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Abstract 

Demand and capacity imbalances in the US national 
airspace are resolved using traffic management initiatives 
designed, in current operations, with little collaboration with 
the airspace users. NASA and its partners have developed a 
new collaborative concept of operations that requires the 
users and airspace service provider to work together to 
choose initiatives that better satisfy the business needs of 
the users while also ensuring safety to the same standard as 
today. In this paper, we describe an approach to 
implementing this concept through a software negotiation 
framework underpinned by technology developed in the 
artificial intelligence community. We describe our 
exploration of peer-to-peer negotiation and how the number 
of conversation threads and the time sensitivity of offer 
acceptance led us to a centralized approach. The centralized 
approach uses hill climbing to evaluate airport slot 
allocations from a user perspective and a linear 
programming solver to seek solutions compatible across the 
user community. Our experiments with full sized problems 
identify the potential operational benefits as well as 
limitations, and where future research needs to be focused. 

 
Keywords 
Air Traffic Management, Multi-Agent Systems, Negotiation, 
Hill Climbing, and Linear Programming. 

 Introduction   
Air traffic demand in the US national airspace (NAS) 
frequently exceeds the available capacity and such 
imbalances are projected to increase over the next 10 years 
(FAA 2006). In current operations, the Air Traffic Service 
Provider (ATSP) implements air traffic management 
initiatives (TMIs), such as ground delay programs, with 
minimal interaction with the airspace users. NASA and its 
partners have developed a new collaborative concept of 
operations (Idris 2005) for managing this resource 
problem. The concept poses substantial implementation 
challenges, as it requires a large number of self-interested 
organizations with complex utility functions to quickly 
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find solutions within a safety critical and competitive 
commercial environment. 
 In this paper, we describe a framework for implementing 
the collaborative concept of operation’s resource planning 
function that is based on prior multi-agent negotiation and 
intelligent search technologies (Ito et. al. 2007). Our 
experiments with full sized problems show the potential for 
significant benefits if the approach went operational today. 
We also identify a number of critical areas where future 
research should be focused to obtain more benefits. 
 The collaborative concept of operations covers the entire 
traffic management process from airspace problem 
identification, problem impact assessment, resource 
management planning, and flight implementation. We 
focus in this paper only on the resource management-
planning phase. We describe the other processes and the 
artificial intelligence (AI) technologies applicable to them 
elsewhere (Wolfe et. al. 2008; 2009). 
 The organization of this paper is as follows. We first 
introduce the air traffic resource management problem and 
the motivation for taking an automated approach. We 
explain why we focused on negotiation in lieu of other 
agreement frameworks such as auctions. We then describe 
our exploration of both peer-to-peer and centralized 
negotiation approaches, justify why we settled on a 
centralized approach, and then describe that approach in 
detail. We document our full-scale experiments and 
conclude by describing the future research we are 
planning. 

Airspace Resource Management Planning 
Problem 

A large number of factors can reduce the capacity of the 
US national airspace including bad weather, air traffic 
control equipment failures, airport problems, security 
problems, and military training. As a result, the scheduled 
demand frequently exceeds the reduced capacity and TMIs 
need to be designed to address imbalances by throttling 
demand to enable flights to be safely operated (FAA 2007). 
The primary control points are the departure rates from 
airports and the rates on traffic flows between the airports. 



Traffic flows together form a network of “highways in the 
air,” within which major commercial air traffic is typically 
constrained to fly. 
 In this paper, we will consider only restrictions to airport 
departure rates, with the infrastructure for evaluating flow 
constraints under active development. The two control 
point types are interrelated. A flight must obtain both a 
departure slot and access to the necessary flows to get to its 
destination. The checking of flow constraints demands that 
flights be simulated to ensure that at no point the number 
on any given flow exceeds the flow rate. To check airport 
departure constraints, one needs to only sum the number of 
departures allocated to a time window. This is a limitation 
of our work reported in this paper. However, we argue the 
system that we have built can be readily extended within 
minimal impact on run-time. 

