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This paper describes the initial results of applying four machine-learning-based 
unsupervised anomaly detection algorithms—Orca, GritBot, the Inductive Monitoring 
System, and one-class Support Vector Machines—to historical data from the Space Shuttle 
Main Engine. The paper describes five anomalies detected by the four algorithms. 

I. Introduction 
he ability to detect anomalies in sensor data from a complex engineered system such as a spacecraft is important 
for at least three reasons. First, detecting anomalies in near-real time during flight can be helpful in making 

crucial decisions such as whether to abort the launch of a spacecraft prior to reaching the intended altitude. Second, 
for a reusable spacecraft such as the Space Shuttle, detecting anomalies in recorded sensor data after a flight can 
help to determine what maintenance is or is not needed before the next flight. Third, the detection of recurring 
anomalies in historical data covering a series of flights can produce engineering knowledge that can lead to design 
improvements. 

T 

The current approach to detecting anomalies in spacecraft sensor data is to use large numbers of human experts. 
Flight controllers watch the data in near-real time during each flight. Engineers study the data after each flight. 
These experts are aided by limit checks that signal when a particular variable goes outside of a predetermined range. 
The current approach is very labor intensive. Also, humans may not be able to recognize faults that involve the 
relationships among large numbers of variables. Further, some potential faults could happen too quickly for humans 
to detect them and react before they become catastrophic. On future missions to Mars, there will be a speed-of-light 
delay of up to 20 minutes in between when the data are sensed and when flight controllers on Earth first see them, 
furthering the need for automated anomaly detection. 

One approach to automating anomaly detection is the model-based approach. This approach encodes human 
knowledge into a model, which is then used to automatically detect faults. Examples of systems that use the model-
based approach include Livingstone1-3, Titan4, TEAMS-RT5, RODON6, SHINE7, and MEXEC8. Building the 
models is very labor intensive; it therefore may not be feasible to model every part of a highly complex system such 
as a spacecraft. It also may not be possible to model all possible failure modes. We therefore consider 
supplementing the model-based approach with the data-driven approach. 

The data-driven approach seeks to build a model for detecting anomalies directly from the data, rather than 
building it based on human expertise. In this paper, we explore a particular data-driven approach, which is based on 
anomaly detection algorithms from the machine learning and data mining communities. 

II. Anomaly Detection 
Anomaly detection algorithms, also known as outlier detection algorithms, seek to find portions of a data set that 

are somehow different from the rest of the data set. A supervised anomaly detection algorithm requires training data 
consisting of a set of examples of anomalies, and a set of examples of non-anomalous (or nominal) data. From the 
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data, the algorithm learns a model that distinguishes between the nominal and the anomalous data points. Supervised 
anomaly detection algorithms typically require tens or hundreds of labeled examples of anomalies, plus a similar 
number of labeled examples of nominal data points, in order to obtain adequate performance. Unsupervised anomaly 
detection algorithms are trained using only nominal data. They learn a model of the nominal data, and signal an 
anomaly when new data fails to match the model. They typically require tens or hundreds of nominal data points in 
order to obtain adequate performance. 

We have been using historical data from the Space Shuttle Main Engine (SSME)9 to develop and test algorithms 
that we hope will be useful for future launch systems such as Ares I10 and Ares V11. For the SSME, the number of 
examples of anomalies available in historical data is fairly small. We therefore decided to use unsupervised anomaly 
detection algorithms, since they do not require labeled examples of anomalies. In a previous publication12, we 
described four candidate anomalies detected by two unsupervised anomaly detection algorithms, Orca13 and 
GritBot14. This paper presents several additional anomalies detected by these two algorithms and by two other 
algorithms, the Inductive Monitoring System (IMS)15 and a one-class Support Vector Machine (SVM)16. The next 
four subsections describe these four algorithms. 

A. Orca 
Orca, which was developed by Stephen Bay and Mark Schwabacher, uses a nearest-neighbor approach to 

anomaly detection. It defines an anomaly to be a point whose nearest neighbors in feature space are far away from it. 
It uses a novel pruning rule to obtain near-linear-time performance, allowing it to scale to very large datasets13. 

B. GritBot 
GritBot is a commercial product from RuleQuest Research14. Rather than just looking for points that are 

anomalous with respect to the entire dataset, GritBot searches for subsets of the dataset in which an anomaly is 
apparent. For each anomalous point, it reports a description of the relevant subset of the dataset, based on values of 
discrete variables or ranges of continuous variables, in which the target variable usually has a particular value (if it is 
discrete) or range of values (if it is continuous). The point is considered to be an anomaly because the target variable 
at that point is significantly different from the value of the target variable at the vast majority of the other points in 
the subset. 

