Analysing the Load Balancing Scheme of a Parallel
System on Multiprocessors*
— A Modeling Approach —

Johann Schumann and Manfred Jobmann

Instetut fir Informatik, Technische Unwversitat Munchen
email: jobmann@informatik.tu-muenchen.de

Abstract. Efficient utilisation and scalability of a parallel system strongly
depend on the load distribution and balancing mechanisms. We analyse the
behaviour of a load distribution and balancing mechanism by modeling the
parallel system as an extended queueing model with subsequent evaluation
by the modeling and analysis tool, MAOS. Our focus is on search-based
parallel systems (here, the OR-parallel theorem prover PARTHEO), running
on a loosely coupled multiprocessor environment.

1 Introduction

For the performance evaluation of a parallel search-based system, there exist a
number of important criteria; of most interest for the user is the speedup. For a
more detailed evaluation, the following items are to be taken into consideration:
the load-balance and the resulting utilisation of the processors with respect to the
values of the parameters of the load distribution mechanism, and the behaviour of
the system wrt. number of processors and the interconnection topology.

In this paper we focus on the second topic, scalability. Our approach of per-
formance evaluation of parallel search-based systems using an extended queuing
model is illustrated by a concrete example: the theorem prover PARTHEO [5], an
OR-parallel theorem prover for first order predicate logic which is realised as a net-
work of sequential theorem provers (SETHEO) communicating via message passing
and running on a net of Transputers T800 in a torus-like topology with 4 x 4 (in
general: m x m) processors. Formally, the search for a proof can be depicted by
a tree (“OR-tree”). This OR-tree is searched in a depth-first, left-to-right manner
with backtracking (for details see [5]). Since the branches of the OR-tree can be ex-
ecuted independently from each other, OR-parallelism is exploited by distributing
the proof tasks (i.e. the nodes of the OR-tree) over the network of processors. The
execution of a task involves checking if a proof could be found and, in case the task
is not a leaf node, generating new tasks. PARTHEO’s mechanism for distributing
the load is that of “task stealing” (receiver-initiated policy): as soon as a processor
runs out of proof-tasks in its local memory (“task store”) it asks its direct neigh-
bours in the network for proof tasks. If a neighbouring processor has enough tasks,
it sends some tasks (e.g. half of them).

2 The Model
In order to study the behaviour of the parallel system without additional hard-

* This work was supported by the Deutsche Forschungsgemeinschaft within the Sonder-
forschungsbereich 342, Subproject A5.



ware, the approach of modelling the parallel system, based on its actual implemen-
tation has been used. The model built 1s a queueing network model extended with
explicit process interaction and communication and is evaluated by simulation us-
ing the software tool MAOS [2]. The investigations would not be possible within a
framework applying pure queueing network models. MAOS’s object-based princi-
ples of modelling allowed to map the parallel executable proof tasks of PARTHEO
directly into tasks of the corresponding MAOS model.

In order to avoid problems wrt. to the notion of speedup for OR-parallelism,
for measurements and simulations we use a representative of a (synthetic) class of
formulae showing a regular n-ary OR-tree (n € {7,9,11,15,21,24}), resulting in
between 400 proof tasks (n = 7) to 14425 tasks (n = 24). As the execution time
we take the time needed to process all possible proof tasks up to a given depth of
the OR-tree?. We study the scalability of PARTHEO wrt. the topology of a square
torus with p = m x m processors, and vary m from 2 to 16 resulting in networks of
4 to 256 processors.

The values of all parameters for the PARTHEO model have been obtained from
the actual PARTHEO implementation (16 x T800). With these values, the simulation
model has been validated (cf. [5, 2]).

3 Results

The scalability of the PARTHEO model is analysed by investigating the effi-
ciency n wrt. variations of the number of processors and the problem size. The
iso-efficiency curves as shown in Fig. 1A relate the problem size (in our case, di-
rectly corresponding to the the number of generated proof-tasks) and the number of
processors to the efficiency obtainable (cf. e.g.,[3]). An efficiency of almost 1, being
equal to linear speedup, can be obtained in all cases with a small number of proces-
sors. When the number of processors increases, the efficiency decreases drastically,
as indicated by the steep slope in the iso-efficiency curves. The effect is stronger for
smaller problems, although the number of proof-tasks is, even for these problems,
large compared to the number of processors. This indicates a severe load imbalance
due to the start-up phase and improper migration of proof tasks.

Fig. 1B shows the mean number of active processors for time intervals of one
second over the entire execution time. With a comparatively large number of pro-
cessors, we can also detect several intervals during the run-time in which the mean
number of active processors decreases substantially, often to only about 60% or less
of the available processors.