Airport Departure Capacity Problem 
We define the airport capacity problem as follows. 
• the NAS has a set of airports A from which flights may 

depart (and arrive) 
• each airport a ∈ A has an departure capacity capaw 

during a time window w 
• the set of flights F contains the flights scheduled to 

operate in the NAS during the day of concern 
• the set of flights Faw ⊆ F, where each faw ∈ Faw is 

scheduled to depart from airport a during time window 
w 

• the total number of flights scheduled to depart from an 
airport a during a time window w, |Faw|, must be less 
than or equal to the capacity of a during w - |Faw| ≤ 
capaw 
 

In current practice, when |Faw|> capaw, flights are delayed 
at a by adjusting their scheduled departure time to be after 
the time window w. This increases the demand in the 
following windows at a, often causing a propagation of 
delays during the day at an airport to ensure there is no 
window of time when demand exceeds capacity. 
 The ATSP normally plans in two-hour windows starting 
two hours after the current time and continuing up to 
twelve hours into the future. For example, if the current 
time is 0600 EST, the ATSP’s first planning window will 
run 0800-0959 EST and second from 1000-1159 EST. 
Issues arising within the next two hours are not handled as 
part of the strategic planning process, but rather handled 
tactically. As the windows extend out in time, the fidelity 
and certainty of the data products (such as weather 
forecasts) used in the planning is reduced. 

Variation in Flight Value and Opportunities for 
Collaboration 
Commercial airspace users are heterogeneous and range 
from major passenger carriers with hub and spoke 
networks, to point-to-point regional carriers, to business 
jets flying small numbers of people, and to package haulers 
flying freight. 

 Interviews with airspace users identified that even 
within a category, individual users have very different 
business models and associated utility functions for 
evaluating the value of a given flight to their business. 
Many airport capacity problems occur in the NAS in a 
typical day and the value of a user’s flights impacted 
within each can vary considerably, leading to opportunities 
for collaboration. 
 In the current practice in the United States, the ATSP 
applies a ration-by-schedule scheme to allocate reduced 
airport resources among the users. We use a coarser 
scheme derived from it that we call ration-by-demand, 
which allocates the reduced capacity to each user in 
proportion to the percentage of the scheduled nominal 
capacity that user had. For example, if a user had 50% of 
the 100 flights in the nominal capacity and the capacity 
was reduced to 10 flights, that user would retain its 
percentage and be allocated 5 flights. Our scheme does not 
specify the actual flights that will fly, as is the case in 
ration-by-schedule, but rather leaves that decision to the 
users.  
 While ration-by-demand allocations ensure an equitable 
reduction in capacity across the airlines, the scheme does 
not account for the distribution of flight values across the 
problems. Typically, the airspace users would like the 
opportunity to gain additional slots at airports where they 
have high value flights while accepting that they may have 
to relinquish slots at other airports where they have low 
value flights. If several users have complementary trades 
of this form, quid pro quo solutions can be established. The 
challenge we address in the remainder of this paper is to 
provide a framework in which the users can find these 
solutions in a reasonable time, without forcing another user 
to accept a solution that is worse for it than the ATSP’s 
ration-by-demand allocation. Castro (2009) provides an 
excellent overview of airline scheduling and flight impact. 

Selecting an Agreement Approach 
The airport departure capacity problem cannot be solved 
centrally as it is impractical for the airspace users to share 
their sensitive, complex, and constantly evolving business 
utility models. The models contain sensitive commercial 
information such as the operations that are most profitable. 
These properties necessitate a distributed approach where 
each airspace user can keep its utility function private. 
 Sandholm (1999) and Wooldrige (2002) provide 
comprehensive surveys of the agreement technologies 
developed or extended within the AI multi-agent 
community. Our selection process went as follows: 
• Argumentation technologies are not applicable because 

the airspace users have no interest in the reasons of 
competitors for wanting departure slots at specific 
airports. They operate within a highly competitive 
environment where there is no motivation to 
understand a competitor’s needs and seek solutions to 
help satisfy them. Argumentation excels in a collegial 
environment. 



• Auction approaches are not applicable as they are 
designed to maximize the price (green (actual) money 
or blue (synthetic) money) paid for a set of resources. 
We are not seeking solutions to determine the market 
value for a resource where the user who bids the most 
secures it, but rather solutions that guarantee no user 
receives a lower overall utility than in an initial 
allocation. It is also difficult to prevent a large user 
massing its resources in a local market to outbid a 
small regional user. Sheth and Gutierrez-Nolasco 
(2008) show how such auctions can be applied to 
airspace resource allocation.  

• Negotiation frameworks offer the promise of the win-
win solutions that we are seeking among airspace 
users. 