C. Inductive Monitoring 
System 

The Inductive Monitoring 
System (IMS)15, developed by 
David Iverson at NASA Ames 
Research Center, is similar to 
Orca in that it is distance-based. 
The major difference is that 
during the training step, it 
clusters the nominal training 
data into clusters representing 
different modes of the system. 
At run time, it uses the distance 
to the nearest cluster as an 
anomaly measure. Before 
applying IMS to the SSME 
data, we pre-processed the data 
by first normalizing the data to 
have zero mean and unit 
variance, then clustering the 
variables into sets of variables 
with similar values, and then 
averaging the variables in each 
cluster to produce a single 
representative variable that was 
input to IMS. The clustering 

Am
Figure 1. IMS detection of HPFTP failure. IMS was trained on test 851 
(which was nominal) and then tested on test 852 (top, also nominal) and test 853 
(bottom, with an HPFTP failure at 130 seconds). The green line represents a 
candidate threshold above which values are considered to be anomalous.
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and normalization were both based on the training data. 

D. One-class Support Vector Machine 
One-class Support Vector Machines (SVMs) seek to describe the range of normal training data in such a way as 

to enable it to distinguish normal data from abnormal data in the future. The name “one-class SVM” is due to the 
possibility that only one class of data (normal data) may be available during training (if abnormal training data is 
available, it can be used). One-class SVMs first map the training data from the original data space into a much 
higher-dimensional feature space and then find a linear model in that feature space that allows normal data to be on 
one side (and to be separate from abnormal training data if available). The idea is that linear models in a higher 
dimensional space correspond to more complicated nonlinear models in the original data space. The use of linear 
models allows SVMs to retain the benefit that the algorithm finds the globally optimal solution given the training 
set, while still effectively using nonlinear models. For each test point, the one-class SVM returns a measure of how 
strongly normal or anomalous the data point is. 

III. Space Shuttle Main Engine 
The Space Shuttle propulsion system consists of two solid rocket boosters, and three Space Shuttle Main Engines 

(SSMEs)9. The SSMEs are located on the Orbiter. During the initial ascent, all five engines are fired together. 
Approximately two minutes after launch, the solid rocket boosters run out of fuel and are jettisoned, and the Shuttle 
continues its ascent using only the three SSMEs. The SSMEs are liquid-fueled rocket engines employing cryogenic 
liquid hydrogen and liquid oxygen as propellants. These propellants are stored in the external tank, which is 
jettisoned when the Shuttle reaches its intended orbit, about nine minutes after launch. 

The SSMEs are reusable. After each flight, they are removed from the Orbiter, inspected, serviced as necessary, 
and then installed onto an Orbiter 
(which is not necessarily the same 
orbiter). Each engine is 
periodically acceptance tested by 
firing it on the ground using test 
stands located at NASA Stennis 
Space Center. 

Each SSME has 
approximately 90 sensors 
measuring quantities such as 
temperature, pressure, fuel flow 
rate, rotational velocity, and 
vibration. Many of the sensors are 
redundant for reliability reasons. 
For example, four identical 
pressure sensors may be placed 
right next to each other with the 
expectation that they will all 
provide approximately the same 
value. When one of the sensors 
provides a substantially different 
value from the other three, it can 
be inferred that the sensor has 
failed. When the SSMEs are used 
on the Shuttle, additional relevant 
information is available from 
sensors located in the Shuttle’s 
fuel feed system. When the 
SSMEs are fired on a test stand, 
the test stand acts as a fuel feed 
system, and provides additional 
relevant information from sensors 
located on the test stand. A small 

Ame
Figure 2. One-class SVM detection of HPFTP failure. The one-class SVM 
was trained on test 851 and then tested on tests 852 (top) and 853 (bottom). 
Negative values indicate abnormal system behavior. On test 853, the SVM first 
indicates abnormal system behavior at 115 seconds, then indicates more 
anomalous behavior at 130 seconds when the actual failure occurred, and then 
indicates normal behavior before returning to indicating abnormal behavior at 
276 seconds. 
 
rican Institute of Aeronautics and Astronautics 

 

3



number of additional sensors are 
placed directly on the SSME 
during testing. The initial results 
reported in this paper use only the 
data from the sensors that are 
located on the SSME and 
available both in flight and on the 
test stand. 

IV. Results 
In our tests, the four 

algorithms successfully detected 
one major system failure, and 
several sensor failures. In this 
section, we review these results. 

