Wiring Diagnostics vial;-Regularized Least Squares

Stefan SchuetVlember, |IEEE

Abstract—A new method for detecting and locating wiring It is common practice for trained technicians to manually
damage using time domain reflectometry with arbitrary input examine the raw TDR response by eye in search of reflections
interrogation signals is presented. This method employs &t-  j,qicative of wiring faults. While this is perhaps the siregt
ing ¢1 regularization techniques from convex optimization and aoproach. it often does not work well for small faults with
compressed sensing to explpit qursity in the distr.iblutionof pp o . . W w ufts wi
faults along the length of a wire, while further generalizing and Subtle reflection signatures. Furthermore, the currené si
improving commonly used fault detection techniques basedro the art uses sequence time domain reflectometry (STDR),
sliding correlation and peak detection. The method's effetiveness  or spread spectrum time domain reflectometry (SSTDR) to
is demonstrated using a simulated example, and it is shown detect wiring problems on live wires [1]. In essence these

how Monte Carlo techniques are used to tune it to achieve technoloai d the i tint i . |
specific detection goals, like a certain false positive errorate. echnologies sprea € input Interrogation signal energy

Furthermore, the method is easily implemented by adapting OVer time by using a pseudo noise sequence with a small
readily available optimization algorithms to quickly solve large, amplitude so that the regular data signals on the wire appear

high resolution, versions of this estimation problem. Findy, the  ynaffected. With this type of interrogation signal direcimoal
technique is applied to a real data set, which reveals its impssive  jgpaction of the reflected signal is near impossible, soesom
ability to identify a subtle type of chafing damage on real wie. sort of processing is required to detect fault severity and
Index Terms—diagnostics, fault detection, inverse scattering, |ocation. By far the dominant processing algorithm for all
lossless media, sparsity, time domain reflectometry (TDRyiring. these systems is to simply compute the correlation between
the input signal and the reflected response and then to use
a peak detection algorithm (or just a threshold) to locaee th
I. INTRODUCTION faults [1]-[5].
T HIS paper considers the specific problem of detecting opviously, it is beneficial to process the reflected response
faults in wiring systems using time domain reflectometryy order to automate the detection process, or perhaps just
Generally, this is performed by launching a known signad infy make manual inspection easier. In this paper, we de-
a wire, and examining the signal reflected back for potentighjop an improvement to the traditional sliding correlzaad
issues (Figure 1 below). An important aspect of this tea®i peak detection method, by incorporating the additionabrpri
is that one can detect and locate wiring problems well befoigormation that small wiring faults are generally spaysel
hard short or open conditions occur. With this application ipopulated along the line. The approach is motivated by some
mind we are particularly concerned with the detection oflsmaecent theoretical and software developments in compiesse
faults such as chafing damage to shielded wire. One specifitysing for sparse signal recovery usingiorm regularization
application is to aircraft wiring systems that are hard &piect [6], [7]. This method appears to be effective and new to the
visually, and where it is critical to identify problems bedo fie|d of time domain reflectometry. The presentation here is
components start to fail. _ _ meant to be clear, practical, and immediately applicable to
The setup is presented in Figure 1. A Time Domain Reflegny existing TDR hardware system. It is thus critical that
tometer (TDR) is connected to the transmission line we m”tihprovements are both computationally efficient and effect
check, and is used to send a signal down the wire. The reflecigg arbitrary interrogation signals.
signal is then measured, and checked for anomalies that mighrne fundamental problem presented here is to reconstruct
indicate possible wiring problems along the line. For exBMp the properties of a transmission line from the measurement
consider a simple case where the original transmissioniﬂ;ineof_ its response to an input interrogation signal. This peobl
perfect (and has matched source and load impedance). In {iig peen studied for at least half a century, but seldom under
case, we will see the incident signal pass right throughittee | {he time domain reflectometry heading, which seems more
without receiving any reflected signal back. Now imaginé thgycysed on hardware development. Some early work dating
during the course _of its lifetime, the outer shielding .alcmg_ back to at least 1957 appears in the geophysics community
section of the wire is damaged, a common problem with agighere researchers focused on identifying systems of ldyere
aircraft (?aused b_y decades of wires ru_bbing togethe_r, amadgrth by applying the TDR principle to the ground. A survey
other things. This sort of damage will cause the incidegf this work is provided by J. Mendel in [8]. The electrical
voltage wave to reflect and travel back along the line Whereeihgineering community has of course tackled the problem as

