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ABSTRACT

This paper reports on an effort to develop and demonstrate structural health
monitoring—specifically, fault detection and localization—algorithms for com-
posite sandwich panels. The test artifact was a small panel consisting of an alu-
minum honeycomb core sandwiched between two carbon-fiber face sheets, and
featuring a controlled impact damage on one side. Data were collected on the
damaged side of the panel using a network of piezo-electric sensors mounted on
the face sheet. Two (potentially complementary) algorithms were implemented
for detecting and localizing the fault from ultrasound data collected before and
after damage. The algorithms use variants of the standard least-squares ap-
proach for estimating damage location, and are distinguished mainly by their
reliance on qualitative versus quantitative physics models of acoustic wave prop-
agation in the panel. Successful detection and localization of a sub-inch fault is
demonstrated.

INTRODUCTION

Composite sandwich panels are light-weight structural elements that offer
high performance (high strength, damage tolerance, and thermal resistance)
with flexible production capabilities [1, 2]. During the past few decades, these
types of elements have been steadily replacing traditional materials in aerospace
applications. Their stiffness-to-weight ratios and damage tolerance are especially
attractive in space vehicle designs (e.g., NASA’s new heavy-lift launch vehicle)
as they enable heavier payloads.

The goal of the present study was to develop a theoretically sound and
experimentally validated approach for structural health monitoring (SHM), and
specifically fault detection and localization, in a type of composite sandwich
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Figure 1: General view of the 4′ × 4′ test panel with Acellent SMART
Layer R© mounted on one side (a), and CT scan (side view) of the panel
structure (b).

panel being considered for space applications. For this purpose, a representative
test panel was constructed and instrumented with an array of piezo-electric sen-
sors that can excite and detect acoustic waves on the panel. The anti-symmetric
Lamb wave (A0) was expected to be the dominant mode, given the typical thick-
ness of composite structures being considered. Relatively low attenuation of the
A0 mode and the high efficiency and sensitivity of low-cost piezoelectric actua-
tors suggest an effective method for SHM of composite sandwich panels.

EXPERIMENTAL SETUP

A 4′×4′ test panel was fabricated for this study (see Fig. 1) by bonding two
16-layer cross-ply carbon-fiber laminate face sheets to a 1.5′′-thick aluminum
honeycomb core. The panel was instrumented with a SMART Layer R© [3],
courtesy of Acellent Technologies, Inc., which consisted of a 5 × 5 PZT sensor
grid with a pitch of about 5.4′′ (Fig. 1a).

The SMART Layer R© allowed for the excitation of Lamb waves by driving
any one of the actuators with a voltage signal v(t) while listening on the remain-
ing 24 sensors. (During experiments, the panel was placed vertically, and the
bottom edge was isolated from the laboratory floor by soft foam.) A commonly
used narrowband input voltage waveform is the Hann signal

v(t) =
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where A, T , and ω0 respectively denote the amplitude, the duration, and the
center frequency of the wave packet, and s(·) is the Heaviside step function. The
driving frequency f0 = ω0/2π was chosen in the range 20 to 180 kHz, which was
critical for the proper excitation of Lamb waves on the panel.

The panel was subsequently subjected to controlled impacts by a semi-
spherical impactor with a head diameter of about 0.5′′. Based on earlier cali-
bration tests using a similar panel, the impact energy was adjusted to produce



Figure 2: Shearography image (left) and ultrasonic image (right) of the
damaged area near the mid-point of a unit cell of the sensor network.

hidden delaminations at the lower energy levels, barely visible (external) dam-
age at intermediate levels, all the way up to visible damage at the higher energy
levels. The structure of the impacted region is shown in Fig. 2.

A representative set of experimental signals are shown in Fig. 3 for two
different carrier frequencies (f0 = 50 and 90 kHz). The baseline measurements
(in red) were collected before the panel was damaged. In order to highlight the
effect of the fault, the corresponding baseline measurements are subtracted from
damaged measurements, leaving the difference signals (in blue). One actuator–
sensor pair exhibits the scattering by the fault (Fig. 3a), while data from the
other pair are representative of the extinction (absorption + scattering) (Fig.
3b). The scattered (difference) signal shows appreciable time delay, as would be
expected from the increased propagation distance (by a factor of

√
2), while the

negligible time delay in the extinction signal shows that the effect of the fault
in the path is mainly one of absorption.

