. The file formats that the Vision Workbench is designed to support are
listed in Table 3.3. Note that the file extensions are case-insensitive.

Image data on disk is generally stored with one of the four standard pixel types: grayscale or
RGB with or without alpha. The image reading and writing routines will freely convert between
these formats. You should generally create an ImageView with the pixel type that you would like
to work with and let the file I/O system take care of the rest.

ImageView<PixelGrayA<float> > image;
read_image( image, "some_file.jpg" );

In this example we loaded in a JPEG image file (which has an RGB pixel format) and then converted
the data grayscale and padded it with a constant alpha value of 1.0, corresponding to fully opaque.
Attempting to save this image back as a JPEG file would reverse the conversion. (Any transparency
is composited on to a black background whenever the alpha channel is removed.)

3.2.2 More Sophisticated File I/O

We will only provide an overview of the more advanced file I/O techniques here. Many of them
are partially (in some cases barely) implemented. If you want to use any of these features you can
learn more about them in Chapter 14.

Images on disk are handled via an abstract image resource class, called DiskImageResource
and defined in <vw/FileI0/DiskImageResource.h>. You can create one directly using the same
file-extension-based file type deduction mechanism discussed above.

DiskImageResource *dirl
DiskImageResource *dir2

DiskImageResource: :open( filename );
DiskImageResource: :create( filename, format );

In the first case we are opening an existing file, and in the second case we are creating a new file.
Creating a new file resource requires providing some hints about the underlying image format, such
as its dimensions and pixel type, which are supplied by a GenericImageFormat object.

Once you have a resource you can query it for information about its dimensions, pixel format
and channel type. For example, you can choose to process different pixel formats differently.
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switch( dirl->pixel_format() ) {
case VW_PIXEL_GRAY: /* process grayscale file */ break;
case VW_PIXEL_RGB: /% process RGB file x*/ break;
VAT V4

}

You can use the DiskImageResource’s read() and write() methods to read the data into or write
the data out of an ImageView, respectively.

If you wish to force a particular file format, you can create a resource object of the appropriate
type directly.

DiskImageResourcePNG *dirpl = new DiskImageResourcePNG( filename );
DiskImageResourcePNG *dirp2 = new DiskImageResourcePNG( filename, format );

In this case we show how to create PNG image resources. If you do this then you can take advantage
of any special services provided by the particular file format’s resource type, such as the ability to
read or write special file header information.

Finally, you can make a read-only ImageView-like object that corresponds to an image on disk.
This is called a DiskImageView and is defined in the header of the same name. This can be used
to process images that are too large to be loaded into memory all at once.

3.3 Manipulating Images

We have seen how images are represented via the ImageView class, how to save and load them to
and from disk, and how to manipulate their pixels individually. Now it is time to begin discussing
how to perform slightly higher-level operations on images.

3.3.1 Simple Image Manipulation

We begin with the simple image manipulation functions listed in Table 3.4 and defined in the
header file <vw/Image/Manipulation.h> Many of these should be self-explanatory. The results
of applying several of these transforms to an image are shown in Figures 3.1(b)-3.1(i). The 90-
degree rotation functions are one of the few places where the Vision Workbench makes any kind of
assumption about the interpretation of the x,y coordinate system. When it is necessary to make
a distinction we assume that the origin (0,0) is the top-left corner of the image. If you have been
interpreting the origin as the top-right or bottom-left you will need to invert your notion of clockwise
vs. counter-clockwise when calling these two functions.

None of these functions, by themselves, modify image data or produce new images. Instead,
each function returns a special view on to the same image data. In most cases you will assign the
result to another ImageView, causing the data to be processed and the resulting image to be stored
in the new buffer:

image2 = flip_vertical( imagel );

It’s worth taking a moment to study exactly what goes on behind the scenes when you perform
an operation like this. First the Vision Workbench resizes the destination image (image2 in the
above example) if necessary so that its dimensions are the same as those of the source image (a
flipped version of imagel). Second it computes the result of the operation, storing the result in the
destination image as it goes. The important point is that if the destination image already has the
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’ Function ‘ Description ‘
rotate_180(im) Rotate the image 180 degrees
rotate_90_cw(im) Rotate the image 90 degrees clockwise
rotate_90_ccw(im) Rotate the image 90 degrees counter-clockwise
flip_vertical(im) Flip the image vertically
flip_horizontal(im) Flip the image horizontally
transpose(im) Transpose the x and y coordinates of the image
crop(im,x,y,c,r) Crop the image, specifying (x,y) and (cols, rows)
crop(im,bbox) Crop the image, specifying a bounding box
subsample (im,factor) Subsample the image by an integer factor
subsample (im,xfac,yfac) Subsample the image by integer factors in x and y
select_col(im,col) Refers to an individual column of an image
select_row(im,row) Refers to an individual row of an image
select_plane(im,plane) Refers to an individual plane of an image
select_channel (im,channel) Refers to an individual channel of an image
channels_to_planes(im) Interprets a multi-channel image as a multi-plane image
pixel_cast<PixelT>(im) Casts an image to a new pixel type
pixel_cast_rescale<PixelT>(im) | Casts an image to a new pixel type, with rescaling
channel_cast<ChanT>(im) Casts an image to a new channel type
channel_cast_rescale<ChanT>(im) | Casts an image to a new channel type, with rescaling
planes_to_channels<PixelT>(im) | Interprets a multi-plane image as a multi-channel image
weighted_rgb_to_gray(im) Converts RGB to grayscale with default weights
weighted_rgb_to_gray(im,r,g,b) | Converts RGB grayscale with the given weights