will be measured by the TDR. well, sometimes referring to it asverse scatteringor layer
This work was supported by NASA's Aviation Safety Progrars,part of pealing The literature here is extensive and ma_ny different
Challenge Problem 8 within the Aircraft Aging and Duralyilroject. models have been proposed. Two representative examples
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Division, Moffett Field, CA 94035. (e-mail: stefan.r.s@t@nasa.gov). model described in [9]1. or the more general continuous RCLG
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2010. transmission line model presented in [10].



J\/V_(i) J\/ﬁf) where fork = 0,1,2,...,n — 1, V,.(k) is the measured

response,u(k) is a series of impulse responsgeflection

4{ wire under test }—‘ coefficientsthat characterize the damaged wifé(k) is the
ZL

TDR
‘Z@JL known incident wave launched into the transmission ling, an
Vi, 8 n(k) is random measurement noise. This model has a simple
P interpretation: the measured signal is the sum of time esthift
and scaled replicas of the input sigié( k), plus noise. For an
- \ unfaulted lineu(k) = 0, for all k& (except perhaps at the source
] reflection eaused by interni wire damage or load end of the wire). Thus, fault severity and location
are indicated by the magnitude and position of each nonzero

Fig. 1. Basic TDR Setup. The TDR interrogates the wire witpuin reflection coefficient. . . L
signal V; (t), which propagates along the wire and reflects off of impedanc The model can represent either causal or circular (pefiodic

discontinuities caused by damage. The reflected signdl,), is measured at convolution. For circular convolution we plt(—k) = Vi(n—
the input of the wire and used to determine the location awdrig of the

damage. k). For causal convolution, we simply definé(k) = 0 for
all k£ < 0. Obviously, for either cas¥, (k) must get the same
treatment.

The application of this prior research to the detection of It_ is both ir!structive an_d notationally convenient to reeri
wiring faults usually falls into one of two categories. Thél) in an equivalent matrix vector form:
first category contains techniques that solve the trangmiss

. -5 ; . O . v =Vu+n (2)
line partial differential equations, using discrete or tomous

methods, and then directly inverts the solution processonit where,

incorporating the effects of measurement noise, such agtho 7

presented in [9], [10]. The second category consists of atlsth v = [Ve(0),. Vil = 1)]

that use simple linear models, which account for noise, and o= [u0),...,u(n—1)"

apply various least-squares based techniques to the iomers n = [100),...,n(n—-1)7

process, such as Kalman filtering [8]. The sliding correfati
and peak detection method, as well as the method we purﬁﬁ@v

in this paper also fall into this category. Although these Vi (0) Vi(=1) ... Vi(1—n)
models are not as general or precise as those falling into

the first category, they are practical to work with, lead to 1, _ Vi(1) Vi(0)

robust inversion algorithms where measurement noise is a : : V(-1
consideration, and arffective for the detection of small faults Vitn—1) Vi(n—2) ... V;(0)

on near lossless wireln many ways they are analogous to
the small-signal models, which are used with great success,v,., u, andny € R™. V is a Toeplitz matrix irR™*" entirely
throughout electrical engineering and physics in general. determined by the input sign&f (k).

