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An important function of traffic flow management is ensuring the number of aircraft 
entering a sector does not exceed the amount that can be safely controlled by the sector 
controller. One factor that makes this task difficult is the uncertainty of the impact of 
convective weather, as both the weather forecast and the impact given specific weather is 
uncertain. In this investigation, we study this effect indirectly by exploring the relationship 
between convective weather forecasts and observed peak sector occupancy. Specifically, we 
measure how well the peak sector occupacy can be predicted using area-based and 
directional-based weather models. We also present a methodology for comparing weather 
models using a machine learning approach. When the forecast is for light weather, the 
impact of weather is presumably minimal and little difference is observed between models in 
our evaluation. In contrast, when heavy weather is forecast, the weather models outperform 
those without a weather component and also have statistically significant differences among 
each other.   

Nomenclature 
CIWS = Corridor Integrated Weather System FWCI  = Forecast Weather Coverage Index 
CWAM1 = Convective Weather Avoidance Model MAP = Monitor Alert Parameter 
DFWCI  = Divided Forecast Weather Coverage Index WITI = Weather Impacted Traffic Index 

I. Introduction 
RAFFIC flow management is concerned with balancing the demand for airspace resources with the capacity of 
the same resource. A specific example of a resource, and the domain of our study, is that of a high altitude 

sector. A simple model of the demand of the sector for some period of time is the number of aircraft that would 
occupy the sector during that time in the absence of constraints. In contrast, the analogous capacity of a sector for 
some period of time is the number of aircraft the sector controller can safely manage. Traffic flow management 
actions are not needed when demand is less than or equal to the capacity, but are needed when demand exceeds 
capacity (a demand/capacity imbalance). For the most part, capacity cannot be increased through traffic flow 
management, so instead actions are taken to reduce the demand, i.e., the number of aircraft that would occupy the 
sector in that period of time. It is important to choose traffic flow management mitigating actions that reduce 
demand by only the necessary amount: too little reduction puts undue workload on the sector controller, but too 
much reduction can create delays and reduce airspace efficiency. 
 Unfortunately, both sector demand and capacity are uncertain quantities, particularly given the fact that they 
must be estimated well enough in advance to enact the appropriate traffic management intiatives. Uncertainty in 
demand can come from uncertainty in transit times, delays elsewhere (ground or air), unscheduled traffic, and other 
traffic flow initiatives. Uncertainty in demand comes from the variability among the individual controllers, as well 
as the specifics of the traffic and current environmental factors, such as convective weather. The current operational 
standard for modeling capacity is the monitor alert parameter (MAP)1; a constant number that defined separately for 
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each sector and taken as a default estimate of sector capacity. As it is a constant, it is independent of situational 
factors such as controller variability and environmental conditions; traffic flow managers must alter the estimate of 
demand based on their experience and without the assistance of decision support tools. 
 Our ultimate goal is to be able to provide better models of both demand and capacity, validated on historical 
data. Unfortunately, this is difficult as neither demand nor capacity are directly observable. Demand could be 
measured as the number of occupying aircraft plus all those that were routed away from the constrained sector; 
however it is difficult to aggregate the latter number, and that would still miss aircraft proactively rerouted by the 
operators. Likewise, capacity can be measured by observing the aircraft count at the point the controller refuses to 
accept any new aircraft into the sector; however this is not a situation that should be intentionally created, and when 
it does happen, it is not frequent enough to easily support analysis, as a goal of traffic flow management is to avoid 
such situations. 
 We use the aircraft peak count, defined as the observed highest instantaneous count of aircraft in a sector over a 
fifteen minute period, to serve as a proxy of both capacity and demand. The observed aircraft count can be thought 
of as function of both demand and capacity. Assuming optimal operations, when demand is below capacity, this 
peak count is equal to demand, since the capacity is not a factor; when demand is above capacity, the peak count is 
equal to the capacity, since not all demand can be satisfied. As such, the peak count is not always an indicator of the 
actual capacity. We restrict our study to times when air traffic is normally reasonably high, with the expectation that 
this will increase the impact of capacity reductions on the observed peak count since demand will be closer to 
capacity under nominal operating conditions. 
 In this study, we attempt to build a model of how convective weather impacts capacity, ignoring any other 
potential impacts. In particular, we do not try to represent demand except in a rudimentary way; other research 
efforts have addressed predicting demand (as captured by peak counts) in more detail2. Our main contributions are a 
comparison of the weather models, and a methodology for making such comparisons; the weather models 
themselves are largely derived from previous work. Our paper is organized as follows. In Section II we described 
previous efforts to model weather impacts on capacity, from which we largely draw from to build our models of 
weather impact capacity. In Section III we provide a formal defintion of all our models. In Section IV, we describe 
the dataset used in our study, and describe several of its properties that expose some of the difficulties in observing 
the effect of weather on capacity. In Section V we describe our machine learning methodology and data 
representation, along with two baselines. We present our experiment and results in Section VI, and summarize our 
conclusions and opportunities for future work in Section VII. 