Table 3.4: The simple image manipulation functions, defined in the header file
<vw/Image/Manipulation.h>. The functions in the top section return writable views.

same dimensions as the source image then it is not resized or reallocated. This avoids unnecessary
memory allocations in common situations, such as when you are processing many identically-sized
images in a loop. However, it also means that you must be careful when processing an image and
assigning it back to itself:

image = flip_vertical( image ); // Bad idea: self-assignment

In this example, the destination image clearly has the same dimensions as the source (since they are
the same image) and so no new image buffer is allocated. As a result the flip_vertical operation
will clobber the source image with partial results, producing garbage. One solution to this problem
is to force the creation of a temporary buffer using the copy function:

image = copy( flip_vertical( image ) ); // Much better

The functions listed in the upper section of Table 3.4 all provide new ways of accessing the same
data without doing any additional processing. As a result, these functions are all able to return
writable views of their image argument. That is, you can use them to modify an image by placing
them on the left side of an equals sign. For example, suppose you want to add a small inset to a
larger image, by copying a small image into the larger one at a particular position. One easy way
is to specify the destination region using the crop() function:
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’ Function ‘ Description ‘
copy (im) Produce a deep copy of an image
£i11(im,value) Fill an image with a pixel value in-place
clamp(im, [low], [high]) Clamp values to the given range
normalize(im, [low], [high]) Normalize values to the given range
threshold(im, [thresh], [1ow], [high]) | Threshold an image to two values
grassfire(im) Compute the grassfire image of an image
blob_index(im) Apply index numbers to valid regions of an image
bounding_box (im) Return the bounding box of an image
nonzero_data_bounding_box(im) Compute the bounding box of nonzero data
image_blocks(im,width,height) Tile an image with bounding boxes

Table 3.5: The simple image algorithms defined in the header file <vw/Image/Algorithms.h>.

int cols = small_image.cols(), rows = small_image.rows();
crop( large_image, xpos, ypos, cols, rows ) = small_image;

Here we've cropped a region of the large image and used it for writing instead of reading. Note
that the assignment proceeds just as before: first the destination image dimensions are checked,
and then the data is copied. However in this case the Vision Workbench will throw an exception if
the dimensions differ, since it is not meaningful to “resize” a cropped region in the same sense that
you can freely resize an ImageView. This approach can also be used, for example, to replace one
channel of a multi-channel image using select_channel ().

The functions listed in the lower section of Table 3.4, on the other hand, all do a small amount
of processing of pixel values. The pixel_cast () function converts all the pixels in an image to the
given new pixel type. The pixel_cast_rescale() variants rescale the values if the channel type
has changed, e.g. mapping the 0-255 range of uint8 on to the 0.0-1.0 nominal range of float32.
The channel_x* variants cast the pixels to have the given new channel type, leaving the overall pixel
format unchanged. The pixels_to_channels() function takes a multi-plane image and reinterprets
it as a multi-channel image with the given pixel type. Finally, weighted_rgb_to_gray converts
RGB pixels to the corresponding grayscale pixel type using an arbitrary weighting of the red, green,
and blue channels. The default weights are based on a human perceptual model that weights green
most strongly, followed by red and then blue.

3.3.2 Image Algorithms

We will now introduce a number of additional simple image operations that are defined in the
header file <vw/Image/Algorithms.h>. You have already seen one of them, copy (), which forces
the creation of a deep copy of an image in a new buffer. The rest are listed in Table 3.5. The result
of two of these functions can be seen in Figures 3.1(j) and 3.1(k). We hope to implement a number
of additional image algorithms, mirroring the STL container algorithms but optimized for images,
at some point in the future.

The £i11() function is noteworthy because it is currently the only core Vision Workbench
function that modifies image data in-place. It is especially useful for filling a single channel of an
image. For example, you can use it to make an RGBA image fully opaque.

£i11( select_channel( rgba_image, 3 ), 1.0 );
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(j) threshold(mural,0.5) (k) clamp(mural,0.25,0.75)

Figure 3.1: Sample output from the simple image operations discussed in this section.
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(Note that 1.0 represents fully-opaque if the image has a floating-point channel type.)

The clamp(), normalize(), and threshold() functions return modified versions of their image
arguments. You can assign the result back to the original image, or you can save it in a different
image instead and keep the original. The clamp() function clamps the values in the image to the
given range. The normalize function scales and shifts the values of an image so that the values span
the specified range. The default range is from zero to the nominal maximum value for the channel
type, e.g. 1.0 for floating-point images. This is particularly useful for saving intermediate results of
your algorithms to disk for debugging. Finally, the threshold function returns a two-valued image
based on whether the pixels in the source image is greater than or less than the given threshold
value. The default high and low output values are the same as for norm, and the default threshold
is zero. For example, this line will convert a floating-point grayscale image to pure black-and-white:

image = threshold( image, 0.5 );

(a) pattern (Original) (b) normalize( (c) normalize(
channel _cast<float>( channel _cast<float>(
grassfire(pattern))) blob_index (

create mask(pattern))))

Figure 3.2: Sample output from more complex operations.

The grassfire() algorithm, named for the algorithm that it implements, is more specialized.
It takes an image and efficiently computes how far each pixel is from from a pixel whose value is
zero, assuming that pixels outside the image boundaries all have zero value. It measures distance in
the four-connected Manhattan sense, i.e. as the sum of the horizontal and vertical distances. This
algorithm is used in a variety of applications, such as avoiding obstacles and unknown terrain in
path planning.