In each case described in this 
section, we used an anomaly 
detection algorithm to detect 
anomalies in data from one SSME 
test. In some cases, we used data 
from a different test as training 
data. Each test had 129 
continuous variables, 18 
discrete variables, and about 
13,000 time steps. In some 
cases, we also included the first 
and second derivatives of the 
continuous variables with 
respect to time in the training 
and test data, so that the 
algorithms could detect unusual 
rates of change in the sensor 
values in addition to detecting 
unusual sensor values. GritBot 
took about 5 minutes to analyze 
the data from an SSME test on a 
1.5 GHz Intel Pentium M 
laptop. Orca took about 3 
minutes to analyze the data 
from an SSME test on a 500 
MHz Sun Blade 100 
workstation. IMS took about 3 
minutes to analyze the data 
from an SSME test on a 2.6 
GHz dual-core Intel Xeon. One-class SVMs took about 0.5 seconds to analyze the data from an SSME test on a 2.16 
GHz Intel Core Duo laptop. Each SSME test lasted about 8 minutes, so all four algorithms were able to process the 
data faster than real time. 

The first anomaly that we consider is a failure in the SSME’s High Pressure Fuel Turbopump (HPFTP), which 
occurred during SSME static test 853 in January 1996, approximately 130 seconds into the test17. We tested the 
ability of the algorithms to detect this known failure by training them on data from test 851, which was nominal, and 
then testing them on tests 852 (which was also nominal) and 853 (which had the failure). Figure 1 shows the IMS 
outputs for tests 852 and 853. Both graphs plot the IMS output against time for each test. The IMS output is the 
distance in the normalized multidimensional space from the new data point at each time step to the nearest cluster in 
the training data. Larger IMS outputs indicate that the data is more anomalous. Notice that in test 852, the IMS 
output remained well below 50 for the entire test. In test 853, the IMS output remained well below 50 until 130 

Figure 3. Previously published detection of HPFTP failure. The HPFTP 
failure can be detected using a particular vibration sensor at a particular 
frequency. This figure is reproduced from Ref. 17. 
 

 
Figure 4. Orca detection of HPFTP failure. Orca discovered that the HPFTP 
failure can be detected more easily using a different vibration sensor at a 
different frequency. The five curves represent the same vibration variable during 
five different SSME tests. The orange curve, for test 853, shows the failure at 
130 seconds. 
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seconds, and then became much 
larger. These results show that IMS 
successfully detected the failure. If a 
threshold of an IMS score of 50 (as 
shown in green in Figure 1) were 
used to signal an alarm, then IMS 
would signal the alarm at the correct 
time in test 853, without signaling 
any false alarms in test 852. Orca, 
GritBot, and one-class SVM were 
also able to successfully detect the 
HPFTP failure in test 853. 

Figure 2 shows the output of the 
one-class SVM when it was tested 
on tests 852 and 853 after being 
trained on test 851. The horizontal 
axis displays the time in seconds 
from the start of the test just as in 
Figure 1. The vertical axis shows the 
output of the one-class SVM. Values greater 
than zero indicate that the one-class SVM 
thinks the system is behaving normally, with 
higher values indicating greater normality. 
Values less than zero indicate abnormal system 
operation, with lower values indicating more 
anomalous operation. For test 853, the one-
class SVM first indicates abnormal operation at 
115 seconds, which is 15 seconds before the 
HPFTP failure occurred. At 130 seconds, the 
output goes lower, indicating a greater level of 
abnormality. The SVM output then returns to a 
normal level, gradually decreases, and then at 
276 seconds returns to indicating abnormality. 
The one-class SVM only indicates whether the 
system as a whole is operating normally or 
abnormally, and does not indicate specific 
variables or systems that may be operating 
abnormally. Future work will need to determine 
the exact source of the possible precursor at 115 
seconds, the reason for the return to normality at 140 seconds, and the reason for the return to abnormality at 276 
seconds. 

Using Orca, we determined that it is possible to easily detect the HPFTP failure using a single sensor at a 
particular frequency. Figure 3 is a reproduction of a figure from Ref. 17, showing that the failure can be detected 
using a particular vibration sensor at a particular frequency. When Orca discovered the HPFTP failure, it reported 
that the strongest contribution to the anomaly was a different variable representing a different vibration sensor at a 
different frequency. This variable is shown in Figure 4, for five different SSME tests. (Note that in Figure 4 and in 
all subsequent figures, the values have been removed from the Y axis to protect the confidentiality of the data.) For 
test 853, there is a large increase in this vibration measure at 130 seconds, which is the time of the failure. By 
examining the other four tests, we see that the selected variable remains much lower during these other tests. We 
also note that in test 852—the previous test of the same engine on the same test stand, and the green curve in Figure 
4—there appears to be a gradual increase in vibration. Our experts disagreed with each other regarding whether or 
not this increase represents a precursor of the HPFTP failure. 