We briefly explored a peer-to-peer negotiation approach 
based upon Fatima et al.’s (2006) work that was designed 
for negotiating between two agents. The airport problem, 
in contrast, involves tens of users. At the early prototyping 
stage we realized agents would have to engage in a large 
number of conversations on multiple issues (Jarvis et al. 
2009). This led to a complex offer management 
requirement. A user may have a number of offers out that 
total more than the number of slots the user has available 
for trading, on the assumption that many offers will be 
rejected by other users. The distributed approach also 
permitted a pair of users to enter into an agreement that 
ruled out solutions for a third user. If the discussion had 
occurred in a different order, all users could have been 
satisfied. 
 These limitations led us to the centralized negotiation 
approach of Ito et al. (2007) designed specifically for 
domains with the properties of our airspace resource-
planning domain where there are large numbers of agents 
and each has a non-linear utility function. 

Centralized Negotiation Approach 
The centralized negotiation approach has each agent 
develop and rank a number of more beneficial allocations 
from its perspective that are then passed to an independent 
arbiter agent who identifies the most mutually beneficial 
solution that is also consistent with the global constraints 
on the problem. We describe each of the three phases in 
turn. The entire process must be completed within a two-
hour time frame to fit within the ATSP’s planning process. 

ATSP - Establishes Airport Problems and Slot 
Allocations 
The ATSP publishes the set of airport problems, Pw, within 
the NAS for its current planning window w. 

• for each airport problem paw ∈ Pw, the capacity 
constraint |Faw|≤ capaw is violated for the airport a 
during time window w 

• the ATSP then allocates each airspace user, u ∈ U, 
that has flights in Faw an allocation allocationuaw for 
each problem airport a using the ration-by-demand 

scheme, ensuring that 	
  ∑u ∈ U allocationuaw ≤ capaw at 
each problem airport. 

 With the problems defined and allocations made, the 
ATSP informs each u ∈ U of the set Pw together with the 
capaw, and the allocationuaw at each airport. The users are 
not informed of other involved users or the allocation that 
each has been given. 

Impacted Airspace Users - Identify Beneficial Slot 
Allocations 
Each impacted airspace user (involved in at least one 
airport problem) performs this phase in parallel with the 
other impacted users. Each is instructed to have its 
proposals returned by a deadline to ensure inclusion in the 
search for compatible allocations. If a user does not return 
answers in time, its ration-by-demand allocation is used as 
its only proposal, ensuring that under our negotiation 
scheme, the user’s utility will not decrease and that a tardy 
user does not delay the process. 
 Each user needs to evaluate the set of airport problems 
in which it is involved and identify alternative capacity 
distributions that are more or equally beneficial to it than 
the one proposed by the ATSP. Operationally, the users 
will develop their own methods for evaluating alternative 
allocations. Our task here is to develop an implementation 
to determine if it is feasible for an airline to perform this 
task and to experiment to understand the amount of time 
the process is likely to take.  
 Figure 1 presents the pseudocode for this phase. The 
substantial methods are the generation of alternative 
allocations and the evaluation of a given allocation’s cost. 
 

GetBetterCandiates(P, s) 
 Input:  A set of airport problems P 
    The ATSP slot allocation s 
 Return: A set of better slot allocations B for P than s 
  B ← {} 
  Qs ← EvaluateAllocationCost(P, s) 
  C ← GenerateAlternativeAllocations(P, s) 
  for c ∈ C 
   if EvaluateAllocationCost(P, c)	
  ≤	
  Qs	
  then 
    B ← B  ∪ {c} 
 return B 
 
Figure 1: Pseudo code for generating better candidate 
allocations 
 
Generating Alternative Allocations 
For a given user u ∈ U and airport problem paw ∈ Pw, u will 
have Fuaw ⊆ Faw (possibly zero) flights scheduled at airport 
a during time window w. 
• the ration-by-demand allocation of flights is denoted as 

allocationuaw, where allocationuaw ≤ |Fuaw| 
• the set of possible slot allocations Luaw for a user u for a 

given airport problem paw∈ Pw is the set {0,.., |Fuaw|} 



• the set of possible slot allocations Zuw for u across all the 
airport problems {pa1w,…, panw} in Pw is Lua1w ×, …., × 
Luanw. The number of possible slot allocations is 
therefore O(|Pw|max|Faw|) 

We are only interested evaluating a subset of Zuw that 
satisfy the following constraints: 
• The number of flights at an airport a is ≤ capaw 
• The total number of flights in the candidate allocation is 

equal to the number of flights in the ATSP’s ration-by-
demand allocation. We refer to this as the preservation 
of mass constraint as users (at least in initial 
negotiations) do not want to consider the option of 
giving away any of their total allocation, just 
redistributing it. 