II. Related Work 
A simple model of weather-impacted capacity is simply the percentage of the sector (in terms of area or volume) 

that is free of convective weather that meets a certain threshold times the nominal capacity (often MAP). This 
concept has been given several names in the literature, for instance Weather Severity Index and Weather Avoidance 
Altitude Field coverage; we use Weather Coverage Index to refer to the percentage of volume of a sector occupied 
by qualifying weather. A prior simulation of delays due to weather included an analysis of historical data that 
showed reducing MAP by the Weather Severity Index (weather area) results in a reasonable upper bound observed 
peak sector counts.3 

More complex weather-impact models measure aspects of convective weather in terms of some property 
meaningful from a traffic flow management perspective. In order to capture directional aspects of capacity, a 
scanning method was developed that runs “scan lines” along particular directions4. Scan lines that intersect 
convective weather meeting a particular criteria are seen as partially or totally unusuable; it is assumed that aircraft 
do not deviate from the scan line. From this, the total reduction in capacity in the direction can be estimated. 

The MaxFlow/MinCut Theory has been used to model the available capacity under several air traffic control 
scenarios5. Contrasted with the scanning method, the restriction that aircraft must follow a straight line is loosened. 
Instead, the aircraft are modeled as entering and exiting the airspace at certain points; the width of the narrowest gap 
in their chosen transit determines the number of aircraft that can make the transit and thus an upper bound on the 
weather-impacted capacity. 

The MinCut concept has been applied to a flow-based model of sector capacity as well6. Flows are represented 
as triplets of sectors – an origin sector, transit sector, and destination sector chain. The flow-based model models the 
capacity of the transit sector in terms of the restrictions of its flows; the capacity of the flow is the nominal peak 
flow reduced by the amount of constriction according to the min cut. An evaluation of this model using the largest 
three flows showed a better linear fit with the 95th percentile observed peak count than did area- or volume-based 
capacity models. 
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Several efforts have been made during the past few years to understand the connection between weather and 
delay. Of particular importance is the the Weather Impacted Traffic Index7 (WITI). WITI captures the number of 
aircraft affected by weather at a given instant of time. Specifically, a grid is defined on the airspace, and the number 
of aircraft that fall within the same cell as severe weather are summed up to create the index. Studies7,8 have 
established that an aggregate national WITI has strong correlation with national OPSNET delays. 

III. Weather Models 
Our approach to estimating the weather-impacted peak sector count requires some forecast of the weather. Finer-

grained forecasts potentially enable more precise predictions of weather impacts: location information could 
distinguish between scattered “popcorn” convective cells and a single convective mass, as well as the vertical 
position of the storm; differences in cell intensity may also distinguish between usable and impenetrable sections of 
the storm. On the other hand, excess resolution in the forecast is probably not particularly beneficial if it exceeds the 
level of accuracy the forecast. Probabilistic forecasts may ultimately lead to better predictions by presenting a range 
of possible weather scenarios, but introduce more complexity for the same reason, so we prefer deterministic 
forecasts for our initial study. Ultimately, any forecast model may be used, with a preference for more accurate and 
finer-grained models. 

For this investigation, we have used the Convective Weather Avoidance Model9,10 (CWAM1) for our weather 
forecasts. CWAM1 is itself a translation of the Corridor Integrated Weather System (CIWS), which produces two-
hour forecasts (as well as shorter-term forecasts) every five minutes for the eastern corridor of the United States of 
America. CWAM1 is easier to use for our study than CIWS because it performs the first stage of translating weather 
forecasts into air traffic impacts. Of course, by selecting CWAM1, our study is influenced by whatever strengths or 
weaknesses it has. The goal of CWAM1 is to predict what percentage of traffic will avoid areas of convective 
weather. CWAM1 uses predictions of Vertical Integrated Liquid (a measure of the amount of liquid in a column of 
the storm) and echo tops (estimations of the height of the storm) from CIWS to create the predicted areas of 
avoidance. These areas of avoidance are represented as two-dimensional polygons every thousand feet in high 
altitude sectors with a resolution less than one nautical mile. A prior validation study11 showed that the 80% 
avoidance polygons were reasonably accurate, so we use only these 80% avoidance polygons as our representation 
of forecasted weather. 

We explored use of several models derived from the CWAM1 representation, largely inspired by related 
literature: 

A. Forecast Weather Coverage Index 
Our simplest weather model, the Forecast Weather Coverage Index (FWCI), uses only the volume of the 

forecasted convective activity in the sector and does not account for any other features, such as intra-sector cell 
location, flight patterns, etc. Specifically, it is the percentage of the volume of the sector that is forecasted to have 
convective weather that meets the 80% avoidance criterion. Recall that CWAM1 produces (two-dimensional) 
polygons for various flight levels in the sector. For a given sector s and time t, let Fs be the set of flight levels for 
sector s, Pf,t be the set of CWAM1 polygons at flight level f at time t, and s to be the (two-dimensional) sector 
geometry. We compute FWCI as 

  
Figure 1. Example of Weather Models: FWCI, DFWCI, and scanning approaches 
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FWCIs,t =
1
Fs

p∩ s
sp∈Pf ,t

∑
f ∈F
∑  (1) 

where | Fs | is the size of the set Fs (i.e., the total number of flight levels), | p ∩ s | is the area of the intersection of p 
and s, and | s | is the area of sector s. Fig. 1 shows a two-dimensional depiction of the FWCI calculation in the 
leftmost picture.  