This paper is organized as follows. First we present aFinally, it is important to note the linear model presented
linear model for the TDR setup and measurement process jbste is motivated by the lossless discrete piecewise aunsta
described. Next, the problem of detecting the location amaipedance transmission line model shown in figure 2. A
severity of wiring damage is posed as an estimation probleafear, detailed study of this model is presented in [9]. The
and a heuristic is introduced to find effective solutionshe t linear model is actually an approximation to the piecewise
original problem, by solving a convex optimization problemconstant model that follows by assuming only the primary
Finally, we will show how the Fast Fourier Transform (FFT)eflection from each impedance discontinuity is significant
makes it possible to efficiently solve large-scale problemand that all additional reflections are negligible. In cases
Numerical examples are presented along the way, and thieere the impedance discontinuities are both sparse ant sma
improved technique is verified using real TDR data. the reflection coefficientg(k) are approximatelyrelated to
impedances discontinuities in the traditional sense (aicg
to the equation shown on figure 2). S&&.10 of [11] for

Il. A LINEAR TDR MODEL more discussion. The validity of these assumptions wilb als

We assume the transmission line or just wire is lossleB§ supported by the practical examples using real TDR data
(and hence also distortionless), that any voltage waveliray Presented irgVi.
through it moves at constant velocity, and that the line is
initially quiescent. [1l. REFLECTION COEFFICIENT ESTIMATION

We consider the following discrete convolution model for non2ero values ofu(k)

indicate the location and severity
the TDR measurement process:

of faults along the wire. Given the prior information that
n—1 wires are typically undamaged for most of their length, gtce

Vi (k) = Z w(5)Vi(k = 5) + n(k), (1) perhaps at a few locations, the reflection coefficient vegtor
=0 should contain only a few nonzero values. In other words, we



Vi (k)

— The first is that if 7V = I, then the least-squares estimate
' reduces tq.* = V7 v,, which when written out becomes the
familiar discrete equation for the correlation betweenitipait

zr| and output signals:

Vi (k)

~ Zht1=Zk
M(k) ~ Zy41+2y,

n—1
Wi (k) =Y Vi(j = B)V:(h), (6)
J=0
Fig. 2. The discrete piecewise constant impedance modedll Saults are 1N€ conditionV?'V = I implies the input signal is shift
modeled as impedance discontinuities, which are equilplespecified as orthogonal, a condition that is met only when the frequency
reflection coefficients. spectrum given by the DFT df;(k) has uniform magnitude
across all frequencies. Furthermore, we can show this type

expecty to be sparse. Thus, we are interested in solving 119 signal minimizes the mean square error between the actual

optimization problem: reflection coefficient profile and its estimate under the agsu
o tion that the only interference source is Gaussian noisas,Th
TIinimze fo(w) (3) shiftorthogonalinput signals are in this sensedh@malinput
subject to sparse, signals. There are at least 2 important examples. The fiddt is
where, courseV; (k) = 6(k), whered(k) is the well known discrete
folu) = LHVH — o2 4) |mpulse functpn. The second is a pseud(_) noise sequence with
202 uniform magnitude and random phase in the frequency do-