In addition to detecting the known failure in the HPFTP, the algorithms also discovered many sensor failures that 
were not previously known to us. We present four of them here. 

 
Figure 5. GritBot detection of temperature sensor failure. This graph 
shows two redundant temperature sensors for the same test of the same 
engine. 

Figure 6. Orca detection of temperature sensor failure. This 
graph shows the same temperature sensor across two different 
tests of two different engines. 
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Figure 5 shows the values from two redundant 
temperature sensors for the same test. The two 
sensors return approximately the same value as 
each other until just after 300 seconds, when one 
of the sensors apparently has a failure that causes 
it to return a constant high value. GritBot detected 
this sensor failure. 

Figure 6 shows another temperature sensor 
failure that was detected by Orca. This failure, 
however, was detected not by comparing two 
redundant sensors during the same test, but by 
comparing two tests of two different engines. 
Orca was trained on one engine test and tested on 
the other engine test. It noticed that the 
temperature profiles from a particular sensor 
diverged sharply at around 400 seconds, 
indicating a sensor failure. 

Figure 7 shows a pressure sensor failure 
detected by Orca. This particular failure is more 
difficult to detect than the sensor failures in the 
previous figures, because the values from the 
failed sensor remain within the normal range. 
Orca detected the failure by noticing that the main 
combustion chamber controller reference pressure 
(in green) and the main combustion chamber hot 
gas injection pressure sensor (in orange) are 
usually strongly correlated, but that the 
correlation is violated during this test. Our experts 
explained that this was a notorious sensor failure 
caused by moisture in the line freezing. 

Figure 8 shows a vibration sensor failure 
detected by Orca. This figure shows the same 
vibration sensor as Figure 4, but includes an 
additional test that was excluded from Figure 4 
because of the sensor failure. Figure 8 has a 
different scale from Figure 4; the five curves from 
Figure 4 can be seen at the bottom of Figure 8, 
each in the same color as in Figure 4, but they 
appear much smaller in Figure 8 than they do in 
Figure 4 because of the different scale. The 
HPFTP failure can still be seen in the orange 
curve, but it is greatly overshadowed by the red 
curve. This particular vibration sensor returned values approximately ten times higher in the test corresponding to 
the red curve than it did in the other five tests. Our experts confirmed that it is a sensor failure. 

Figure 7. Orca detection of pressure sensor failure. This 
graph shows the main combustion chamber controller reference 
pressure (in green) and the main combustion chamber hot gas 
injection pressure sensor (in orange). The latter sensor 
apparently froze sometime before 400 seconds. 

Figure 8. Orca detection of vibration sensor failure. This 
graph shows the same sensor that is shown in Figure 3, but with 
a sixth test added (in red). The orange curve shows the sensor 
failure, as before, at 130 seconds. The red curve represents a 
sensor failure. 

V. Related Work 
In Ref. 18, Martin et al. present a comparison of six unsupervised anomaly detection algorithms, including the 

four algorithms discussed in this paper, plus a Gaussian Mixture Model and a Linear Dynamic System. They ran all 
six algorithms using SSME data from four space shuttle flights and two test stand firings for training, and eight 
shuttle flights and four test stand firings for validation. Although they acknowledge that they do not have enough 
data to make statistically significant comparisons of the relative performance of the six algorithms, they conclude 
that the algorithm with the best accuracy appeared to be either Orca or the one-class SVM, depending on how they 
classify ground truth in the validation data. 

Park, et al. applied the BEAM (Beacon-based Exception Analysis for Multi-Missions) system to anomaly 
detection in SSME data19. BEAM has nine components that use nine different approaches to anomaly detection. The 
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work reported in Ref. 19 only used one of the nine components: the Dynamical Invariant Anomaly Detector 
(DIAD). DIAD is an unsupervised anomaly detection algorithm, like the algorithms described in this paper. DIAD 
differs from the algorithms described in this paper in that DIAD only considers one variable at a time, whereas the 
algorithms described in this paper all consider all of the variables together and look for anomalies in the 
relationships among the variables, in addition to anomalies in individual variables. Park, et al. trained DIAD using 
data from 16 nominal tests, and tested it using data from seven tests that contained known failures. It detected all of 
the major failures in these seven tests, although it missed some minor failures and had some false alarms. 