B. Divided Forecast Weather Coverage Index 
Similar in spirit to the WITI approach 7, we extend the FWCI model by superimposing an arbitrary grid to create 

the Divided Forecast Weather Coverage Index (DFWCI). We used 3 x 3 grid that covers the entire sector, with equal 
grid cell heights and width, extending from the bottom to the top of the sector (see Fig. 1 for an example, middle 
picture). This grid divides the sector into nine subsectors; though the grid cells are all equal in size, the subsectors 
may vary in volume, as the sector and the grid do not have the same geometry. Indeed, in some cases a subsector 
may be empty. DFWCI essentially repeats the FWCI on a smaller scale, resulting in nine estimates instead of one (a 
FWCI for each subsector). DFWCI is calculated as 

 

€ 

DFWCIi, j,s,t =
1
Fs

p∩ s∩ ci, j
s∩ ci, jp∈Pf ,t

∑
f ∈Fs

∑  (2) 

where ci,j is the geometry of the cell in the ith row and jth column, and all other quantities are defined as in the FWCI 
calculation. 

There are several motivations behind the DFWCI model. First, since the volume of airspace in lower in each 
DFWCI calculation (when compared to FWCI), it may better capture the impact on vital areas of the airspace. For 
instance, if the sector contains an important fix or crossing of streams of traffic, it may be easier to estimate the 
impact when evaluating the DFWCI estimate of the containing subsector than the FWCI estimate for the entire 
sector. Second, certain patterns among the cells may indicate meaningful weather structure in the sector. For 
instance, imagine an unbroken weather system occurring only in the middle column of subsectors. Such a pattern 
could indicate that the sector has very little capacity for East-West traffic; however, the FWCI for the entire sector 
would not reveal this pattern and thus give a less telling picture. Third, the variation in DFWCI estimates among the 
subsectors can provide an indication of the type of convective weather. Imagine the DFWCI estimates for the same 
sector from two different times that have an overall FWCI of 40%: one with a single convective cell, and one with 
scattered “popcorn” areas of convection. As stated, both would look the same in terms of FWCI, but would look 
very different in terms of DFWCI: the single convection case would have higher DFWCI estimates in some 
subsectors and little or zero DFWCI estimates in other subsectors, whereas in the popcorn case, the DFWCI 
estimates would be more even among the subsectors. 

On the other hand, the DFWCI estimates may provide finer resolution than is necessary or advantageous. If the 
sector capacity is primarily a function of the weather in the sector as a whole and not sensitive to the location of 
weather within the sector, then the additional resolution of DFWCI would make it more difficult to capture the larger 
picture. Likewise, two-hour forecasts may not be sufficiently accurate at the level of the DFWCI grid, in which case 
the higher resolution does not supply any additional information. 

C. Directional Models 
Our third and final weather model is inspired by work of Klein et al.4 and is manifested as three related but 

distinct models. Each variant defines the same set of parallel scan lines and uses some aspect of their intersection 
with the forecasted convective polygons as the relevant feature (see Fig. 1, rightmost picture). Scan lines are run at a 
spacing of approximately every five nautical miles in a given direction; they can also be thought of as scan planes as 
each line intersects every flight level. The scan lines are run in nine directions, measured as a clockwise offset from 
due North; 0º, 20º, 40º, 60º, 80º, 100º, 120º, 140º and 160º. (The information would be redundant if we extended it 
further, since the 180º lines would be the same as the 0º lines). Like DFWCI but unlike FWCI, this creates multiple 
features for the weather model. Intuitively, one can regard the scan lines as capturing the capacity in the given 
direction, with the unobstructed lines representing clear lines and the obstructed ones potentially losing some 
capacity. In the Klein et al.’s original weather model, the greatest weather intensity encountered on the scan line was 
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used to determine the reduction, but this is not meaningful in our representation with only one level of forecasted 
weather intensity (the 80% avoidance region). 

For each direction d, each scanning variant defines a set of set of scan lines Ld, in addition to flight levels Fs and 
CWAM1 polygons Pf,t at flight level f at time t, as before. The definitions follow: 

 
1. Countscan model. 

The countscan model captures the number of scan lines that intersect some forecasted convective activity. For a 
given direction d, it is calculated as 

 

€ 

countscand ,s,t =
1

Fs Ld
I<0 p∩ l( )

l∈Ld

∑
p∈Pf ,t

∑
f ∈Fs

∑  (3) 

where I<0(•) is an indicator function that returns 1 when its argument is greater than zero, 0 otherwise. The idea 
behind the countscan model is that flights approximately travel along the scan lines; when convective weather 
intersects a scan line, that path is presumed to be unusable. However, the countscan model assumes flights follow a 
straight path across the sector, which is not always the case.  

 
2. Maxscan model. 

The maxscan model captures the highest percentage of a scan line intersecting any forecasted convective 
activity. For a given direction d, it is calculated as 

 

€ 

maxscand ,s,t =
1
Fs

max
l∈Ld

p∩ l
l

 

 
 

 

 
 

p∈Pf

∑
f ∈Fs

∑ . (4) 

The maxscan model is not meant to capture the directional capacity in the given direction d, but rather the 
perpendicular capacity, i.e., the directional capacity in direction d+90º. In this conception, the scan lines are 
perpendicular to the flow and when they intersect convective weather, chokeholds are created. Thus, the maximum 
constriction captures the smallest chokehold the traffic must flow through, and is presumed to the limiting factor. 
This is our approximation of the MinCut concept5. However, the maxscan model assumes that flights travel along 
the full length of the sector (i.e., no clipping), which is not always the case. 
 