is the objective representing the negative log-likelihaefd main. These signals are technically only circular-shithog-
observing the signaV,. given u, under the assumption thatonal, but are sometimes also considered shift orthogonal in
the noisen(k) is IID N(0,0?). statistical sensee(g, E [V;(j)Vi(j — k)] = 6(k)). From these
One heuristic to handle the rather vague sparsity constratonsiderations we can see that the optimality of the sliding
in (3), is to add an¢;-norm penalty to the objective. Thiscorrelator detection method relies heavily on the assumpti
regularization technique is well known to produce sparskat the input interrogation signal is shift orthogonal.
solutions (see [6], [7], [12], [13] and [14§.3.2). To this end, However, in practice these optimal input signals are not
we consider solving the conve-regularized least squarestypically found because to avoid aliasing effects it is good
problem (LSP): practice to sample considerably faster than the highest fre
guency in the input signal. Thus the frequency spectrumef th
input signal is never uniform across all frequencies. Ofrseu
with ¢;-norm defined ag§ x|, = Z;:Ol |(7)]- Intuitively, the one could measure the system response at a high sampling
solution is sparse because in the process of finding an olptirmate, and then process (filter and subsample) the inputlsigna
solution, the solver will routinely reduce a small coeffitie and measurements to get the desired result, but that agproac
identically to zero at the cost of increasing the associategually destroys information. For example, consider FegRyr
squared errofy (1) by a smaller amount. The key observatiomvhich shows the measured input signal of the 3M 900AST
is perhaps that square error measuredfpystays relatively handheld TDR device. This signal is sampled0a32 ns,
flat near a minimum, while absolute error measured;dy:)| and would be approximately shift orthogonal for shifts50f
decreases to zero at a constant rate and does not level offi§it Subsampling to obtain the desired “ideal” discrete inpu
is also not differentiable gt(k) = 0 for eachk). Please see would ruin the additional information in the side lobes of
the references just cited for more examples and discussiorthe time domain signal, information that might improve faul
The parameter > 0 adjusts the trade-off between subédetectability and resolution.
optimality in the likelihood of the measured response, and Despite our best efforts, in practice all input signals are
the sparsity ofu. Since effective values oh for a given non-ideal. In general, over sampling leads to effectiveoger
problem depend on the measurement noise variaicave in the DFT of the input signal. That reduces the effective
will frequently specify the producko? (rather than jush) to rank of V7'V, which leads to ambiguity in the best least-
highlight the interdependence between these two constantsquares estimate. The method presented in this articlagiite
The fact that (5) is a convex optimization problem is ato resolve that ambiguity with the prior information thaeth
important feature for practical applications. Primarifyneans faults are sparsely populated along the length of the wire. |
the optimal solution can be computglbbally, in a robust and is in this way that an improvement over existing correlation
efficient manner [14]. based TDR fault detection algorithms is obtained.

minimize fo(u) 4+ A||pll1, )

A. Relation to Least-Squares, Correlation Detectors and OB. Example

timal Input Signals To simulate the TDR measurement process, we begin by
To see that (5) is a generalization of the least-squar@enerating a sparse vector of reflection coefficigntsR" as

problem we need only set = 0. In this case, the optimal follows:

solution is well known:y* = (VIV)=1VvTy,, assuming 1) Randomly pick an integeN between0 and 10 (with

(VTV)~! exists. From here we will make a few observations. equal probability) NV is the number of faults on the wire.



3M 900AST Input Signal Figure 5 shows the effect of polishing on the previous
‘ ‘ ‘ example (for the second largest value)otonsidered). Note,
at least in this case, the technique almost always doesghe ri
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Fig. 3. Normalized input signal and frequency spectrum feocommercially Fig. 5. Polishing example. The plot shows how the polishefteaton
available 3M 900AST handheld TDR unit. coefficients pest, are closer to the actual values than the original set of
estimated coefficients.

2) Draw N random reflection coefficients from a uniform
distribution on[—0.5,0.5]. IV. SELECTING A

3) Assign the coefficients t&v randomly chosen (equally |ntuitively, larger values of\ lead to sparser solutions, and
probable) locations in, and set all other elements tosparser solutions lead to the missed detection of smaltsfaul

zero. (false negatives). On the other hand, a detector that toips t
Next, » measurements of the reflected sighalk), for k = easily will find faults that are not really there (false pbgs),
0,1,2,...,n—1, are obtained by using the TDR measuremeMhich is also impractical especially when a technician is

model (1), with some specified input sigria( ). This method constantly sent to find and repair specious faults. Thisaect

is used to generate simulated TDR data for the rest of tg¥plores how the selection of affects performance results in
paper. two important ways. First, we establish a theoretical tetbait

Consider an example with = 200. The above proceduredetermi”es the effective range of valuesan take along with

was used to generate a sparse reflection coefficient vedh$ condition under which the sensor detects no faults.@co
1€ R?, and a measurement of the reflected sigridli), W€ show how Monte Carlo methods are used to quantify the

from a unit pulse input signal; (k) (a traditional TDR input trade-offs between differing values affor a specific example.