The blob_index () algorithm, applies an index value to isolated sections of images label valid.
The determination of a pixel’s validity is from a special pixel called PixelMask. PixelMask is
discribed in the Pizels Types chapter. blob_index is useful algorithm for segmenting an image.
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Chapter 4

Image Processing

Now that we’ve covered all the basics of how to manipulate images, it’s time to move on to some
more interesting image processing tasks. We begin with an introduction to image filtering, followed
by a discussion of image math. We then take a brief detour to introduce the Vision Workbench’s
Vector and Matrix classes before describing image transformation and warping.

By the end of this chapter you will have encountered all of the core building blocks that comprise
the heart of the Vision Workbench. There are a number of directions that you can go from here,
depending on what you are hoping to accomplish. We conclude this chapter with an overview of
the many more specialized features of the Vision Workbench and a discussion of where to look (in
this book and elsewhere) in order to learn more about them.

4.1 Image Filtering

Image filtering has traditionally been the bread and butter of image processing software packages.
The Vision Workbench includes a number of functions to perform the most common filtering oper-
ations. We will first describe the special-purpose filters, and then we will discuss the more general
convolution-based linear filtering functions. All of the filter functions discussed in this section are
defined in the header file <vw/Image/Filter.h>. We will not discuss frequency-domain filtering in
this chapter; that is covered later in Section 14.7.

4.1.1 The Special-Purpose Filters

At the moment only three special-purpose filters are fully supported. The first is a Gaussian
smoothing or blurring filter, which convolves the image with a discrete Gaussian kernel that has a
user-specified standard deviation (a.k.a. “sigma’”) and user-specified size in each axis. In order for
the filter to accurately approximate a Gaussian, the size of the kernel should be at least a few times
the standard deviation. However, unnecessary computation is performed if the size is much larger
than that. You can omit the size arguments, in which case the function will pick a kernel size based
on your standard deviation that is reasonable for most applications. In the most common case the
two standard deviations are equal, in which case you need only specify a single value for sigma.

result = gaussian_filter( image, sigma );
result = gaussian_filter( image, xsigma, ysigma );
result = gaussian_filter( image, xsigma, ysigma, xsize, ysize );

33
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’ Function ‘ Description ‘
gaussian_filter(im,...) Apply a Gaussian smoothing filter to an image
derivative_filter(im,...) Apply a discrete differentiation filter to an image
laplacian_filter(im,...) Apply a discrete Laplacian filter to an image
convolution_filter(im,...) Apply a general 2D convolution filter to an image
separable_convolution_filter(im,...) | Apply a separable convolution filter to an image

Table 4.1: The Vision Workbench image filtering functions, defined in <vw/Image/Filter.h>.

’ Type \ Description ‘

ConstantEdgeExtension | Extends an image with constant (i.e. nearest-neighbor) values
ZeroEdgeExtension Extends an image with a zero value in all directions

ReflectEdgeExtension | Extends an image by reflecting across its edges

PeriodicEdgeExtension | Extends an image by repeating it periodically

Table 4.2: The edge extension modes.

In these examples, the sigma arguments are generally floating-point whereas the size variables are
integers.

The next filter is the derivative filter, which performs a discrete spatial differentiation of your
image. Here again, you can specify the order of differentiation in the two axes as well as the filter
kernel size.

result
result

derivative_filter( image, xderiv, yderiv );
derivative_filter( image, xderiv, yderiv, xsize, ysize );

There is a minimum filter size below which it is not possible compute any given derivative, and
these functions will throw an exception if you try. For the most part it is a good idea to just let
the Vision Workbench pick the kernel size.
The final special-purpose filter izs the Laplacian filter, which performs a discrete approximation
d

to the Laplacian operation V2 = oz T j—;z.

result = laplacian_filter( image );

This filter does not take any special parameters. Note that if you are accustomed to using a “larger”
derivative or Laplacian filter to reduce the effect of noise, you are probably better off applying a
smoothing operation (e.g. via gaussian_filter()) first.

4.1.2 Edge Extension Modes

To filter the regions near the edges of an image properly, filters like these need to make some sort of
assumption about the contents of the source image beyond the image boundaries. This is generally
referred to as “edge extension”. The default assumption made by the filters discussed in this section
is that in each direction the image is extended with a constant value equal to the value of the nearest
edge pixel. However, you can specify an alternative edge extension mode if you wish, by passing an
extra argument to the filters. The C++ type of the argument determines the edge extension mode
used.

gaussian_filter( image, 3.0, ConstantEdgeExtension() );
gaussian_filter( image, 3.0, ZeroEdgeExtension() );

result
result
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Both of these examples filter the source image using a standard deviation of three pixels and an
automatically-chosen kernel size. However, the first explicitly requests the default edge extension
behavior, while the second requests that the source image be assumed to be zero outside the image
boundaries.

Notice the “extra” set of parentheses after the names of the edge extension modes. Remember
that those names are C++ types, and you can only pass an object as an argument to a function.
Those parentheses invoke the edge extension type’s constructor, returning a dummy object that you
pass as the final argument to the filtering function. If you find this confusing, don’t worry too much
about it right now. Just keep in mind that when you’re using a type as an argument to a function
to change its behavior you need the extra parentheses. The types that are currently supported as
edge extension modes are listed in Table 4.2.

4.1.3 General Convolution Filtering

Most of the filters used in image processing are convolution filters, which express each output pixel
as a fixed weighted sum of neighboring input pixels. An image convolution filter is usually described
by a rectangular array of weights called the kernel. The easiest way to think about an image kernel
is as the result that you would desire from the filter if the input image had the value 1 at the origin
and zero everywhere else. (This is also known as the “impulse response” of the filter.) For example,
a first-order derivative filter in the = direction might have the kernel [ 1 0 —1 ]. In this case we
also need to know that the middle number of the kernel (the zero in this case) is the kernel’s origin.