3. Totalscan model. 

The totalscan model captures the average scan line intersection with forecasted convective activity. For a given 
direction d, it is calculated as 

 

 

€ 

totalscand ,s,t =
1

Fs Ld

p∩ l
ll∈Ld

∑
p∈Pf

∑
f ∈Fs

∑ . (5) 

The idea behind the totalscan model is similar to the countscan model, but does not use a binary model of 
permeability. Instead, the percentage of the scan line intersecting with forecasted convective activity is used as a 
gradual indicator of loss of capacity. Instead of a percentage, the raw intersection length could be used, but this just 
produces an approximation of the WCI model. Like the countscan model, the maxscan model assumes flights follow 
a straight path across the sector, which is not always the case. 
 
4. Mean models. 

Finally, we also use models that average the directional capacity estimates to produce a single estimate. We refer 
to these weather models as countscanmean, maxscanmean, and totalscanmean. 
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IV. Data 
Our dataset covers the 122 days from June 1, 2007 to September 31, 2007 for the high altitude sectors in ZOB 
(Cleveland Air Route Traffic Control Center), ZID (Indianapolis Air Route Traffic Control Center), and ZDC 
(Washington, D.C. Air Route Traffic Control Center), for 44 sectors in all. Since the observable effect of weather on 
peak counts is likely to negligible when the traffic is light, we restricted our study to high demand periods, which we 
defined as 13:00-23:00 EDT. Convective activity was forecast for 17% of the fifteen-minute seqments over this 
period. However, this varied by sector, from a low of 8% to a high of 37%, with a standard deviation of 6%. 

Fig. 2 shows the distribution of forecast weather, as measured by FWCI, across the entire dataset. Weather 
severity, when measured in this way, appears to approximately follow an exponential distribution, with light weather 
occuring far more frequently than heavy weather. Indeed, nearly 70% of our forecast weather situations predicted 
less than 10% coverage of the volume of the sector, according to our CWAM1 80% avoidance level. As a result, it 
will be more difficult to capture the effects of heavy weather than light weather as there is less data available. 
Furthermore, if light weather has relatively little impact on capacity, then we would expect to see little impact from 
weather overall as light weather dominates our dataset. 

Even though we restrict our study only to times when convective weather was forecast, an examination of peak 
counts when no weather is forecast can characterize how demand typically fluctuates. Fig. 3 gives the distribution of 
observed peak count in the sectors over our study period of 13:00-23:00 EDT when clear weather was forecast. The 

 
Figure 2. Distribution of weather severity as 
measured by FWCI. 

 

 

 
Figure 3. Distribution of peak count during 
forecasted clear weather. 

 

 

 
Figure 4. Distribution of expected demand and scaled peak counts during forecasted clear weather. 
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distribution appears to be approximately normal, and peak count varies considerably, even when no weather is 
forecast for the sector. Indeed, it would appear that more often than not, less than 50% of the available capacity for a 
given sector is being utilized in our dataset. Coupled with our earlier observation that most weather forecast is 
relatively light (see Fig. 2), it may be that the weather impact on capacity may not be observable through peak count 
in most situations: if the weather tends to be light, and there tends to be significant unused capacity, then it may be 
that the resultant drop in capacity is not great enough to create a demand/capacity imbalance and hence 
unobservable through an analysis of peak aircraft counts. 

Fig. 4 shows that a range of traffic is expected for a given sector and time during our study period. Apparently, 
though the 13:00-23:00 EDT time period we used eliminates many of the less busy times, traffic can be expected to 
be light even without weather for several sectors at particular times. It is likely that it will be more difficult to 
observe the effect of convective weather in such instances, as little of the available capacity is used anyway. 
However, as Fig. 4 also shows, this variability in expected demand does not fully explain the overall variation 
observed in Fig. 3. Indeed, when we rescale a priori the peak counts by dividing them by the expected demand, we 
see that the overall distribution shape is similar to Fig. 3, with only a little reduction in variance. We conclude that 
there is significant variation in demand in our dataset, and our representation of demand as dependent only on sector 
and time of day does not substantially reduce uncertainty. 

V. Methodology and Data Representation 
We use a machine learning methodology to build and evaluate our models, in lieu of defining them a priori or 

reporting the best fitting parameters over the complete dataset. An a priori approach is independent of the data and 
only as good as the researchers’ intuition; given our lack of strong beliefs it is not an appropriate choice for this 
study. On the other hand, reporting the best fitting parameters for a selected model can be overly influenced by 
random patterns in the dataset. This results in a condition known as overfitting, where the resulting model fits the 
data used to build the model better than new data. The machine learning methodology strikes a balance between the 
extremes, by dividing the dataset into a training set, which is used to choose model parameters, and a testing set, 
which is used to evaluate the fit of the model. Though this alone does not prevent overfitting (as the selected 
parameters may still fit the training data better than the testing data), it does prevent overfitting from skewing the 
evaluation of the model. It also provides a more realistic expectation of how the models would perform in 
deployment, as they would be evaluating current conditions rather than exactly the 2007 data from our dataset. 
Overfitting is somewhat more of a concern in our study than it might be otherwise, because the different models do 
not all have the same number of independent variables (for instance, FWCI has one variable to characterize the 
forecast, whereas DFWCI has nine). Models will tend to produce as good or better fits on the data as more 
independent variables are added, even if the new variables have little or no explanatory power (because of chance 
correlations on limited data). However, by using the train and test framework, this spurious advantage is eliminated 
and all models are put on equal footing. 