signal), and measurement noise= 0.02. The ¢;-regularized
LSP (5) was then solved for several different valuesiof A. The No-Fault Condition

using CVX, a package for specifying and solving convex s section presents how the selectior\adetermines the

programs [15], [16]. The input signal, reflected signal, ang, it condition (e, all estimated reflection coefficients are
detection results are plotted in Figure 4. This figure als&,ro)_

shows the normalized correlation signal between the inputyy, begin by defining the correlation signglk) as,

pulse and the reflected response.(V 7 v, /||v;]|?). While the '

£1 method successfully detects all the faults in this example, nl ) )

the traditional correlation based detection method, wiicks y(k) = Z Vi(j = K)V2(3), )

for peaks in the correlation signal, would fail to detect fingt J=0

fault due to its close proximity to the second larger fault. For each value ofk, this signal measures the correlation
between the measured response, and the input signal shifted
k units in time.

C. Polishing Using subgradient calculus it is readily shown the optimal
The previous example shows that for larger values,dhe  sojution to (5) isy = 0, if and only if

estimated reflection coefficients appear in the correctioca

but typically have reduced amplitude (see Figure 4). This ca IVfo(O)]loo = max {‘M‘} <\ (8)
be viewed as an artifact of thle-norm penalty function, since k=0....,n—1 Ok
it favors smaller elements in. For our problem this implies:
A simple technique callegolishingalleviates this problem, k)
simply by solving the original problem (3) with the spar- %‘ <A forallk=0,1,...n— 1. 9)
(o

sity pattern obtained from the solution to tle-regularized
heuristic (5). Of course, when problem (3) has a fixed sparsithis sensitivity condition simply states that if the bestea
pattern, it becomes a simple least-squares problem. correlationy (k) to noise ratio is less thah, then the optimal
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Fig. 4. A reflection coefficient estimation example. The raation results for different values ofo2 are shown on the plot to the right. Note, that in
all cases most of the reflection coefficieni$k) are zero as desired. The normalized correlation betweemfhg and output signals is also shown. Peak
detection applied to the correlation signal would cleady} fo resolve the first two faults in close proximity to eacther.

) S ) ROC Curve
solution to (5) will indicate no faults on the line (of course 1 S om0
in reality faults may still be present). There are two ways t¢ @ 0.1 o
view this condition. First, given a particular reflected rag S o i
it determines a finite maximum valug can take before 8’ 7
the sensor ceases to detect any faults. Second, and mc £ ° e
importantly, given a particular fixed setting farit determines a . [ i o posiiive rates
the signal to noise ratio needed before the sensor tripss,Tht g ' 7 ~ — - useless detector
the condition is met each time the sensor clears a wire ¢ 2, +2§3§/§2‘;:‘;Zfecwr

negative rates

unfaulted. With these two view points in mind, the condition

might be used to seleck to create a fault sensor that is RN S S S S —
. . . . 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

less prone to accidental tripping, but only if one can afforc false pos./neg. rate

decreased sensitivity to smaller faults. This is furthgrlesed

in the next section.

Fig. 6. ROC performance curve. Each point on the curve cooreds to
a different value ofAc2. For the positive (negative) rateso? increases
from right (left) to left (right). TheOs corresponds tdo? = 0, and the
. . Os corresponds tdo? ~ 22, which is the value that causes the method to
B. Estimation Performance va. report no faults along the wire (s§B/-A). The true negative vs. false negative

In this section, Monte Carlo simulation is used to invegurve foracorrelatior_l based detection method over a rahthgeshold values
. . . . __Is shown for comparison.
tigate how the selection ok is used to trade off detection
performance goals to meet application specific requiresient