WAVE PROPAGATION MODEL

Mindlin plate theory offers a highly accurate model of wave propagation that
is suitable for locating damage whose size is of the order of the plate thickness. In
this approach, the displacement of a material point (x, y, z) is expressed in terms
of the vertical displacement w(x, y, t) and two angles of rotation [Ωx Ωy]

T ≡
Ω(x, y, t) about the surface normal at time t. Assuming each layer to be linear,
isotropic, homogeneous, of infinite lateral extent, and of common Poisson ratio
ν, and denoting the external load by p(x, y, t), w and Ω are found to obey the
coupled equations [4, 5]

D

2

[

(1− ν)∇2Ω + (1 + ν)∇∇ ·Ω
]

−G(Ω +∇w) = I
∂2Ω

∂t2
, (2)

G(∇2w +∇ ·Ω) + p = ρ
∂2w

∂t2
. (3)



Figure 3: Baseline and difference signals for two actuator–sensor pairs,
quantifying the degree of scattering (a) and extinction (b) by the fault.
The large initial wave packet present in all the traces is a crosstalk signal
(the “main bang”), which is windowed out for subsequent data processing.

Here, the effective flexural and shear stiffnesses D, G and vertical and rotary
inertia ρ, I for the three-layer panel are calculated by averaging through the
thickness of the layered structure [1], obtaining

D = Ef t
3
f
/6 + Ec t

3
c
/12 + Ef tf(tf + tc)

2/2,

G = µc(tc + tf)
2/tc,

ρ = 2ρf tf + ρc tc,

I = ρf t
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3
c
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2/2,

where subscripts c and f refer to the core and the face sheets, and E, µ, and t
denote Young and shear moduli and layer thickness, respectively, with the total
panel thickness being h = 2tf + tc.

Solutions of (2) and (3) have been detailed elsewhere [4, 5]; for the present
purposes, the main result of interest are the wave numbers
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and the fact that k2 and k3 are cut off below ωc =
√

G/I.
Finally, scattering from a fault (e.g., a delamination) may be treated in

two different ways. For barely visible faults, it is sufficient to treat the fault
as a small local perturbation of the panel parameters, and employ the Born
approximation for deriving the scattered waves. For more severe damage, the
fault may be treated as an inhomogeneity with a simple shape (e.g., a cylinder),
and solutions to (2) and (3) in the two different regions may be matched at the
fault boundary.



Figure 4: (Left) Baseline and damage surface areas used in the exper-
iment. (Right) Comparison of acoustic wave packets transmitted across
baseline and damaged paths.

INFERENCE PROBLEM

Tomographic fault detection

A scalable fault detection and localization algorithm was developed and
tested using measurements collected from the experimental setup discussed
above. Since this work was performed after the panel had been damaged, a
spatially equivalent surface area was used to represent the baseline case (see
Fig. 4). The tomographic fault detection approach presented in this section is
motivated by the clear reduction in signal energy between the measured baseline
and damage scenarios, as can be observed in Fig. 4.

We begin by overlaying an n × n grid on the surface area of interest, as
shown in Fig. 5, where each cell in the grid is assigned an unknown coefficient
of absorbed energy per unit length, denoted xk for k = 1, 2, . . . , n2, caused by
possible damage in that cell. The net difference in transmitted signal energy
between the baseline and the damage cases is then accounted for by writing

bj = Ebase
j − Edamage

j =
∑

k∈Ij

akjxk, (5)

where j represents the path corresponding to a particular actuator–sensor pair,
Ij represents the set of indices on the j-th path, and akj represents the length
of the portion of the j-th path passing through the k-th cell. With m distinct
paths, this leads to a set of m equations in n2 variables, which we represent by
the matrix–vector equation

Ax = b. (6)

Generally, this system of equations will be underdetermined in x. One
can, however, find meaningful candidate fault scenarios by looking for sparse
solutions that closely satisfy this system of equations. (Because of measurement
noise, one does not usually require the linear system to be satisfied exactly).
Finding the sparsest solution to a set of linear equations is known to be a
difficult combinatorial optimization problem; a heuristic method that tends to
work well in applications is to solve the convex optimization problem

minimize ‖Ax− b‖22 + λ‖x‖1, (7)



Figure 5: (Left) Notional sensor configuration and surface grid for tomo-
graphic damage detection technique. (Right) The actual surface grid, sen-
sor configuration, and actuator–sensor paths for the experimental setup
considered in this paper.

where λ is an algorithm tuning parameter, and ‖x‖1 denotes the ℓ1-norm defined
as the sum of the absolute values of the elements of x [6–9].