 Many machine learning algorithms exist, each with their own assumptions about the data and the form of the 
model to be induced. We used linear regression in this study as it is easily understood and though we do not know 
that the true relationship is linear, it is presumably monotonic. We used the implementation of linear regression in 
the Weka12 data mining software package, which by default uses Tikhonov regularization and attribute selection (as 
strategies to reduce overfitting), though these options had negligible effect in our study. Cross-validation with ten 
folds was used to provide a more accurate evaluation of performance than with a single testing and training set. In 
ten-fold cross validation, the dataset is randomly partitioned into ten disjoint subsets. Each subset is set aside once to 
be used as the testing data, with the remaining nine folds (approximately 90% of the data) used as training data from 
which to infer the model. This means there are ten separate trials, each evaluated on separate (disjoint) subsets of the 
dataset, and all of the dataset is used for evaluation at some point. We provide error statistics over this entire set as 
testing data; the fit of the model on the training (i.e., model-building) data is not reported. 

Our study uses the observed fifteen-minute peak aircraft count as a proxy for the sector capacity, but the peak 
count is also affected by other factors, in particular sector demand. To capture this effect, we incorporate the 
expected demand into our models as well. We use a simple model for demand; for a given sector and time of day, 
we use the average observed peak count over the study period when clear weather was forecasted (see Section IV 
and Fig. 4 for a characterization). This expected demand is calculated as 
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Ds,t =
1

Ht \Ws

peaks,x
x∈Ht \Ws

∑ , (6) 

where Ht are all times at the same time of day as t (e.g., if t is 14:45 June 17 EDT, then Ht is all times at 14:45 EDT), 
Ws is the set of times in our dataset where some convective weather was forecast for sector s, peaks,t is the recorded 
peak aircraft count for sector s at time x, and \ denotes set difference. This demand representation does not capture 
variation over the week or months, nor does it factor what has happened earlier in this and other related sectors, so it 
is a somewhat crude model. We incorporate this into the model in two ways. The first way is that we rescaled the 
dependent variable (peak count) as follows: 

 

€ 

Ys,t =
peaks,t
Ds,t

, (7) 

effectively making it a proportion of expected demand (as defined in Eq. 1) rather than aircraft count. The second 
way is that we included the expected demand (as defined in Eq. 1) as an additional independent variable. This makes 
our complete data representation for each weather model as 2-10 independent variables (unscaled expected demand, 
plus 1-9 forecasted variables, as described in Sec. III) and the observed peak scaled by expected demand (as defined 
in Eq. 2) as the sole dependent variable. 

In addition, we define two models that have no explicit weather component to act as baselines. This allows us to 
put the performance of the weather models into a broader context, which is particularly important as the peak count 
is also affected by demand. The first model, wxmean, has no independent variables. As such, it can estimate the 
overall impact of weather, but cannot differentiate between forecasted weather cases nor the time of day (though this 
is indirectly included through the rescaling of observed peak count). The resulting prediction is simply the mean of 
the dependent variables, defined as 

 

€ 

wxmeans,t =
1
Ts

peaks,x
x∈Ts

∑ . (8) 

where T is the set of peak times in the testing set (see Sec. V) for this sector, peaks,t is defined as in Eq. 1. Note that 
wxmean is independent of the specified time t. If the forecast of convective weather (vs. a forecast of clear weather) 
does provide useful information regarding observed peak counts, but our particular models are not capturing useful 
characteristics, the wxmean model should perform as well or better. 

Our second baseline model, clearmean, is based on the assumption that forecasted weather cases are not 
different than the clear forecasted weather, i.e., the weather forecast has no relation to observed peak counts. None 
of the data with forecasted weather (which is our entire training/test dataset) is used to build the clearmean model. 
Instead, clearmean predicts the expected demand for that sector and time of day based on observations from clear 
forecasted weather. As we normalized the target variable by this expectation, this is constant model: specifically, for 
a given sector s and time t, the clearmean is: 

 

€ 

clearmeans,t =1. (9) 

If the forecast does not provide any useful information regarding observed peak counts, clearmean should do as well 
or potentially better than the other models, as its mean estimate is created with more data. 

Finally, we assume every sector may have different qualities, which would justify a different model for each one. 
For instance, different sectors have different geometries, which would affect the DFWCI representation. Also, 
different sectors may be dominated by different directional flows, or no particular flow, which would affect the 
directional models. Therefore, we perform linear regression on each sector separately. The downside of this decision 
is that there is less data available for each regression (since we are doing several disjoint regressions on the same 
data instead of one). Also, due to space limitations we aggregate the results over the various sectors, rather than 
reporting results for all 44 sectors separately, which we chose to do through a weighted average. Two common 
weighted averaging approaches are the microaverage and macroaverage. Given a collection of sets C (with m sets 
total), and a function f() defined on those sets, we define the microaverage as: 
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averagemicro =
1
C jj=1

m
∑

C j × f C j( )[ ]
j=1

m

∑  (10) 

The microaverage weighs each function result by the size of the set from which it was computed, so results from 
larger sets are weighted higher. When the sets consist of numbers and the function f() is the average of those 
numbers, as is the case for our error statistics in the following section, the microaverage simply produces the 
average over the combined set without respect to the original set membership.  