In the Vision Workbench, convolution kernels—which as we’ve said are nothing more than
rectangular arrays of numbers—are represented by images. The pixel type for a kernel should
generally be a scalar type such as float. Once you've put the kernel that you’d like into an image
it is straightforward to use it to filter another image.

ImageView<float> kernel;
/* set up your kernel here */
result = convolution_filter( image, kernel );

In this case the Vision Workbench assumes that the center pixel of the kernel is the kernel’s origin.
If this is not what you want then you can specify the coordinates of the kernel’s origin explicitly
instead.

result = convolution_filter( image, kernel, ox, oy );

In either case you can also optionally specify an edge extension mode, just like you could for the
special-purpose filters.

Convolution filtering can be computationally expensive if the kernel is large. Fortunately, many
useful kernels have a special form that makes it possible to improve the performance considerably.
These are called separable kernels, and are themselves the result of convolving a single-column image
with a single-row image. In other words, the kernel K must satisfy K(z,y) = K,(z)K,(y) for some
functions K, and K,. The Gaussian and derivative filters are both of this form, for example, though
the Laplacian filter is not.

The Vision Workbench provides special support for efficient convolution filtering with separable
kernels. You must supply the separated kernel, i.e. two one-dimensional kernels.

result
result

separable_convolution_filter( image, xkernel, ykernel );
separable_convolution_filter( image, xkernel, ykernel, ox, oy );
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’ Per-pixel Sum ‘ Per-pixel Difference ‘ Per-pixel Product ‘ Per-pixel Quotient ‘

image + image

image - image

image * image

image / image

image += image image -= image image *= image image /= image
image + value image - value image * value image / value
image += value image —-= value image *= value image /= value

value + image

value - image

value * image

value / image

Table 4.3: The Vision Workbench image operators are included automatically when you include
<vw/Image/ImageMath.h>).

As in the general 2D convolution case, the origin of the kernel is assumed to be in the middle if
you do not specify otherwise and in either case you can add an optional argument specifying the
edge extension mode. You can still supply the one-dimensional kernels as images, just as you did
in the general 2D convolution case, but here you can also provide them in another STL-compliant
container, such as a std: :vector or (as we shall introduce later this chapter) a vw: :Vector. If you
do chose to represent the kernels as images, remember that each should have one of the dimensions
set to 1.

4.2 Doing Math with Images

In image processing it is often desirable to perform some mathematical operation on every pixel of
an image, or to corresponding pixels from several images. For example gamma correction involves
applying a mathematical function to each pixel, and background subtraction involves subtracting
the corresponding pixels from two images. In the Vision Workbench, these operations and others
like them fall under the rubric of “image math”, and the functions to support them are defined in
the header <vw/Image/ImageMath.h>.

4.2.1 Image Operators

In most cases writing code to perform image math is trivial. The mathematical expressions that
you would normally write for individual pixels work just as well for whole images of pixels. For
example, consider the background subtraction problem mentioned above.

result_image = input_image - background_image;

That’s all there is to it. Setting up an IIR low-pass filter to estimate the background image is just
as easy.

background_image = alpha*input_image + (1-alpha)*background_image;

(Here we're assuming that alpha is a small positive floating-point number.) The important point
is that there is no need for you to write a loop that performs an operation like this on each pixel.
Just write the mathematical expression, replacing pixels with images, and you’re all set.

This works, of course, because the Vision Workbench has overloaded the standard C++ math-
ematical operators to work on images. These operators are listed in Table 4.3. Operation with
scalars is treated identically to per-pixel operation with constant-value images. In order to simplify
division with large images, the image division operators have been designed so that division by zero
returns zero instead of throwing an exception.
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Function Description Function Description
sin Sine, sinx asin Inverse sine, sin™!
cos Cosine, cosx acos Inverse cosine, cos™! x
tan Tangent, tanx atan Inverse tangent, tan~! x
atan2 | Two-argument form of inverse tangent, tan—' %/,
sinh Hyperbolic sine, sinh x cosh Hyperbolic cosine, cosh z
tanh Hyperbolic tangent, tanh x exp Exponential, e*
log Natural logarithm, Inz logl0 Base-10 logarithm, log,, =
ceil Ceiling function, [z| floor Floor function, |z]
sqrt Square root, /T pow Power function, x¥
asinh Inverse hyperbolic sine, sinh™' z acosh Inverse hyperbolic cosine, cosh™
atanh | Inverse hyberbolic tangent, tanh ™' z cbrt Cube root, /z
exp2 Base-2 exponential, 2 expml Exponential minus 1, e* — 1
log2 Base-2 logarithm, log, = loglp Lograithm of one-plus, In(1 + )
tgamma Gamma function, I'(z) lgamma | Log of Gamma function, In |I'(z)|
hypot Hypotenuse, /22 + 32 copysign Sign-copying function
round Rounding function trunc Floating-point truncation
fdim Positive difference, max(z — y,0)

Table 4.4: The Vision Workbench image math functions, as defined in <vw/Image/ImageMath.h>.
The functions in the bottom section are not available under the Windows operating system.

There is one important issue to bear in mind when using image operators: the underlying per-
pixel operations must themselves be meaningful. For example, multiplying an image whose pixel
type is PixelGray by an image whose pixel type is PixelRGB is not well-defined, and attempting
to do so will result in a compiler error. The Vision Workbench will not automatically “promote”
the grayscale image to RGB.