To do this we will continue to build on the previous example
with n = 200. First, a set ofl00 random reflection coefficient Points, the false positive rate wa3%, and the correspond-
profiles, and corresponding TDR response data, were gerieg false negative rate wa84%. Furthermore, since false
ated using the same process described earlighisB (again Nnegatives might be of particular concern, Figure 7 compares
with fixed noise standard deviation = 0.02, and the same the overall distribution of nonzero fault amplitudes to the
input pu|se V0|tage Wave). For each measured response, (ii‘ﬁribution of actual fault amplitudes Contributing teetfalse
estimation problem (5) was solved for a series of valuekhe Nnegatives in the test set. This plot clearly shows false thegga
number of false positives and false negatives were countéfe more likely for smaller reflection coefficients, as onglmi
Figure 6 shows the Receiver Operating Characteristic (RO€j§Pect, and that this particular detector was able ideratify
curve for these results. As one might expect, larger valtiesfgults with amplitudes greater than about. Finally, note that
A lead to fewer false positives (because we are encouragfrigure 5 already presented an example comparing the actual,
Sparsity) and as a consequence, more false nega‘[ives_ dthe %‘ﬁtimatEd, and pOIiShed reflection coefficients achievdad wi
also shows the true negative vs. false negative ROC curve fais value of\o?.
a simple correlation based detector, over a range of thigsho Before moving on we wish to make clear that the results
values. Clearly, th¢; method significantly outperforms thispresented here are dependent on the particular input signal
simple detector over nearly all values bf used and the system noise. This section was intended to

Figure 6 provides us with a way to make decisions abohbighlight the potential performance achievable for thipety
which value ofA we want to use. For example, if we require af detector, and more importantly to provide a clear example
false negative rate less than%, we might selecto? = 0.1. demonstrating how Monte Carlo techniques are used to explor
With this setting now fixed, we evaluated the estimatiotihe full trade-offs between performance goals. Ultimattig
performance on a netest setof 400 more random coefficientactual selection o must lie in the hands of the end users
profiles and TDR response data. For this set8@H00 test and the specific requirements of their applications.



Histogram of Reflection Coefficients
= We start by defining theirculant Toeplitzmatrix C'(r) as:

40
I 2! nonzero coefficients
30 : l:lfalse negative coefficients 7o r—1 r—2 e "—n
T1 To -1 oo To_n
X % .
C(,,,) — ) T1 To e T3-n , (11)
1 . . . . :
0 -1 Tn-2 Tp-3 ... To
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 05 i i Lo L
reflection coefficient value wherer_y = r,_. With this definition it is not hard to see

Fi . o . that Cz computes the circular convolution betweere R"
ig. 7. A comparison between the actual distribution of alhzero reflection . .
coefficients, and the distribution of coefficients corresfing to the faise (the first column ofC’) and a vector: € R™ in ordern? flops.
negatives in the test set. We can, however, use the FFT to compute the same product
in order3n log(n) flops, which is significantly less thar? for
any appreciable value of. Let F' € C™*" be the matrix that
V. SOLVING LARGE SCALE PROBLEMS computes the discrete Fourier transform of a vectd'Inwith
The ¢;-regularized LSP (5) is readily solved for small tdnverseF*, the complex conjugate transposefof Using the
medium sized problems through any one of a variety @dct that the Fourier transform converts convolution intihes
existing solvers (some of which are available online unddomain into multiplication in the frequency domain, we have
the GNU Public License).CvX [15], [16], MOSEK [17], H e
| 1- magi ¢ [12], and LASSO [18], [19] to name a few. For y=Cz=F" diag(Fr)Fz. (12)

exampleCVX can handle problems with up to a few thousangthys, circular convolution is efficiently calculated viaeth
reflection coefficients. following steps:

Here we consider using yet another solVet, | s [7]. This Use the FFT to compute — Fz andv — Fr (order
Mat | ab based solver uses a truncated Newton interior-point 2nlog(n)).
method that computes search directions with a preconéition
conjugate gradient algorithm [6]. Through these techrégque
I 1_| s allows us to solve our particular estimation problem 3)
for a large number of reflection coefficienta & 100000

or more) by taking advantage of algorithms that efficiently .
compute convolution. Note that we never actually form the matricBor diag(Fr)

in this process. Furthermore, we also get an efficient method
for computingC” z, by simply noting that from equation (12)
we haveC = FH diag(Fr)F. Thus,

2) Perform an element by element multiply betweeand

v (ordern).