In contrast, the macroaverage weighs each function result equally, as follows: 

 

€ 

averagemacro =
1
1( )

j=1

m
∑

1× f C j( )[ ]
j=1

m

∑  (11) 

When all of the sets are of the same size, the microaverage and macroaverage produce the same average. This is not 
true in our case, because although each sector has the same defined period of high demand (13:00-23:00 EDT), the 
frequency of forecasted weather varied. In a machine learning application when the sets are not of the same size, all 
things being equal, the microaveraged error will tend to be lower than the macroaveraged error because sets with 
less training have a lower weight. 

VI. Experimental Results 
Our experiment was performed only on sector/time pairs from which some convective weather was forecast. For 

each model, a prediction of the peak count was made, and the difference between the observed peak count and the 
predicted peak count was recorded as the resulting error. As shown in Fig. 2, our dataset overwhelmingly consists of 
light forecasted weather (as measured by FWCI), where we expect little affect from the weather. Coupled with the 
much larger expected variation from demand uncertainty (see Section IV), there may be little to distinguish an 
accurate weather model from an inaccurate one when evaluated over the entire dataset. To compensate somewhat, 
we primarily focus on the cases where heavy weather was forecast, which we define to be when FWCI ≥ 0.5. 
Presumably differences in weather models will be more apparent in this region, though we note that again this subset 
is skewed to the lighter end of the heavy weather cases (i.e., there are far more cases in 0.5 ≤ FWCI < 0.6 than there 
are in 0.9 ≤ FWCI < 1.0), and we may have introduced some bias by using FWCI as the selection criterion. We 
calculated the following statistics from the set of errors: 

• Error Bias: The overall error mean, indicating if the model is generally under- or over-estimating peak 
count. 

• Median Absolute Error: Roughly half of the errors are lower than the median, and roughly half are above. 
• Mean Absolute Error 
• Root Mean Squared Error: Linear regression minimizes the root mean squared (RMS) error on the 

training set. Since the error is squared, large errors result in a disproportionately larger score. 
The median absolute, mean absolute and root mean squared errors are similar but not exactly the same. In some of 
our cases, a model will have better results in one error statistic and worse in another when compared to a different 
model. 

Table 1 provides the mean error statistics over the 848 cases where FWCI ≥ 0.5. The baselines wxmean and 
clearmean clearly have the worst results on this subset. This supports the theory that peak counts do differ when 
heavy weather is forecast, and that properties of those forecast have some predictive power. Wxmean and clearmean 
also have a large negative error bias, indicating that they overestimate the available capacity under these conditions 
overall. Of the weather models, the count- and max- scan variants tend to do worse than the others. This would 
suggest that those scan features are not as informative as the totalscan feature or even simple FWCI. There is also a 
general trend for slightly poorer results for models that aggregate features; namely, the mean models do worse than 
their non-mean counterparts and FWCI is outperformed by DFWCI. Some discrimination seems to be gained from 
the additional detail, though the difference is slight. Over all the models, DFWCI and totalscan have the lowest error 
statistics. 

In contrast, Table 2 provides the mean error statistics over the 28148 where FWCI < 0.5. Much of the difference 
between the results of various models has dissipated for these lighter forecasted weather cases. Again, this is 
consistent with our assumption that demand uncertainty overwhelms the affect of light forecasted weather. The error 
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biases exhibited by wxmean and clearmean have dropped considerably. This makes sense, as the models were built 
over the entire dataset (all 28996 instances, including both heavy and light forecasted weather but not clear weather 
forecasts), and since this is dominated by the light weather cases, the bias should be lessened in this region*. 
Nonetheless, clearmean still has somewhat worse error statistics, further invalidating its assumption that forecasted 
weather does not affect peak counts. On the other hand, wxmean performs only slightly worse than the other models, 
and the remaining models appear nearly identical in their error statistics. 

The mean error statistics give an overall view of how the various models compare. For a more detailed view, we 
look at a comparison against the other models for the best and worst performing models, again on the FWCI ≥ 0.5 
subset, by plotting the differeince in scaled absolute errors (absolute error/expected demand) on the same observed 
instance. Observing the difference is useful because it factors out the inherit variability that comes from demand 
uncertainty. Since we are observing absolute scaled error, a difference of 1.0 would be quite large; for instance, if 
the expected demand was 10 aircraft, it would mean having an error of 10 aircraft more than that of the other model. 