This raises the question of what happens when you multiply two images both of whose pixel
type is, for example, PixelRGB. What does it mean to multiply two RGB colors? Multiplication
is defined for numbers, not colors. The answer is that in this situation the Vision Workbench will
actually perform the mathematical operation on a per-channel basis rather than just a per-pixel
basis.

A good rule of thumb when working with image operators is to restrict yourself to operating on
images of the same type, or combinations of images of one type and images of scalars. As long as
you obey this rule you should find that the image operators always do what you expect.

4.2.2 Mathematical Functions

Of course, C++ provides a range of mathematical functions, too, such as exponentials and loga-
rithms, trigonometric functions, and so forth. The Vision Workbench extends these functions to
operate on images as well. The supported functions are listed in Table 4.4. Note that these image
functions are built on top of the standard C++ functions that operate on regular numbers. There-
fore, the Vision Workbench only supports those functions that are provided by your platform. In
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particular, the bottom half of Table 4.4 lists functions that are not currently available under the
Microsoft Windows operating system.

You can use these functions just like you use the mathematical operators: write the same
expression that you would write for individual pixels, but substitute whole images instead.

float gamma = 1.8;
result_image = pow( input_image, gamma );

This example demonstrates how to use the pow() function to gamma-correct an image. Here the
variable gamma is a floating-point number representing the desired gamma correction factor for the
entire image. However, if instead we wanted to apply a variable gamma correction factor on a
per-pixel basis, the following code would do the trick.

ImageView<float> gamma_image; // Initialize with different gamma values
result_image = pow( input_image, gamma_image );

This example demonstrates that the arguments of a two-argument mathematical function can be
either scalar or image values. Just as with the operators, scalar arguments are treated the just like
a constant-value image.

Note that unlike the normal mathematical functions that C++ inherited from C, it is not
necessary (or correct) to use a different function name when you are working with float image
data than you would use to work with double image data. The function names listed in Table 4.4
are correct for image math in all cases. Those in turn use the proper underlying mathematical
functions as appropriate—for example, sin() invokes sinf () on each pixel if it is applied to a
float-based image.

4.3 Vectors and Matrices

Before introducing the next image processing topic, image transformation and warping, we must first
take a brief detour to introduce the Vision Workbench vector and matrix classes. We will assume
in this chapter that you have a good familiarity with the underlying mathematical entities that
these classes represent. Note that our mathematical usage of the word “vector” here is somewhat
different from the C++ standard library’s use of the word to mean a dynamically-resizable array.

4.3.1 Vectors and Vector Operations

The Vision workbench vector class is called, appropriately enough, Vector. Like ImageView, Vector
is a template class whose first template parameter is required and specifies the underlying numeric
type. However, while the dimensions of an image are always specified at run-time via the image’s
constructor or the set_size() method, Vector comes in two variants. The first form behaves in
just the same way, but the second form has a fixed size that is specified at compile time. This
eliminates the need for frequent dynamic allocation when working with vectors in the common case
when the vector dimension is known.
Declaring either type of vector is straightforward:

Vector<float> vectori(3);
Vector<float,3> vector2;
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Both of those statements declare three-dimensional vectors of floating-point numbers. In the first
case the vector is allocated dynamically on the heap and the size could have been chosen at run-
time. In the second case the vector is allocated statically on the stack, but the dimension can not
vary at run time. The first form is generally useful when, say, reading a large vector of data in from
a file, while the second form is more useful when performing geometric computations.

The second, fixed-dimension form also has special constructors that you can use to initialize the
vector contents:

Vector<float,3> vector2(1,2,3);

These constructors are available with up to four arguments. Alternatively, you can construct both
fixed-size and dynamically-sized vector with data copied from a block of memory that you point
them to:

float *some_data;
Vector<float> vector1(3, some_data);
Vector<float,3> vector2(some_data);

Remember that this copies the data, so it can be inefficient; see the discussion of VectorProxy
below for an alternative. Three of the most commonly used vector types have special aliases, for
convenience:

typedef Vector<double,2> Vector2;
typedef Vector<double,3> Vector3;
typedef Vector<double,4> Vector4;

These types are used throughout the Vision Workbench as the standard geometric vector types.
You can query a vector about its size (i.e. dimension or length) with the size () method, and
you can index into a vector to access individual elements:

for( unsigned i=0; i<vectorl.size(); ++i ) vectorli(i) = 0;

This example loops over all the elements of a vector, setting them to zero. You can also into a
vector with square brackets instead of parentheses if you prefer. For fixed-length vectors there is
one more way to access up to the first three elements, via methods called x(), y(), and z().

vector2.x() = 0; // Set the first element to zero

These methods are only available if the vector has sufficient length. For example, attempting to use
the z() method of a vector of type Vector<float,2> will result in a compile-time error. Remember,
these methods are only available for fixed-size vectors, not dynamically-sized ones. Dynamically-
sized vectors, however, can be resized:

vectorl.set_size(10);

The set_size() function takes an optional second argument that specifies whether or not the
vector contents should be preserved. This argument defaults to false, so in the above example the
old contents (if any) are lost.