Computey by taking the inverse FFT of the result from
step 2 (ordem log(n)).

A. Implementation
Thel 1_I s algorithm solves the genergl-regularized LSP L
problem: CH =T = F¥ diag(Fr)F. (13)

s . _ 2 N
minimize [|Az —yl3 + Allzls, (10) Therefore, to comput&”z, the same process enumerated

with variablex € R™, given the observationg € R™, and aboye is used, except in step 2 we multiply by the complex
data matrixA € R™*", Clearly, this handles the esti[nationconjugate ofv.

problem (5) we are interested in with= p, y = V,, A = To implement the causal (rather than circular) convolution
2\0?, andA = V. Note thatA is ann x n convolution matrix Version of our problem we simply use zero padding. Specif-
entirely determined by the input interrogation sigia(k).  ically, we constructC(r) € R****" by settingr = (1;,0),

Conveniently, thel 1_| s routine allows one to overloadwhere0 € R" is a vector with all zero elements. Thus, the
matrix multiplication by A and A7 (by creating a new causal part of the convolution (this iz with respect to the
Mat | ab object), when there is a more efficient way of 1_| s algorithm) is just the first. elements ofC'z, where
performing the calculation. This is important because th&t ¢ Z = (z,0). The same idea holds far” z.
of solving (10), vial 1_| s, is dominated by the cost of Finally, we note for some specific input signdls, it is
performing matrix vector multiplies byd and A7, which even possible to implement faster convolution than with the
is up to ordern? floating point operations (flops). HoweverFFT. A trivial example isV;(k) = d(k), whered(k) is the
it is often possible to achieve a substantial improvement lo§screte delta function. In this case, we do not have to perfo
exploiting the structure ind. For our estimation problem, @& convolution at all. Another example 1(k) = u(k), where
multiplication by A computes convolution, and multiplicationu(k) is a discrete step function. It is not hard to see that
by AT computes correlation. As we will review in the nexconvolution with this function can be computed in order
section, both of these operations are performed efficiemitly ~flops.
the FFT in ordem log(n) flops.

C. Speed Performance Example

B. Fast Convolution In this section we compare the performance betwe&¢x
This section reviews how the FFT algorithm is used tandl 1_I s (using efficient FFT convolution). To do this we
efficiently compute the convolution needed for our problemsolved our estimation problem (5) for increasing valueshef t
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Fig. 9. Image of a chafing fault breaching the shield of a comtype of

Fig. 8. Comparison betwee@VX and | 1_| s for solving large-scale aircraft wire (twisted shielded pair). The internal twistpair that caries the
reflection coefficient estimation problems. signal is largely unaffected by this type of fault. Howeverethods that can
detect it enable technicians to make repairs before seponldlems occur.

problem sizen, and clocked the time taken to find the optimal _ o _
solution (on a 1.8GHz Intel Core Duo processor under 64-figflection coefficients were computed in 2.4 seconds, and the
Linux). results are also shown in Figure 10. As noted in the figure

The measurement data was generated by the same me@aRiion, there are now nonzero reflection coefficients chuse
presented ir§lll-B. This data was then used to estimate thBy an impedance mismatch between the TDR port and the
reflection coefficientg:, with Ao = 1/2, for the different Wire, the fault, and the hard reflection from the open ended
solvers. Figure 8 shows the dramatic improvement obtaiyed Wire. Although small, the set of reflection coefficients cadis
thel 1_| s solver for increasing values of We note that the DY the fault are well localized, easy to spot, and clearlglsid
solution time for thel 1_| s solver tends to vary, depending®ut from the other nonzero coefficients. Note the detection
onV;, and the actual number of nonzero reflection coefficienggcceeds without using any additional processing or beseli
(this behavior is not expected @VX). For the test cases weinformation €.g, like subtracting the TDR response of the
tried, this variance was on the order of minutes for the larggndamaged wire). That is an important result because in many
values ofn. However, in general, thel_| s method always applications baseline information is inconsistent.
performed much better tha@vX.

