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Absfracf- Neuromodulatory receptors in presynaptic position 
have the ability to suppress synaptic transmission for seconds to 
minutes when fully engaged. This effectively alters the synaptic 
strength of a connection. Much work on neuromodulation has 
rested on the assumption that these effects are uniform at 
every neuron. However, there is considerable evidence to suggest 
that presynaptic regulation may be in effect synapse-specific. 
This would define a second "weight modulation" matrix, which 
reflects presynaptic receptor efficacy at a given site. Here we 
explore functional consequences of this hypothesis. By analyzing 
and comparing the weight matrices of networks trained on 
different aspects of a task, we identify the potential for a low 
complexity "modulation matrix", which allows to switch between 
differently trained subtasks while retaining general performance 
characteristics for the task. This means that a given network 
can adapt itself to different task demands by regulating its 
release of neuromodulators. Specifically, we suggest that (a) a 
network can provide optimized responses for related classification 
tasks without the need to train entirely separate networks and 
(b) a network can blend a "memory mode" which aims at 
reproducing memorized patterns and a "novelty mode" which 
aims to facilitate classification of new patterns. We relate this 
work to the known effects of neuromodulators on brain-state 
dependent processing. 

I .  INTRODUCTION 
Neuromodulators (NM's) such as dopamine, serotonin or 

acetylcholine have the capacity to activate presynaptic recep- 
tors, located at axon boutons and involved in the regulation 
of both glutamate and GABA release [l] ,  [2], [3]. For the 
most part, these receptors depress synaptic transmission when 
they become activated by a strong neuromodulatory signal. 
Neuromodulatory signals are generated by phasic increases of 
firing of e.g. dopamine or serotonin neurons (located in central 
brain areas such as the ventral tegmental area or dorsal raphe) 
and their effects generally last for seconds to minutes [4], [5], 
[61. 

The plasticity expressed by NM receptors points to a 
targeted regulation at specific presynaptic sites [7], [SI. This 
means that the capacity for synaptic depression upon engage- 
ment of a NM receptor will be different for each synapse. 
The amount of change in synaptic strength is govemed by the 
distribution and efficacy of presynaptic receptors at a given 
time. Plasticity in the distribution of NM receptors happens 
on a similar time-scale as long-term potentiation (hours for 
induction, days to weeks at least for retention). Thus the 
distribution of receptors at a presynaptic site is capable of 
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reflecting experience on a similar time-scale as long-term 
potentiation, which influences the strength of glutamatergic 
transmission [9]. 

This paper explores the functional significance of presynap- 
tic neuromodulatory receptors and their localization. 

We choose conventional, fully trained neural networks as 
experimental material. Even though work in computational 
neuroscience during the past decade has shifted the focus 
within its major paradigm towards the investigation of pre- 
cision in spike timing and the importance of short-term vari- 
ability in synaptic transmission, network plasticity is still for 
the most part modelled by long-term potentiation as a way to 
set synaptic weights. 

Thus the mechanisms for network plasticity are essentially 
the same in both artificial and biological networks, even 
though tighter constraints on architecture and a limited pre- 
cision of synaptic weights need to be imposed on biological 
models. 

We have therefore opted for conventionally trained neural 
networks as starting points for an investigation on how presy- 
naptic modulation of synaptic weights may affect the function 
of biological networks in a state-dependent way. 

Behavioral evidence shows that neuromodulators affect per- 
formance on recognition and learning tasks in ways that are 
clearly measurable yet difficult to conceptualize [IO], [Ill. 
For instance, dopamine and noradrenaline have been linked to 
the ideas of "attention", "arousal", "novelty" and "reward". 
Mathematically, they are usually analysed as regulating a 
single global parameter. This may guide reinforcement learn- 
ing [12], set thresholds for signal detection [I31 or alter the 
level of (recurrent) connectivity [14]. Here we propose an 
altemative mathematical model, the existence of a second 
matrix of stored values designed to be subtracted or added 
to the primary matrix. Obviously, the computational power 
expressed by weight modulation goes considerably beyond 
that of a global parameter. However, we also aim to show 
that the idea of weight modulation, which is synapse-specific 
and experience-dependent, is entirely compatible with the 
generalized notion of a subtle modulation of task execution 
which leaves basic performance intact. Thus we provide a 
theoretical basis towards further conceptualizing the role of 
neuromodulators in neural processing and the regulation of 
brain state. 
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11. FUNCTION OF PRESYNAPTIC NM RECEPTORS 
Synapse-specific modulation of neural transmission means 

that a given weight matrix may be switched to a different 
but related one upon engagement of presynaptic receptors. 
More precisely, this "switch" will be often gradual, leading 
to a blending of stored weight values in at least two matrices. 
(Since there are a number of different presynaptic receptors, 
each targeted by a different substance, the brain may operate 
with several modulation matrices. Alternatively, we might 
define a single matrix for the extreme values when all receptors 
are engaged, and the look at the various intermediate states. 
This question is not further addressed in this paper, rather all 
experiments are carried out with a single modulation matrix). 