In the problems we have encountered there has been an 
order of eleven airport problems in a planning window 
with the larger airlines having an average of ten flights 
impacted at each problem. This leads to 1110 candidate 
allocations, of which only approximately 0 to 200 satisfy 
both the capacity and preservation of mass constraints. 
 We have implemented a simple Cartesian product 
enumeration algorithm based on design guidelines in 
Skiena’s manual (1997) to generate the candidate set, 
which we then prune with the constraints. This approach 
works within the computational demands resulting from a 
single planning window and the capability of modern 
hardware, but is an obvious candidate for improvement. 
We revisit this issue in the further work section. 
Evaluate Allocation Cost 
This method allows a user u to evaluate specific slot 
allocations, zuw ∈ Zuw, to determine its quality. At each 
airport problem, a user has |Fuaw| flights scheduled and an 
allocation luaw from zuw. When luaw <|Fuaw| the user has a 
choice of which flights it delays and which it allows to fly. 
The user must therefore evaluate all k-subsets of the n-set 
of Fuaw where k =luaw and n = |Fuaw|, which has C(n,k) 
elements.  
 There are too many k-subsets to evaluate exhaustively. 
We applied a hill-climbing algorithm (Russell and Norvig 
2003) that starts with a randomly generated k-subset and 
evaluates its quality. It then searches the neighboring k-
subsets and either moves to one if it is of better quality, or 
terminates if a better neighbor cannot be found. We 
describe our evaluation of the performance of the hill-
climbing algorithm in the experimental work section.  
 We implemented a schedule evaluation function based 
upon our interviews with domain experts in the airspace 
user community. The evaluation function measures the 
perturbation of the user’s schedule of delaying a specific 
set of flights. Flights are connected by a number of 
dependency relationships including the aircraft, the cabin 
and flight crews, and the passengers and cargo. We record 
the set of constraints violated by a delay and use that as a 
guide to how hard the schedule will be to repair. We took 
this approach, as we need to evaluate many schedule 
impacts quickly. Constraint propagation can be completed 
quickly while schedule repair is most time consuming. We 

accounted for the different business models by allowing 
each user to weight the different impact factors differently. 

Identify Consistent Set of More Beneficial 
Allocations: Trusted Third Party or ATSP 
Each user passes a set of slot allocations Buw that is at least 
as or more beneficial to it that the ATSP’s ration-by-
demand allocation to an independent third party agent 
(possibly the ATSP). The independent agent’s task is to 
select a single buw ∈ Buw for each user that satisfies the 
capacity constraints at each airport problem. We cast this 
as a linear programming program that can be solved by 
software tools such as LPSolve (Berjekaarm & Van Eijk 
2001), taking into account the following factors: 
• a variable associated with each buw ∈ Bw, setting the 

linear programmer’s task as to minimize the total cost 
of the sum of those assignments; 

• a constraint for each airport with an airport problem that 
the total flights allocated during a time window must 
not exceed the capacity of each airport during that 
window; 

• the capacity of each airport; 
• the cost to the airline of each assignment together with 

the number of flights each assignment requires at each 
airport problem; 

• one and only one assignment may be selected from each 
user. 

Airspace User Schedule Data Setup 
The airspace user schedules are central to determining the 
quality of slot allocations. We obtained the schedule for all 
domestic flights in the United States for a day in August 
2008. The database contained a little over thirty thousand 
flights consisting of the departure and arrival airports, the 
scheduled departure and arrival times, and the type of 
aircraft servicing the flight. 
  We needed additional information on the actual aircraft, 
flights and cabin crews, and passenger connections flowing 
between flights to compute flight values. The airspace 
users would be reluctant to share this information with our 
current collaborative relationship. We were able to obtain a 
subset (three thousand) flights from the On Time 
Performance (OTP) database that the FAA recorded for 
that day, together with ticket data that captured the number 
of passengers connecting at airports. We used this data to 
generate the dependency information we needed. Our 
concern is that we do not have the same dependency 
structure as the actual schedules and this is an issue for 
future work. Despite this concern, we feel that when 
coupled with actual, full-sized schedules there is adequate 
fidelity to our experimental scenario that our results have 
operational significance. 