During those times, one expects a good utilisation, since enough proof tasks
should be available in the system. However, the vast majority of proof-tasks are
tasks at the leaf nodes of the OR-tree which do not generate new tasks and have
long execution times. This leads to the conclusion that a task-stealing mechanism
should take the type of proof task into account. Experiments with variations of
the appropriate parameters, however, yielded only little variations in the overall

2 This corresponds to the situation of searching for all proofs of a formula.

% For each different OR-tree and number of processors, 10 independent simulation runs
have been made from which mean values and confidence intervals (at level 0.9) have been
calculated. There i1s only little fluctuation. Hence, no confidence intervals are shown.



<

i

<

100% 4
80% |
60% -

40% A

0 5 10 15 [

A) Iso-efficiency curves for 4 to 256 processors and 7-ary B) Percentage of mean number of active processors in
to 24-ary OR-trees. Solid lines represent efficiency values time intervals of 1 second as a function of time (121 pro-
of 0.9,0.8,...,0.1 (from left to right). cessors, 24-ary OR-tree)

Fig. 1. Iso-efficiency curves (A) and processor utilisation (B)

behaviour. Therefore, we focus on ways to increase the balance of load during the
start-up phase of PARTHEO. Starting with one proof task on a single processor is a
simple and convenient scheme for implementation, but as the experiments revealed,
results in a severe load-imbalance.

In the following experiment we use a different scheme of start-up. Instead of
starting with only one proof task, we first generate n proof tasks (for an n-ary
OR-tree) on one processor. In most cases, the number of processors is larger than
the number of initial proof tasks. Then, we place proof tasks onto processors (one
per processor) which roughly have the same distance to each other in the network
before activating the task-stealing mechanism as usual.

Fig. 2 shows the efficiency curves for this experiment revealing a much better
efficiency, especially in the case of large networks. This last task distribution scheme

o Wi Ty ~I 00 0 O
1

=3
OO0 OOOO

T T T T T 1

416 36 64 121 256
Fig. 2. Efficiency values for different numbers of processors p. Dotted lines are for the
original start-up mechanism, solid lines for the modified one.

may be characterised as a two-level distribution of load as described in [1]: tasks
in the first level are created at one (master-)processor and attracted by designated
(master-)processors at the second level, which again create (sub-)tasks according
to a specified tree depth. But there is a significant difference: in our scheme there
doesn’t exist a particular fixed group partition of the processors, but all processors
(initially starting with the neighbours of the designated processors) may attain tasks
from each other. Therefore our group partitioning may be viewed as a dynamic one



depending on the arity of the OR-tree and without fixed group borders. This scheme
is easier to implement, e.g., there is no need for group merging in order to balance
load across groups. On the other hand, we cannot adapt this simpler scheme to
more than two levels of task creation, which would probably be needed for a larger
number of processors and a relative small number of terminal tasks. But, if the
number of terminal tasks i1s large compared to the number of processors a two level
scheme will suffice, since we could choose an appropriate tree depth to create enough
tasks in the first level to utilise enough designated (master-)processors in the second
level.

4 Conclusions

Starting from a specification of the parallel system and its implementation, an
extended queueing network model was developed, modeling the communication
principles and the mechanism for distributing work. Details of the system which
are not of interest for evaluating the performance (e.g., sequential calculations), are
hidden by abstraction.

This model was used to analyse the scalability of the parallel system for the
OR-parallel theorem prover PARTHEO. Although an almost linear speedup can
be obtained with a comparatively small number of processors, the efficiency de-
creases substantially with an increasing number of processors, due to a strong load-
imbalance. A closer look revealed that a major reason for this imbalance can be
found in the start-up of the system, since the system starts with one proof task on
one designated processor.

A comparatively small change in this start-up behaviour — instead of one proof
task, we initially distribute n tasks (for an n-ary OR-tree) — resulted in a substantial
increase of efficiency. This result is worth to be a basis for future experiments, where
the number of created tasks — or the corresponding tree depth — in the initially
designated processor may be adapted to the number of processors and to the needs
of a good first level distribution of these initially created tasks.

References

[1] M. Furuichi, K. Taki, and N. Ichiyoshi. A multi-level load balancing scheme for or-
parallel exhaustive search programs on the multi-psi. In Second ACM SIGPLAN Sym-
postum on Principles and Practice of Parallel Programmaing, 1990.

[2] M. R. Jobmann. Leistungsanalyse von Rechen- und Kommunikationssystemen -
Konzepte der Modellauswertung und Definition einer Modellierungssprache. PhD the-
sis, Universitat Hamburg, Hamburg, Feb 1991.

[3] V. Kumar and A. Gupta. Analyzing Scalability of parallel Algorithms and Architec-
tures. Technical Report TR-91-18, Univerity of Minnesota, June 1991.

[4] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance The-
orem Prover. Journal of Automated Reasoning, 8(2):183-212, 1992.

[5] J. Schumann and R. Letz. PARTHEO: a High Performance Parallel Theorem Prover.
In CADF10. Springer, 1990.

This article was processed using the INTpX macro package with LLNCS style