Since these effects are global on a short time scale through- 
out the brain, much work on neuromodulation has rested on 
the assumption that these effects 'are also uniform at each 
neuron or synapse. But recently, experimental evidence has 
emerged to ,the effect that NM receptors may indeed be 
individually regulated by a host of intracellular pathways and 
gene expression mechanisms [71, [SI, overlapping with the 
mechanisms that guide glutamatergic strength (such as AMPA 
receptor regulation). 

The activation of presynaptic NM receptors may be concep- 
tualized as fast switching of synaptic weights - where "fast" 
refers to the time required to produce a strong neuromodula- 
tory signal in response to a specific stimulus (approximately 
100 ms) (Figure 1). 

. .  

Fig. I .  Synaptic Switching 

The change will usually last for several seconds to minutes, 
with termination of the effect being tightly regulated by a 
number of complex factors such as re-uptake mechanisms, 
continuing firing of NM neurons and excitation levels of the 
neuron (e.g. calcium and CAMP-levels). 

Synaptic switching can be realized by introducing a sec- 
ond matrix that can be used to reset specific weights in 
a primary matrix. Physiologically, this corresponds to the 
capacity of local regulation of NM receptor activation by 
both transporter and receptor placement and efficacy. In this 
way, both depression and release from depression of fast 
glutamatergic/GABAergic signalling can be realized by the 
neural system. 

Fast synaptic switching allows specific modulations of task 
performance in trained neural networks. 

These modulations become specifically interesting when we 
are faced with a task or aspects of task performance, which 
cannot be solved by a single optimal distribution of weights, 

For instance, a set of weights that classifies one set of 
patterns well may be less well adapted for another set of 
patterns. In this case, rather than choosing a weight matrix 
that covers both patterns in a suboptimal way, or learning and 
maintaining two separate networks for each set of patterns, 
the brain's solution may have been to combine different 
weight sets within a single network, and provide stimulus- 
specific switching between them. Rather than training different 
networks from scratch, the brain may thus reduce training 
complexity on highly related tasks. This will work when a 
basic performance on each aspect of the task is guaranteed 
with either weight distribution. Furthermore, if the weights 
are similar and derived from each other, incomplete switches 
(blends) will produce intermediate results without disrupting 
basic task performance. In a similar vein, the brain's answer 
to the problem of how to store patterns precisely for mem- 
orization but also in a more generalized, noisy fashion to 
facilitate classification of novel patterns may have been to 
accommodate both: a set of weights that closely represents a 
specific pattern set, and modifications to this weight matrix to 
obtain a looser fit, and promote generalization. In this paper we 
present two specific examples for task modification that can be 
realized by synaptic switching between two weight sets each 
optimized for a specific aspect of the task. The application 
is taken from the realm of face identification and recognition 
of emotional expressions of faces. The examples presented 
are very simple and designed to exemplify the principle of 
weight modulation rather than present a technical solution. 
They are primarily meant to illustrate the computational power 
of presynaptic receptors, once we accept the notion that the 
localization of NM receptors may be functionally regulated, 
rather than uniformly distributed. 

111. MODULATION OF TASK PERFORMANCE 

In the first example, we classify a set of patterns in a 
combined task (face identification and recognition of emo- 
tional expression) by supervised learning. We show that the 
performance of the network for each of the subtasks separately 
can be improved beyond the maximum performance for the 
whole task. Even though this means that performance for 
the other subtask goes down and the combined error level 
remains constant, we have identified a situation, where basic 
task performance is guaranteed and synaptic switching allows 
an allocation of precision in memory to one rather than the 
other task. Thus a network can adapt itself towards a focus 
on face identification or a focus on emotional recognition 
by engaging a neuromodulatory signal that subtly alters the 
weight distribution. 

We created a network based on an input representation 
for a face image and trained on both face identification and 
recognition of emotional expression. 

The data were taken from a publicly accessible database 
[151. 53 different persons were used, and three different emo- 
tions (neutral, smiling, crying) were contained in the set (159 
different patterns). Images were scaled and normalized to a 
size of 20x20 pixels which comprised the input of the network. 

219 



face ideotification 
emotional recognition 

.I I 4 5  0 1  

Fig 2 Differences between Tasks A and B are localized 

93% 62% 73% 
75% 96% 86% 

The weight matrix is then stored and copied twice. One copy 
is further trained on only subtask A, the other on subtask B. 
This improves performance considerably for either task A or 
B, and results in small losses in the task not trained (s. Table 
I, network A and network B). 