 
 1000-1159 EST  

4 Airport Problems 
1200-1359 EST 

6 Airport Problems 
1400-1559 EST 

8 Airport Problems 
1600-1759 EST 

11 Airport Problems 
Airline -10% -50% -75% -10% -50% -75% -10% -50% -75% -10% -50% -75% 

L1 12 65 0 23 23 0 0 0 1 0 0 0 
S1 1 0 0 0 0 0 5 0 0 0 0 0 
L2 2 14 0 30 16 0 2 0 0 0 0 0 
L3 4 4 2 15 18 0 0 0 0 0 0 0 
L4 0 0 0 0 0 0 0 0 0 0 0 0 
M1 0 0 0    0 0 0 0 13 0 
S2 0 8 8 0 0 0 0 0 0 0 0 0 
L5 0 0 0 0 0 0 0 0 0 0 0 1 
S3 0 0 0          
M2 0 0 0 1 0 0 0 0 0 0 0 3 
L6 5 5 0 0 0 0 0 0 4 0 0 3 
L7 0 0 0 0 0 0    0 3 0 
S4    0 0 0 8 0 0 0 0 0 
S5    0 0 0    31 2 0 
S6       0 0 0 29 17 0 
M3          0 0 0 
S7          0 0 0 
M4          0 0 0 
M5          0 0 0 
M6          0 0 0 
S8          0 0 0 
S9          0 0 0 

Table 1: Improvement percentage by user of the negotiated allocation over the ration-by-demand allocation 

 

Experimentation 
To determine the overall performance of the system, we 
took the weather events for a day that would impact the 
departure capacity of airports in the NAS and then 
artificially varied their intensity. The result was three 
different cases where capacity is reduced by 10%, 50%, 
and 75%. We then applied these reductions to the first four 
planning windows in the day. The scope of the weather 
increased over the day to provide a structure where initially 
only 4 airports and 12 users were impacted while by the 
fourth planning period 11 airports and 22 users were 
disrupted. The user names have been anonymized and 
replaced with the labels L for large, M for medium, and S 
for small users. 
 Table 1 shows the percentage improvements of the 
negotiated solutions that were found over the ATSP’s 
ration-by-demand allocation across the scenarios we setup. 
Even small percentage improvements equate to tens of 
flights and hundreds of passengers arriving on time rather 
than being delayed. Grey indicates that an airline had no 
scheduled flights at a problem airport during the time 
window. 

 The system was able to explore all the options in the 
first two planning windows within a few minutes (well 
within the hour limit). In the latter two, the number of 
alternative slot allocations reached as high as 400 for some 
users, and the options took as much as 19 hours to 
evaluate. The options are independent and can therefore be 
explored concurrently on different CPUs, with around 20 
CPUs being required for an airline to meet the one-hour 
deadline that we have imposed on the process. Users can 
also return the options they have had time to evaluate by 
the deadline. 
 At the component level, the LP solver quickly solved the 
problems, returning results within ten seconds. The hill-
climber took the majority of the time, and was especially 
sensitive to the number of flights as that increased the 
number of neighbors that had to be evaluated for a given 
search node. We carefully evaluated the number of times 
the hill-climber would restart. Allowing it to run for 
several days on problems revealed that improvements were 
rarely found after the fifth restart and none were found 
after the twelfth. We therefore allowed the hill-climber 50 
restarts when assessing the quality of the ATSP’s ration-
by-demand solution and 10 when considering candidate 
user allocations. It is essential that the quality of the 



ATSP’s allocation be not overestimated as it is used to 
filter all the succeeding candidates. This 50/10 balance 
provides the best trade-off between speed and ensuring a 
thorough analysis of the ATSP’s solution.  

Conclusions and Further Work 
We have implemented and evaluated a software framework 
for realizing NASA’s collaborative concept of operations 
resource planning process. Our implementation is based 
upon a centralized multi-agent negotiation framework 
developed in the artificial intelligence community. Our 
evaluation of full sized problems has revealed significant 
benefits that can be obtained. 
 Future work is needed to address a number of issues. 
The Cartesian product algorithm used to create candidate 
slot allocations takes a generate-and-test approach. An 
approach that generates only the subset that satisfies the 
constraints we post on alternatives will allow the 
possibility of trades to be considered across planning 
windows. Currently, the number of alternatives generated 
across more than one planning window exceeds the 
memory addressing space of a 32-bit Java virtual machine. 
 The hill-climbing local search used to evaluate slot 
allocations is consuming the majority of the system’s 
runtime. One possibility is to apply the approach of Hattori 
et al (2007), using clustering techniques to allow the 
allocations to be examined at a coarser level and requiring 
that extensive search only be conducted within clusters 
likely to contain good solutions. 
 To address scenario fidelity, we plan to integrate with 
the flow rate test-bed under development by our 
collaborators that will allow us to use the FACET 
(Bilimoria et al 2001) airspace simulator to check flow rate 
constraints. We would like to use actual flight 
interdependency data instead of our current synthesized 
data. This will necessitate an information sharing 
agreement with the airspace users that ensures the 
protection of their commercially sensitive information. 
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