VII. CONCLUSION
VI. REAL TDR DATA EXAMPLE

In the above development it may have seemed a large num!n this paper we have described a method for detecting and
ber of assumptions were made which do not strictly hold jRcating wiring damage using TDR measurement data. Unlike
practice. In particular, we assumed a lossless transmitisie SOMe other methods, this one uniquely takes advantage of the
(and lossless faults), and that the load and source impedarf@ct that faults are often sparsely located along the lenth
were matched. While these assumptions were needed to mil&Wire. We demonstrated the effectiveness of our method on
a logical derivation of the linear model, it turns out they d& Simulated example, and showed how Monte Carlo simulation
not have to strictly hold in practice and that many wiringight be used to tune it (by selecting to achieve specific
systems, by their very nature, get close enough that theadetfl€tection goals (like a certain false positive error rata).
presented here remains effective. In this section an exampfidition, we saw that preexisting algorithms, lké_l s, can
using real TDR data collected from a faulted wire is used ®¢ adapted to efficiently solve large-scale (high resamtio
demonstrate that this method can remain successful in stt 184rSions of our estimation problem. Finally, we applied the

one extreme case where those assumptions are challengd@§hod to actual TDR data and revealed its impressive pbilit
every way. to identify a very subtle type of damage. It is hoped the fault

The experiment was conducted on a one meter sectiggtection method presented here will serve as a straigdfor
of twisted shielded pai(TSP), a common type of Shiemedimprqvement to existing techniques that is readily put into
aircraft wire that is very lossy. To simulate one form of chgfi Practice.
fault, a diamond coated abrasive rod was used to file away a
small 10 x 2 mm section of the shield as _shown in Figure 9 ACKNOWLEDGMENT
The cable was then connected to an Agilent 54754A digital
TDR unit with the fault located aboutt cm down the line.  The author would like to thank Prof. S. Boyd for his guid-
This particular TDR unit uses an inp80 ps rise time step ance in developing many of the ideas presented in this paper
voltage, which wasapplied across one of the wires inneras a project component of his EE364b Convex Optimization Il
conductors and the shield measurement of the actual inputcourse, at Stanford University. Many thanks to Dr. K. Wheele
signal along with the reflected response for both the urddultDr. D. Timucin, and Dr. M. Kowalski at NASA Ames Research
and faulted cable is shown in Figure 10. The measured d&anter for their leadership and help through many enlighten
was linearly interpolated onto a grid ab24 evenly spaced discussions (and also for getting the author involved whik t
time samples, buto other preprocessing was performed. Thproject).



Fig. 10.

Measured TDR Data
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(Left) Measured input, and reflected voltage wawesbbth the faulted and unfaulted wire, recorded with a digfDR unit (Agilent 54754A).

There are three main noticeable effects: the reflectionsezhby a mismatched impedance between the TDR port and w)eti{@ reflection caused by
the chafe (B), and a lossy reflection caused by the open loslieagénd of the wire (C). (Right) Reflection coefficientk) estimation results for both the
faulted and unfaulted case, usidig-regularized least squares, with= 1024, Ao? = 0.005, and At = 0.04 ns (the entire recorded signal is not shown).
The result shows the reflection coefficients caused by theipgedance mismatch (A), the chafing fault (B), and a distidm of coefficients caused by
the lossy reflection from the end of the line (C). The faultedion is well localized and much easier to discern (withamaking to the baseline signal for
comparison) in the reflection coefficient plot.
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