The reduction of training complexity compared to training 
and storing two different networks may not seem significant in 
the case of a back-propagation trained neural network. But for 
a living neural system which takes hours to days to change 
individual synaptic weights, the issue of training time (not 
storage area) is a huge problem. Furthermore the advantage 
of having a coarse, roughly correct system which undergoes 
subtle modulation as needed in contrast to a set of highly 

Fig. 3. source units for Strongest Weight Difference between Tasks A and 
B 

specialized modules cannot be overestimated. 
In a technical sense, whenever we are dealing with a 

situation, where a sequential focus on subtasks occurs, but 
a basic level of performance needs to be maintained at all 
times, this technique of "weight splitting" into two different, 
but similar sets of weights will optimize performance beyond 
the level of a single set of weights and a generalized combined 
ability. 

We may analyze the complexity of the mechanism by a 
weight difference map for networks A and B (Figure 2).  Very 
small differences in weight (< 0.03) are not shown. 

This results in a picture with significant differences only in 
certain columns rather than others (the figure shows a cutout 
from the complete network). 

We can see that the differences involve selected synapses 
and are fairly local, clustering in certain regions of the input 
space. The source units, connected to these sites of strongest 
discrepancy are are shown in Figure 3, on a 20x20 layout. In 
particular, weights encoding features for the eye and mouth 
region are affected by changes in the task setting. 

This means that the given example has a low complexity in 
the additional training needed for the switching mechanism. 

We may also compare the hidden representations for se- 

sion, the right panel shows the representations for all patterns 
for face id #23. In both cases, we see that the representation is 
similar, but not identical for networks A and B. This creates 
a situation, where blending of two networks can be applied 
without losing basic performance (s. IV). In contrast, the effort 
involved in training two different networks independently with 
essentially highly similar outcomes would not be justified. 
Another reason for applying synaptic switching rather than 
continued training of a combinatory task consists in the 
assumption that we cannot substitute panel 1, B (optimal) into 
panel 2 ,  B (suboptimal) without affecting panel 2 A (optimal) 

lected patterns. 

from superimposing all patterns with "smiling" face expres- 

Fig. 4. Hidden Representations for subrasks and trained networks: left panel: 
"smiling" faces , right panel: face no 23, upper: network A, lower: network 
B 

Figure 4, left panel shows the representations that 
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as well. A mathematical analysis of the ”restriction of opti- 
mality”,will help to establish this empirical observation. This 
should show that certain feature nodes are specifically affected 
and cannot exist in a single ”best” position independent of the 
task that they are used for. 

A (trained for generalization) 
B (trained for memorization) 

IV. MODULATION OF GENERALIZATION PERFORMANCE 

Another modulation that can be implemented with the help 
of synaptic switching concerns the trade-off between pattem 
storage and generalization. Generally, training a network with 
optimization for the error level for storing a pattern may 
lead to “overfitting”, i.e. a decrease in generalization perfor- 
mance, when the learned discriminant becomes too irregular. 
A number of techniques have been proposed to influence the 
degree of generalization vs. the storage of patterns (e.g. ”early 
stopping”, ”weight decay” [16]). This trade-off is generally 
regarded to be resolved at the discretion of the modeller in 
accordance with task requirements. 

Here we attempt to show that the brain may have imple- 
mented this design decision with the help of neuromodulation. 
The basic idea that neuromodulation may regulate trade-off 
between pattern storage and novel. classification has been 
pioneered by Hasselmo [17], where the self-organization of 
feedforward connections was described as benefiting from sup- 
pression of strongly modified intrinsic connections associated 
with specific prior learning. The mechanism proposed here is 
more general, but a state-dependent modulation of learning 
vs. storage optimization seems to be one of the tasks of 
neuromodulation. 

We select a training and a test set from the face identification 
problem. The training set consists of 100 patterns (2 for each 
face) and the test set of 50 patterns (1 for each face randomly 
selected). 

Using a weight-decay backpropagation algorithm, we first 
obtain a network which performs well on the training set and 
minimizes the error in generalization (see Table 11, network 
A, 1500 iterations, architecture of the network is 400-10-3). 

71% 72% 
98% 68% 

TABLE I1 
OVERFITTING: % OF CORRECT PATTERNS FOR MORE OR LESS HIGHLY 

T R A I N E D  NETWORKS 

Then, we perform additional training (without weight decay) 
to improve the network’s capability to recall the training data 
(network B, additional 4000 iterations). This training results 
in 98% correct identification of the faces in the training 
set, but slightly decreases the generalization performance. 
By this method, as in the previous example, we obtain two 
different networks that are highly similar but different enough 
in selected synaptic weights to subtly alter task performance. 