The Vector classes support the standard mathematical operations of vector addition and sub-
traction and scalar multiplication and division via the usual C++ operators. They also support
the a range of elementwise mathematical operations, such as adding a scalar to each element or
multiplying the corresponding elements of two vectors, via functions of the form elem_x. There are
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’ Function ‘ Description
- vector Vector negation
vector + vector Vector sum
vector - vector Vector difference
vector * scalar Scalar product
scalar * vector Scalar product
vector / scalar Scalar quotient
vector += vector Vector sum assignment
vector -= vector Vector difference assignment
vector *= scalar Scalar product assignment
vector /= scalar Scalar quotient assignment

elem_sum(vector,vector)

Elementwise vector sum (same as + operator)

elem_sum(vector,scalar)

Elementwise sum of a vector and a scalar

elem_sum(scalar,vector)

Elementwise sum of a scalar and a vector

elem_diff (vector,vector)

Elementwise vector difference (same as - operator)

elem_diff (vector,scalar)

Elementwise difference of a vector and a scalar

elem_diff(scalar,vector)

Elementwise difference of a scalar and a vector

elem_prod(vector,vector)

Elementwise product of two vectors

elem_prod(vector,scalar)

Elementwise vector product (same as * operator)

elem_prod(scalar,vector)

Elementwise vector product (same as * operator)

elem_quot (vector,vector)

Elementwise quotient of two vectors

elem_quot(vector,scalar)

Elementwise quotient (same as / operator)

elem_quot(scalar,vector)

Elementwise quotient of a scalar and a vector

norm_1(vector)

I-norm of a vector, i.e. > |v;

norm_2(vector)

Euclidean 2-norm of a vector, i.e. \/ S 2

norm_2_sqr(vector)

: 2
Squared 2-norm of a vector, i.e. Y v;

norm_inf (vector)

Infinity-norm of a vector, i.e. max |v;]

sum(vector) Sum of elements, i.e. Y v;
prod(vector) Product of elements, i.e. []v;
normalize(vector) The normalized form of a vector, i.e. v/|v]

dot_prod(vector,vector)

Vector dot product, i.e. u-v

cross_prod(vector,vector)

Vector cross product, i.e. u X v

Table 4.5: The vector math functions defined in <vw/Math/Vector.h>.

a number of vector norms and related functions, as well as a vector dot product and cross product.
(The cross product is, of course, only valid for three-dimensional vectors.) The complete list of
vector math functions defined in <vw/Math/Vector.h> is given in Table 4.5.

A Vector object is also a container in the C4++ Standard Template Library sense of the word.
There is a Vector<...>::iterator type that serves as the vector’s iterator, and there are begin()
and end () methods that return iterators to the first and one-past-the-last elements, as usual. This
can be an extremely convenient way to load data into and out of Vectors.

You can extract a portion of a vector using the subvector () function, which takes three argu-
ments: the original vector, the position of the first element to extract, and the number of elements
in the resulting vector:
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Vector<float,3> vector2 = subvector(vectori,5,3);

This example copies the fifth, sixth, and seventh elements of vectorl into a new three-element
vector.

The streaming operator << is also defined for writing vectors to C++ output streams, which
you can use to dump vector contents for debugging:

Vector<float,3> vector2(1,2,3);
std::cout << vector2 << std::endl;
// The output is: [3](1,2,3)

Note that the size of the vector is printed first, followed by the vector’s contents.

Sometimes it can be useful to work with data that is already stored in memory as though it were
stored in a Vector object. As long as the data is stored in the usual packed format this is easy to do
using the special VectorProxy type, which also comes in fixed-size and dynamically-sized variants:

float some_datal[10] = {0,1,2,3,4,5,6,7,8,9%};
VectorProxy<float> proxyl(10, some_data);
VectorProxy<float,10> proxy2(some_data);

The constructor arguments are the same as are used in Vector to initialize a vector with data from
a block of memory, except the data is not copied. You can now treat these proxy objects just
like the were regular Vectors, except the contents will be stored in the region of memory that you
pointed them to. In some situations this can be considerably more efficient than copying the data
unnecessarily. (It is of course not possible to resize a VectorProxy, since the proxy does not have
any control over the memory that it is using.)

4.3.2 Matrices and Matrix Operations

The Vision Workbench Matrix class is the matrix counterpart to the Vector class, and behaves
quite similarly. Once again, there are fixed-dimension and dynamically-sized versions:

Matrix<float> matrix1(3,3);
Matrix<float,3,3> matrix2;

Note that the arguments to matrix-related functions such as these constructors are given in 4, j
order, i.e. row followed by column. This is different from images, where arguments are given in x, y
order, i.e. column followed by row. You may find this confusing at first if you are moving to the
Vision Workbench from an environment like Matlab where there is no distinction between images
and matrices. However, it is in keeping with the standard index ordering seen in the bulk of the
image processing and mathematics literatures, respectively.

You can initialize the matrix with data already stored in memory, as long as the data is stored
in a packed row-major format:

float some_datal4] = {1,2,3,4};
Matrix<float> matrix1(2,2,some_data);
Matrix<float,2,2> matrix2(some_data);

As in the case of Vector, the initialization data is copied into the matrix in this case, but there is
also a proxy form that allows you treat in-memory data like an ordinary matrix:
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float some_datal4] = {1,2,3,4};
MatrixProxy<float> matrix1(2,2,some_data);
MatrixProxy<float,2,2> matrix2(some_data);

The three most common matrix types have been given convenient aliases:

typedef Matrix<double,2,2> Matrix2x2;
typedef Matrix<double,3,3> Matrix3x3;
typedef Matrix<double,4,4> Matrix4x4;

These types are again the standard types used throughout the Vision Workbench in geometric
applications.

