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Top-down theorem provers with depth-�rst search (e.g., PTTP [Sti88], METEOR

[AL91], SETHEO [LSBB92]) have the general disadvantage that during the search

the same goals have to be proven over and over again, thus causing a large amount of

redundancy. Resolution-based bottom-up theorem provers (e.g., OTTER [McC90]),

on the other hand, avoid this problem by performing backward and forward sub-

sumption and by using elaborate storage and indexing techniques. Those provers,

however, often lack the goal-orientedness of top-down provers.

In order to combine the advantages of top-down and bottom-up theorem prov-

ing, we have developed the preprocessor DELTA. DELTA processes one part of the

search space (the \bottom" part) in a preprocessing phase, using bottom-up tech-

niques (see also [?]). It generates unit-clauses (e.g., by applying UR-resolution) which

are added to the original formula. Then, this formula is processed by a top-down

theorem prover in the usual way.

During this top-down search, the additional unit clauses are used as generalized

unit lemmata. Due to the structure of the search space and the combination of

advantages of both approaches (subsumption in the preprocessing phase and goal-

oriented search in the subsequent top-down search), a remarkable gain of e�ciency

can be achieved in many cases.

DELTA uses SETHEO [LSBB92] and its logic programming facilities for gen-

erating these unit clauses. In order to obtain a high e�ciency for the bottom-up

phase, the unit clauses are generated level by level. This technique is similar to delta

iteration as it is used in the �eld of data-base research.

Starting with the original formula, the following iteration step is performed (�rst,

we only consider Horn-formulae): we let SETHEO generate all new unit clauses which

can be obtained by one UR-resolution step out of the current formula. This is accom-

plished by adding to the formula \most general queries" :p(X
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)". Up to now SETHEO only uses locally ef-

fective subsumption techniques, based on SETHEO's built-in constraint mechanism.

Although, in case of a depth bound of 2, anti-lemma constraints

2

simulate forward

?

Submitted to CADE 12

2

Anti-lemma constraints (for details see [LMG93]) are syntactic constraints which are



subsumption, all newly generated unit clauses must pass an additional subsumption

test. Then, the remaining ones are added to the current formula, and the iteration

step is executed again, unless until a stop condition (see below) has been reached.

The original formula plus the unit clauses produced during the last iteration are

used for the �nal top-down search.

Adding unit clauses to a formula does not a�ect completeness of the top-down

proof procedure. Therefore, several ways of controlling the generation of unit clauses

during the preprocessing phase are provided: the generation of new clauses can be

restricted to speci�c predicate symbols, and unit clauses with an excessive size or

complexity of terms can be �ltered out. Furthermore, we can limit the number of

generated unit clauses to a suitable value (usually around 100).

In the case of a Horn-formula, a proof can always be found in the �nal top-down

step with a lower bound than needed for a pure top-down proof (assuming, however,

all bottom-up unit clauses have been generated).

For non-Horn formulae, we use the same approach of bottom-up iteration. How-

ever, we generate unit clauses for p (as above) and for :p. Furthermore, we allow

Model Elimination reduction steps to occur during the preprocessing phase. This

increases the power of the bottom-up resolution step by introducing factorization.

However, in the non-Horn case, we cannot assure that the resources needed in the

�nal step are lower compared to those needed withoutDELTA. (There exists always

the possibility that a leaf node in the tableau has to be closed by a reduction step

almost up to the root.) Experiments showed that even with non-Horn formulae, in

many cases, a gain in e�ciency could be obtained, often because, there are only few

reduction steps in a proof.

The following table shows the results of �rst experiments with well-known bench-

mark examples. We have used a simple prototype version of DELTA and SETHEO

V3.1 as the top-down prover. This prototype has been implemented in UNIX shell,

using awk [AKW88] scripts for manipulating the formula and �ltering the unit

clauses. As a resource bound for the preprocessing and the �nal top-down search,

the depth of the proof tree (A-literal depth) has been used. DELTA has always

been started with default parameters, except in cases where the number of newly

generated clauses grew too rapidly. In that case, the maximal term complexity has

been restricted to 2 (y in the table). If, for Non-Horn formulae, too few unit clause

have been generated, the depth bound for each iteration has been increased (z).

As a comparison, run-times for SETHEO without bottom-up preprocessing are

shown. As in the �nal top-down search, SETHEO has been started with its default

parameters (iterative deepening with A-literal depth, and generation and usage of

constraints). All run-times shown in this table are in seconds and have been ob-

tained on a sun sparc II. They include full compilation and assembly times (for each

iteration), not just the run-times of the prover itself. However, a more e�cient im-

plementation of DELTA could further substantially reduce the preprocessing time.

generated during the search to prevent solving a subgoal more than once with an identical

substitution, as long as it remains in the tableau.



iteration gener. run-time run-time run-time run-time

Example level clauses DELTA top-down total SETHEO only

wos1 1 36 0.87 3.59 4.46 1.53

wos4 1 93 1.79 23.35 25.14 22.93

wos15(H)

3

2y 256 15.58 61.82 77.40 807.61

wos17(H) 2y 328 8.72 9.01 17.73 11081.93

wos20 1y 507 3.05 25.79 28.84 |

wos21(H) 2y 144 3.94 20.03 34.17 |

wos31 4z 114 17.2 3.65 20.85 |

wos33 4 28 12.97 5.97 18.94 |

sam(H) 3 66 12.97 5.97 18.94 |

LS36(H) 1 148 1.35 45.28 46.63 87.25

LS37a(H) 3y 257 21.67 7.52 29.19 |

Bledsoe-1 2 67 1.96 4.40 6.63 6.67

Bledsoe-2 2 68 1.90 6.87 8.77 114.33

The results shown are quite remarkable, compared to pure top-down theorem

proving, despite the straight-forward approach and primitive prototype of DELTA.

The combined system could even solve several examples for which SETHEO alone

could not �nd a proof.

This approach of combining top-down and bottom-up theorem proving is ex-

tremely 
exible and thus allows for many enhancements and future developments,

leading to a dramatic increase in the power of automated theorem proving.

The prototype version of DELTA together with a manual page is available via

ftp. For information, please contact the author.
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Horn formulae are marked by a \(H)".