Iverson’s Inductive Monitoring System (IMS)15 has also been used in another Space Shuttle application. After 
the STS-107 Space Shuttle Columbia disaster, Iverson applied IMS to data from four temperature sensors inside the 
Shuttle’s wings. He trained it using data from five previous Space Shuttle flights, and then tested it using STS-107 
data. It detected an anomaly in data from the temperature sensors on the Shuttle’s left wing shortly after the foam 
impact, suggesting in retrospect that with the aid of IMS, flight controllers might have been able to detect the 
damage to the wing much sooner than they did. 

In Ref. 20, Srivastava describes a data-driven system that detects anomalies in sequences of discrete data using 
envelope detection methods and dynamic Hidden Markov Models. This system has been applied to data from the 
switches in an aircraft cockpit. In this application, it detects anomalies in the sequence of switch flips made by the 
pilot, including detecting if the switches are flipped in an unusual order. For example, it can detect if the pilot lowers 
and raises the landing gear multiple times, instead of just once (as is usually the case in the training data). 

Many of the existing approaches to data-driven systems health monitoring have used artificial neural networks to 
model the system. Artificial neural networks are a type of nonlinear model based loosely on the neural structure of 
the brain, in which the weights of the connections among neurons are automatically adjusted to maximize the fit of 
the model to the data21. Guo and Musgrave22 applied neural networks to sensor validation for the SSME. He and 
Shi23 found that support vector machines produced better accuracy than artificial neural networks when applied to a 
pump diagnosis problem. One disadvantage of neural network approaches is that most humans are unable to 
understand or interpret the neural network models. Models based on decision trees, decision rules, or nearest 
neighbors are generally easier to understand, and therefore more likely to be accepted by human experts. 

VI. Conclusion 
This paper presents four sensor failures and one system failure that were detected by applying four unsupervised 

anomaly detection algorithms to data from the Space Shuttle Main Engine. Although all of these anomalies were 
either previously known or minor, we believe that they demonstrate that the algorithms have the ability to detect the 
kind of unusual phenomena in the data that correspond to significant anomalies. We have also demonstrated that 
these algorithms have the potential to process real rocket propulsion sensor data in real time. 

An important point to make is that although some anomalies were detected by multiple algorithms, other 
anomalies were only detected by one algorithm out of the four. The reason for the difference is that the different 
algorithms use different definitions of an anomaly. Because of these differences, it can be useful to run multiple 
anomaly detection algorithms on a data set. 

VII. Future Work 
This paper presents early results; there are many directions for future research. The preliminary results presented 

in this paper consist of five examples of anomalies that were detected by four unsupervised anomaly detection 
algorithms. Unfortunately, we will probably never have enough data to calculate false positive and false negative 
error rates with any statistical significance, but testing the algorithms on a larger amount of data than we have used 
so far should shed additional light on the performance of the algorithms. 

All four algorithms described in this paper output anomaly scores that measure the degree of anomalousness of 
the data. Before the algorithms could be used in an automated fashion, alarm thresholds would need to be 
determined so as to minimize false positive and false negative error rates. Setting these thresholds is difficult 
because of the small number of available examples of verified anomalies. 

In the research described in this paper, we used the four algorithms individually and compared the results. As we 
note in the conclusion, different algorithms within the set of four did a better job of detecting different anomalies. 
An important direction for future research is the automatic combination of the outputs of the different algorithms in 
a way that produces better results than any of the algorithms individually. 

Because of the small number of examples of anomalies available to us, we decided to first try unsupervised 
anomaly detection algorithms. We believe that the small number of examples of known anomalies will present a 
challenge for supervised anomaly detection algorithms. A direction for future research is to try to find ways to make 
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supervised learning algorithms perform adequately given such a small number of examples of anomalies. One 
approach would be to use each time step from an anomaly that spans multiple time steps as an example of an 
anomaly. 

In the results presented in this paper, the anomaly detection algorithms did not make use of any expert 
knowledge. We plan to explore ways of using background knowledge within the automated anomaly detection 
context. One possible source of knowledge is the determinations made by the domain experts that certain anomalies 
detected by the algorithms are not significant. One way to make use of this knowledge would be to use semi-
supervised learning algorithms, and to provide them with examples that are labeled as nominal for each candidate 
anomaly that the experts judged to be nominal. The algorithm would then avoid incorrectly signaling an anomaly in 
the future when similar patterns appear in the data. 

The data sets used in this research are all time series. The algorithms described in this paper, however, do not 
explicitly make use of time. Instead, time is treated just like any other variable. We plan to explore algorithms that 
explicitly model time, such as Kalman filters and Hidden Markov Models. 
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