You can query a matrix’s dimensions using the rows () and cols() methods, and can index into
the matrix to access individual elements. There are two ways to do this:

matrix(row,col) = 1; // "New"-style indexing
matrix[row] [col] = 1; // "0l1d"-style indexing

A dynamically-sized matrix can be resized using the set_size() method:
matrix.set_size(rows,cols);

As in the case of resizing vectors, the default behavior is that any old data is not saved. The
set_size() method takes an optional third boolean parameter that can be set to true to request
that it preserve the overlapping entries.

Once you’ve made one or more matrices you can use a wide range of mathematical operator
and functions to manipulate them. The standard C++ operators, elementwise math functions,
and a number of other functions similar to those for vectors are supported. A list of the ma-
trix math functions is given in Table 4.6. Notice that some of these functions also operate with
vectors: all vector functions that involve matrices are defined in <vw/Math/Matrix.h> instead of
<vw/Math/Vector.h>.

There is a special method, set_identity(), that can be used to set a square matrix to the
identity matrix of that size.

Matrix<float> id(3,3);
id.set_identity();

If you want to treat a single row or column of a matrix as though it were a vector, you can do so
using the select_row() and select_col() function:

Vector<float> first_row = select_row(matrix,1);
select_col(matrix,2) = Vector3(1,2,3);

The second of these examples illustrates that you can use the select_x functions to write into
matrix rows and columns as well as read them out. Finally, you can treat a block of a matrix as a

smaller matrix in its own right using the submatrix () function:

Matrix<float> block = submatrix(matrix,row,col,rows,cols);
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Function

‘ Description

- matrix

Matrix negation

matrix + matrix

Matrix sum

matrix - matrix

Matrix difference

matrix * scalar

Scalar product

scalar * matrix

Scalar product

matrix / scalar

Scalar quotient

matrix += matrix

Matrix sum assignment

matrix -= matrix

Matrix difference assignment

matrix *= scalar

Scalar product assignment

matrix /= scalar

Scalar quotient assignment

matrix * matrix

Matrix product

matrix * vector

Matrix-vector product

vector * matrix

Vector-matrix product

elem_sum(matrix,matrix)

Elementwise matrix sum (same as + operator)

elem_sum(matrix,scalar)

Elementwise sum of a matrix and a scalar

elem_sum(scalar,matrix)

Elementwise sum of a scalar and a matrix

elem_diff (matrix,matrix)

Elementwise matrix difference (same as - operator)

elem_diff(matrix,scalar)

Elementwise difference of a matrix and a scalar

elem_diff(scalar,matrix)

Elementwise difference of a scalar and a matrix

elem_prod(matrix,matrix)

Elementwise product of two matrices

elem_prod(matrix,scalar)

Elementwise matrix product (same as * operator)

elem_prod(scalar,matrix)

Elementwise matrix product (same as * operator)

elem_quot(matrix,matrix)

Elementwise quotient of two matrixs

elem_quot(matrix,scalar)

Elementwise quotient (same as / operator)

elem_quot(scalar,matrix)

Elementwise quotient of a scalar and a matrix

norm_1(matrix)

Matrix 1-norm

norm_2(matrix)

Matrix 2-norm

norm_frobenius(matrix)

Matrix Frobenius norm

sum(matrix) Sum of elements, i.e. Y v;
prod(matrix) Product of elements, i.e. []v;
trace(matrix) Matrix trace, i.e. > My,

transpose (matrix) Matrix transpose, i.e. M’

inverse(matrix)

Matrix inverse, i.e. M1

null (matrix)

Matrix nullspace, i.e. a fx where Mx =0

Table 4.6: The matrix math functions defined in <vw/Math/Matrix.h>.

43

You can also use this function to write into a region of a matrix, much as in the previous example
using select_col().

Like Vector, Matrix is a C++ STL-compatible container class. The Matrix<...>::iterator
iterates over the elements of a matrix in the same order that the ImageView’s iterator does: across
each row, moving down the matrix from each row to the next. This is again a good method for
loading or extracting matrix data from other containers. To extract the matrix data to a stream
for debugging output you can use the << stream output operator:
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double datal4] = {1,2,3,4};
Matrix2x2 matrix(data);

std::cout << matrix << std::endl;
// The output is: [2,2]((1,2)(3,4))

Again, the output includes the matrix dimensions (rows followed by cols), followed by the matrix
data.

4.4 'Transforming or Warping Images

We return now to our discussion of image processing by introducing a new concept: image trans-
formation. Most of the image processing operations we have dealt with so far (with the exception
of the simple transforms in Section 3.3.1) have operated on pixel values. Image transformation, or
warping, is a common image processing operation that operates instead on a pixels location.

4.4.1 Transform Basics

Let’s start with a basic example of image transformation. First, include the <vw/Image/Transform.h>
header file. Now, imagine you would like to translate all of the pixels in the image 100 pixel po-
sitions to to right. This operation does nothing to the pixel values except to relocate them in the
image. The Vision Workbench provides a convenient method for performing this operation.

double u_translation 100;
double v_translation 0;
result_image = translate(input_image, u_translation, v_translation);

This simple example already raises some interesting questions. How big is the output image?
What happens to the pixels that are translated off the right edge of the image? What value is used
to fill in pixels where the original image has no data?

The answer to the first question is straight-forward. By default, the transformed image will
have the same dimensions as the input image. However, you can easily override this behavior by
selecting a different region from the output image using the crop() function. For example, you
could grow the right side of the output image to include the shifted pixels.

result_image = crop(translate(input_image, u_translation, v_translation),
0, 0, input_image.cols() + x_translation, input_image.rows());

If input_image was 320x240, result_image will be 420x240 pixels and it will have a 100x240
black band on its left side.