 
 

Table 1. Results over subset where FWCI <0.5 
Mean Bias Mean Med. AE Mean Mean AE Root Mean MSE  

Micro Macro Micro Macro Micro Macro Micro Macro 
Wxmean 0.008 0.008 0.216 0.220 0.258 0.263 0.328 0.334 

Clearmean 0.019 0.022 0.241 0.252 0.289 0.302 0.377 0.399 
FWCI 0.000 -0.001 0.212 0.215 0.251 0.255 0.319 0.323 

DFWCI 0.000 0.000 0.211 0.215 0.250 0.253 0.318 0.321 
Countscan 0.002 0.002 0.213 0.216 0.252 0.255 0.320 0.323 

Countscanmean 0.003 0.002 0.211 0.214 0.251 0.255 0.319 0.323 
Maxscan 0.003 0.003 0.212 0.216 0.252 0.256 0.320 0.324 

Maxscanmean 0.004 0.004 0.214 0.217 0.252 0.256 0.320 0.324 
Totalscan 0.000 0.000 0.212 0.215 0.250 0.253 0.317 0.321 

Totalscanmean 0.000 -0.001 0.212 0.215 0.251 0.254 0.318 0.322 
 
 

Table 2. Results over subset where FWCI ≥0.5 

Mean Bias Mean Med. AE Mean Mean AE Root Mean MSE  
Micro Macro Micro Macro Micro Macro Micro Macro 

Wxmean -0.265 -0.287 0.338 0.359 0.357 0.376 0.425 0.439 
Clearmean -0.280 -0.307 0.362 0.393 0.380 0.405 0.456 0.476 

FWCI 0.012 0.047 0.214 0.219 0.252 0.253 0.319 0.325 
DFWCI -0.002 0.015 0.214 0.212 0.245 0.238 0.310 0.301 

Countscan -0.080 -0.068 0.243 0.232 0.264 0.257 0.327 0.319 
Countscanmean -0.087 -0.071 0.245 0.238 0.268 0.260 0.331 0.325 

Maxscan -0.107 -0.101 0.246 0.242 0.274 0.270 0.338 0.335 
Maxscanmean -0.127 -0.116 0.254 0.248 0.279 0.271 0.343 0.337 

Totalscan 0.008 0.029 0.208 0.203 0.242 0.231 0.308 0.300 
Totalscanmean 0.013 0.048 0.213 0.217 0.250 0.251 0.316 0.321 

 

                                                
* This is not always guaranteed by linear regression but is when the distribution of errors is approximately normal, 
which is the case for the complete dataset. 
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Fig. 5 shows how the clearmean model performed relative to the other models in our experiment. Each plot is a 
histogram folded over onto the positive range only, to make it easier to compare frequencies. The white boxed 
region shows how often we observed clearmean performing worse than the the compared model. For example, the 
clearmean vs FWCI plot show that clearmean had a scaled absolute error between 0.6 and 0.65 more than FWCI 
roughly 2% of the time. The shaded region shows the opposite condition: how often we observed the the compared 
model performing worse than clearmean. For the same chart, the observed percentage of FWCI having a scaled 
absolute error between 0.6 and 0.65 more than clearmean is represented by only a thin line, perhaps 0.1%; the 
observed empirical probability of FWCI having a scaled error between 0.1 and 0.15 is about 5%. Overall, the white 
boxed area is the empirical probability of the featured model being outperformed by the compared model, and the 
shaded area is the empirical probability of the compared model outperforming the featured model, with relative 
errors increasing from left to right. Since charts are probabilities, the sum of the area under the two regions (boxed 
and shaded) equals one. 

Fig. 5 makes a compelling graphical case for the inferiority of clearmean to all other models. Indeed, clearmean 
was observed to be slightly less likely to have scaled error between 0.0 and 0.1 greater than FWCI than the converse; 
for all other models and scaled error differences, clearmean was as or more likely to be off by the given amount. 
The difference between clearmean and wxmean is rather small, which is unsurprising as both models are insensitive 
to characteristics of the forecasted convective weather. The difference between clearmean and the other models is 

 
Figure 5. Observed distribution of error differences for clearmean when FWCI ≥ 0.5 
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more striking in the other cases, each with a fairly wide spread of outcomes. This can be explained by the fact that 
clearmean is a constant model; it is often wrong, but will have a better prediction when the weather impact is less 
than expected. 

Fig. 6 shows the relative performance of totalscan with respect to the other models. Totalscan was observed to 
be more likely to produce an scaled error between 0.0 and 0.05 greater than DFWCI and countscan than the 
converse; for all other models and scaled error differences, totalscan was as or less likely to be off by the given 
amount. The difference between totalscan and the baselines (wxmean and clearmean) is striking; it is more subtle 
for the forecast-dependent models. Indeed, the difference between totalscan and FWCI, DFWCI and totalscanmean 
is challenging to visually assimilate at this resolution of our charts. 

Since the probabilities given are based on observation, they may be perturbed by random chance and not exactly 
reflect the true probabilities. Unfortunately, the distribution of errors in this subset is clearly not normal, which 
violates a requirement of many well-known statistical tests, for instance the paired t-test for a comparison of means 
(for instance, those in Table 2). Instead, we investigate if one model can be expected to give a lower error than 
another model on a given weather situation (without being concerned about the size of any difference). This 
corresponds to comparing the area of the boxed and shaded regions in Fig. 5 and Fig. 6. Specifically, given two  
models to compare, M0 and MA, our null hypothesis H0 is that the probability of M0 producing a lower or equal error 
to MA is 50% or greater; our alternate hypothesis HA is the complement, namely that the probability of M0 producing 
a greater error than MA exceeds 50%. With the samples paired, we perform our test without differentiating which 

 
Figure 6. Observed distribution of error differences for totalscan when FWCI ≥ 0.5. 
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sector the samples came from. This would support a decision-maker who wanted to choose the same model for all 
sectors that has the lower error most of the time (again, without concern error differences or overall sums). 