The comparison of the difference in weights between the 
two networks is shown in Figure 5. There is no clearly 

discernible structure to the weight difference diagram, thus 
we would expect complexity to be higher in this case. 

Fig. 5 .  Weight difference diagram for networks A and B, 

An interesting possibility that is supported by the physio- 
logical evidence is partial weight modulation. There are essen- 
tially two different mechanisms for that, some combination of 
which probably occurs in the brain. One mechanism assumes 
a partial activation of receptor sites by a limited increase 
of neuromodulator availability. This would result in a linear 
change of weight values. The other mechanism assumes that 
only a percentage of receptor sites are activated fully - other 
receptors being decoupled or desensitized. This would result 
in a potentially skewed change in weight values. 

Figure 6 shows the effects of both techniques on per- 
formance measures for the generalization-storage trade-off. 
Endpoints of the trajectories for storage and generalization are 
given by the values in Table 11. Interestingly, shutting off a per- 
centage of the receptors leads to fluctuations in performance 
(dashed line), while the linear interpolation approximates a 
corresponding linear change in performance (continuous line). 

Fig. 6.  Partial Weight Madulation: Effects on performance 

Finally, another way to compare the weight matrices that 
result from training for storage versus training for general- 
ization is to look at the distribution of actual weight values 
(Figure 7). 

We can see that the variance for the generalizing network 
is lower (1.2) than for the storing network (2.0). This’is in 
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Fig. 7. Weight dismbutian for networks A (left) and B (right) 

accordance with the observation that weight decay helps in 
achieving better generalization. Physiologically, weight mod- 
ulation may have the side effect of decreasing the range of 
synaptic strengths. Here we can see that this feature may have 
been applied in a functionally useful way by the brain. 

Similarly, we may compare the firing rate distribution for 
both networks (Figure 8). 

Fig. 8. Firing rate distribution for networks A (left) and B (fight) 

This shows that the network optimized for storage has 
more neurons with low activation than the network which has 
been optimized for generalization. Again, this may point to a 
focusing of activation on selected neurons and less distributed 
activity in the network, which is a result that is compatible 
with neuromodulatory alterations of network activity. 

V. CONCLUSION 
In general, neuromodulators define brain state and alter 

neural processing according to current needs of the organism. 
Often it is assumed that the effects of NM are uniform 
at all synapses. In this sense, the modulation mediated by 
e.g. dopamine receptors depends only on a global signal, 
namely phasic increase of dopamine neuron firing and release. 
Accordingly, the function of neuromodulation has been linked 
to general, unspecific alterations in processing mode, such 
as increased signal-to-noise ratio, vigilance or arousal [ 181, 
(p.225-226), a general reinforcement signal [191, (p. 339-340) 
or increased recurrent connectivity [14], [ZO]. 

Here we show that the experimental evidence which sup- 
ports localized responses greatly enhances the computational 
power associated with neuromodulation. 

In particular, the technique of fast synaptic switching to a 
second weight matrix can be applied to increase performance 
levels of related tasks individually. We have applied this to 
classification of faces according to identity versus recognition 
of a n  emotional expression and to the memorization of face 
images versus the ability to classify novel images. 

The basic idea of fast synaptic switching is not novel. 
A related form of synaptic switching within a neural pro- 
cessing network has been explored in the context of the 
"dynamic link architecture" [Zl l ,  [22]. 1231. The dynamic 
link architecture has been mostly used for the extraction and 
storage of invariants in perceptual processing. Its possible 
link to the physiological substrate of neuromodulation has not 
been explicitly explored. But the dynamic link architecture 
incorporates techniques for learning not only the primary 
weight matrix, but also a secondary matrix which stores 
information on the target weights that undergo switching. Our 
work has not addressed the question of a "learning rule" for the 
weight modulation matrix, i.e. the placement of presynaptic 
receptors. Rather we have explicitly constructed complete, 
fully trained weight matrices by conventional means, and 
explored the consequences of being able to blend or switch 
them by neuromodulatory signals. We have however made the 
observation that the complexity of learning can be expressed 
by the number of receptors that have to be placed. 

We have taken care to ensure that the results are compatible 
with the forms of state-dependent processing' which have 
been documented as behavioral modifications due to neuro- 
modulatory function. Subtle alterations in task performance 
due to engagement of neuromodulator receptors provide a 
form of adaptivity that ensures basic performance but allows 
task-specific optimization. We feel that this 'description of 
neuromodulatory function provides a framework for further 
experimental and theoretical studies. 
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