This is a good time to stop to consider what is really happening here, because the ability to
arbitrarily crop the output of a transformed image is extremely useful. Under the hood, our call
to translate is returning an object that behaves like an image (so it can be cropped), but it is
actually presenting an image-like interface to some processed, edge-extended data. Thus, you can
use crop() to select a region of pixels anywhere in the pixel space that contains the resulting image.
It is not until you assign the cropped image to result_image that this data is once again rasterized
and stored as a contiguous block in memory.

Note that the Vision Workbench adopts a consistent coordinate system when working with
pixels in the transformed image space. The origin is at the upper left hand corner of the original
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Transform (output) Pixel Space
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+U Input Image
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Figure 4.1: Using the crop() function, you can select any region of the transformed (in this case,
translated) image that you need.

image, with the u coordinate increases as you move down the rows of the image. Figure 4.1 shows
this coordinate system and the input and output bounding boxes in the case of the the cropped,
translated image example we have been working with.

Using this intuition, we can now answer the second question posed above. When the pixels are
translated off of the right edge of the image, they disappear unless they are explicitly selected using
crop(). The only other reasonable behavior might have been to have the pixels wrap around and
enter on the left side of the image. This is not supported using the Vision Workbench translate ()
function, however, as you will learn in the next section, such transformations are still possible using
the general transform framework.

Finally, we arrive at the third question: what pixel value is used to fill area where the original
image has no data? To answer this, think back to the discussion of edge extension modes for the
filter routines in section 4.1.2. Edge extension behavior in the transform routines of the Vision
Workbench are specified in an identical fashion.

result_image = translate(input_image,
u_translation, v_translation,
ConstantEdgeExtension()) ;

In this example, the left 100x240 block of result_image will contain the “smeared out” pixels
from the left side of the input image. Of course, this is probably not what you wanted, so the
default behavior edge extension behavior for translate() is set to ZeroEdgeExtension().

One final point before we move on to talking about image transformations more generally.

Counsider this block of code:

double u_transformations = 100.5;

double v_transformation = 30.7;

result_image = translate(input_image, u_translation, v_translation,
ConstantEdgeExtension(), BicubicInterpolation());
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’ Type ‘ Description ‘

NearestPixelInterpolation | Use the nearest integer valued pixel location
Bilinear Interpolation Linearly interpolation based on the four nearest pixel values
Bicubic Interpolation Quadritic interpolation based on the nine nearest pixel values

Table 4.7: The Vision Workbench Interpolation Modes.

Here, the image is translated by a non-integer number of pixels. This is a totally reasonable
thing to do, but it raises the question of how one accesses a non-integer pixel location in the
source image. The answer: interpolation. As with edge extension, you can specify the interpolation
mode by passing in a dummy argument to the translate() function. Table 4.7 shows the built-in
interpolation types.

4.4.2 Creating a New Transform

Having now addressed some of the fundamental issues that arise when transforming images, we
now turn our discussion to how one might formulate and implement a new image transformation
algorithm.

In the most general sense, a transform is computed by performing the following two steps for
every pixel in the output image.

e Given the coordinates X,,; of a pixel in the output image, apply a transformation that yields
the coordinates X, of a source pixel in the input image.

e Use some edge extension and interpolation scheme to determine the pixel value of the input
image at X;, (it may fall in between integer pixels coordinates or outside of the input image
entirely) and set the value of the output image at X, to this value.

When formulating a new image transformation algorithm, the first step where all of the in-
teresting work happens. The code for interpolation and edge extension is important, but usually
incidental to the transformation under development. Ideally, one would focus exclusively on writing
code to perform the geometric calculations in step one. To help us with this task, we will introduce
a new programming idiom that appears commonly in the Vision Workbench: the functor.

Technically, a functor is a C++ class that has implemented the operator() method. Once
created, such a class can be called and passed around in place of a normal C++ function. It
behaves identically except that, as a C++ object, the functor can maintain its own state (possibly
initialized when the functor is constructed). In the Vision Workbench, we use this definition more
loosely to mean any small function object that adheres to a small, pre-determined interface. But,
rather than linger over semantic details, let’s jump straight to an example so that you can see what
we mean.

Let’s look at the definition for the functor that describes image translation, shown in Listing 3.
You’'ll notice that this class has defined three methods: a constructor and two methods called
forward () and reverse (). The class also inherits from TransformBase<>, but that’s not something
to dwell on here. For now just be aware that TransformBase<> provides default implementations
that throw vw: :UnimplErr () exceptions in case the subclass does not implement both methods.

The constructor is used to initialize the state of this functor; in this case, an offset in x and y.
The reverse() method is the most important. It performs step one in our list at the beginning of
this section. Pretty simple, right? Although the transformation in this example is nothing special,
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1 // __BEGIN_LICENSE__

2 // Copyright (C) 2006, 2007 United States Government as represented by
3 // the Administrator of the National Aeronautics and Space Administration.
4 // All Rights Reserved.

5 // __END_LICENSE__

6

7

8 class TranslateTransform : public TransformBase<TranslateTransform> {
9 double m_xtrans, m_ytrans;

10  public:

11 TranslateTransform(double x_translation, double y_translation)

12 m_xtrans( x_translation ) , m_ytrans( y_translation ) {3}

13

14 // Given a pixel coordinate in the ouput image, return

15 // a pixel coordinate in the input image.

16 inline Vector2 reverse(const Vector2 &p) const {

17 return Vector2( p(0) - m_xtrans, p(1) - m_ytrans );

18 }

19

20 // Given a pixel coordinate in the input i