Table 3 gives the p-values (rounded up to the nearest hundredth) under the null hypothesis H0 over the forecasted 
heavy weather subset, with model MA indexing the rows and model M0 indexing the columns. The p-value gives the 
likelihood of observing our data if the null hypothesis is true, so higher numbers give support for H0 and lower 
numbers cast doubt on H0. Standard statistical procedure is to accept the complementary alternate hypothesis HA if a 
certain threshold against the null hypothesis H0 is reached†. 0.05 is commonly used as the threshold for statistical 
significance, and all such p-values are marked in bold. At this level of significance, we would reject H0 and accept 
its complement, which is exactly HA; in our decision-making example, the decision-maker who seeks lower error 
most of the time should choose MA instead of M0. We see that every other model reaches the desired level of 
statistical significance vs. clearmean (by reading down clearmean’s column), and so we can reject clearmean as a 
superior model over any other model (in terms of this comparison). Likewise, totalscan has a statistically significant 
difference over every model with the exception of DFWCI, so we can also reject all but DFWCI in favor of 
totalscan. There is no statistically significant difference between DFWCI and totalscan according to this test, so we 
would need to use a different test to prefer one over the other, or simply choose one arbitrarily. 

 

Table 3. P-values under H0 over subset where FWCI ≥0.5, with MA by row and M0 by column. 

 

Wx-
mean 

Clear-
mean 

FWCI DFWCI Count-
scan 

Count-
scan-
mean 

Max-
scan 

Max-
scan-
mean 

Total-
scan 

Total-
scan-
mean 

Wxmean – 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Clearmean 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

FWCI 0.01 0.01 – 0.87 0.01 0.01 0.01 0.01 0.99 0.96 
DFWCI 0.01 0.01 0.14 – 0.01 0.01 0.01 0.01 0.64 0.10 

Countscan 0.01 0.01 1.00 1.00 – 0.02 0.01 0.01 1.00 1.00 
Countscanmean 0.01 0.01 1.00 1.00 0.99 – 0.01 0.01 1.00 1.00 

Maxscan 0.01 0.01 1.00 1.00 1.00 1.00 – 0.01 1.00 1.00 
Maxscanmean 0.01 0.01 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 

Totalscan 0.01 0.01 0.02 0.37 0.01 0.01 0.01 0.01 – 0.03 
Totalscanmean 0.01 0.01 0.05 0.91 0.01 0.01 0.01 0.01 0.98 – 

 

VII. Conclusions and Future Work 
In this paper, we evaluated several weather models in conjunction with a particular two-hour forecast product to 

predict the impact on sector capacity. However, capacity is not directly observable, so we used the observed peak 
aircraft count in the sector over a fifteen minute period. Other factors, such as demand, also affect the observed peak 
aircraft count, making analysis more difficult. To compensate, we incorporated a simple demand model into our 
representation based on observations when clear weather was forecast. We presented a methodology for comparing 
different weather models, by evaluating them on the same dataset, using a machine learning approach to infer the 
models, and using a statistical test to establish the significance of the results. Our use of the machine learning 
paradigm, as compared to simply finding the best parametric fit over the dataset, decreased the possibility of 
spurious results given our models have a different number of features. 

One issue revealed in our analysis is that observed peak counts vary widely when no weather is forecast, 
suggesting significant variability exists even when there are no weather impacts. Another issue is that forecasted 
light weather is far more common than forecasted heavy weather in our dataset, but it is presumably more difficult 
to observe weather impacts in the former case. To compensate, we primarily restricted our analysis to the forecasted 
heavy weather cases and expected a large amount of residual variability from non-weather sources. Nonetheless, we 
were able to observe numerical and statistically significant differences in the prediction of peak observed aircraft 
count of all of our weather models when compared to our weather-insensitive baselines on forecasted heavy 
weather, indicating that some impact of weather on capacity was captured in our weather models. Among the 
weather models, DFWCI and totalscan outperformed the others and were essentially tied in terms of performance. In 

                                                
† However, when the threshold is not reached, it is not necessarily correct to accept H0. 
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addition, there was a tendency for models that preserved more detail to outperform those that aggregated separate 
features into an average, suggesting that it may be preferable to maintain multiple weather features. 

More study is needed to differentiate between the various weather models. A better estimation of demand would 
eliminate some of the variability in the observed peak aircraft counts, making the differences in weather models 
easier to detect. Of all the weather models we used, DFWCI, which measures the forecasted weather volume in 
various subspaces of the sector, and totalscan, which measured the percentage of weather blockage in particular 
directions, showed the most promise. DFWCI could potentially be improved by choosing different divisions of the 
sector; the current subdivisions were completely arbitrary. Totalscan might be improved by weighting different 
segments within a direction unequally. However, all weather models in our study were dependent on the properties 
of the forecast product we used. Other forecast products, as well as shorter term forecasts or nowcasts, might reveal 
different properties of the weather models. 
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