As a proof of concept, this method was demonstrated using the same com-
posite sandwich panel and experimental setup discussed above. Because much
of the received acoustic signal contains spurious signal variation, a single pulse
model for the primary pulse highlighted in Fig. 4 was fit using a standard
nonlinear-least-squares approach. The normalized signal energy computed from
the model fit for both baseline and damage cases was then used to determine
the energy loss vector b. This was accomplished for each of the 81 paths in
the 3 × 3 sensor network shown in Fig. 5. Using an existing numerical solver
from [10] with λ = 2, we were able to recover a sparse representation, with a
single non-zero element, correctly identifying the damage location on the panel
(compare Figs. 4 and 5) in 92 ms on a standard PC.

Although further study of this heuristic approach is needed, the initial re-
sults show that it is capable of providing coarse fault location estimates without
the need to directly infer sensitive time-of-flight related parameters (e.g., pa-
rameters governing the anisotropic velocity of propagation in the honeycomb
structure). This approach scales well with increasing grid size n, which affords
greater resolution in damage location. Furthermore, this algorithm can provide
a quick, high-quality initial guess required by more quantitative approaches for
fault detection and localization, such as the one considered next.

Model-based inference

A more quantitative approach to damage detection and localization, based
on an underlying physics model, was undertaken next. This approach relies on
a simple model of signal propagation in the panel, and solves for the unknown
fault parameters via nonlinear least squares.

In order to isolate the signal due to damage, baseline measurements were
subtracted from those obtained after the panel was damaged. Time-series data



were obtained by sampling this difference signal at the m-th sensor at time
instants tn = t0 + nτ , n = 1, · · · , N , where t0 is a suitable time delay and τ is
the sampling period. Assuming additive sensor noise, the model for the data is

zm(n) = sm(n) + νm(n), (8)

where νm(n) are uncorrelated Gaussian random variables with mean zero and
variance σ2, and

sm(n) = α
v(tn − ‖ρm − ρf‖/c− ‖ρf − ρa‖/c)

‖ρm − ρ
f
‖ . (9)

Here, α is an overall scale parameter that includes the scattering cross-section
of the fault as well as the actuator and sensor gains, v(t) is the Hann excitation
signal given in (1), ρ

a
, ρm, and ρ

f
are two-dimensional vectors indicating the

positions of the actuator, the m-th sensor, and the fault, respectively, and c =
∂ω/∂k1|ω0

denotes the group velocity of the wave packet; see (4). The model (9)
thus assumes that dispersion is negligible, that the sensors are in the far field of
the actuator, and that only the A0 Lamb mode is propagating on the panel.

The determination of the unknown fault parameter vector θ ≡ [α ρ
f
]T

starts with the specification of a cost function J that attains its minimum for
the actual fault parameter values, say, θ⋆. A cost function based on measured
and modeled signal energies was found to be robust in this regard [11]:

J (θ) =
1

2

M
∑

m=1

(Am − Em)2, (10)

where M is the number of available sensor data streams, and

Am =
1

N

N
∑

n=1

[zm(n)]
2 and Em =

1

N

N
∑

n=1

[sm(n)]
2 + σ2

are the time-averaged and ensemble-averaged signal energies, respectively. (Note
thatAm is computed from data while Em is based on the model developed above.)
Initializing the search for fault parameters with a guess θ0, the iteration

θj+1 = θj − λ∇θJ(θj), (11)

j = 0, 1, . . ., is carried out with a suitable learning parameter λ until the param-
eters converge to θ⋆. Some typical inference results are shown in Fig. 6, with
convergence achieved in only a few iterations of (11).

CONCLUSION

Two algorithms have been developed for detecting and localizing damage
on composite sandwich panels. Both algorithms rely on nonlinear least squares
estimation, even though they have distinctly different flavors in terms of the
level of physics modeling incorporated into the inversion problem. A test panel
consisting of an aluminum honeycomb and carbon-fiber face sheets was con-
structed, and a delamination fault was subsequently induced via a controlled
impact. Both algorithms correctly localized this small (sub-inch) fault from
experimental data, showing promise for further study in more realistic settings.



Figure 6: Grid of PZT transducers used for damage detection. The
signal launched by the actuator (blue node) is picked up at various sensors
(green nodes). Damage (red diamond) is correctly located from various
initial guesses (magenta circles) via nonlinear least squares.
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