
Rapid Exploration of the Design Space During
Automatic Generation of Kalman Filter Code

Julian Richardson, Johann Schumann, Bernd Fischer, Ewen Denney
RIACS, NASA Ames Research Center, {julianr, schumann, fisch, edenney}@email. arc. nasa. gov

Abstract- State estimation is a core capability for au- 1. INTRODUCTION
tonomous systems such as satellites and planetary rovers.
Kalman filters provide a computationally efficient way to de- State estimation is a core capability for autonomous systems
termine the values of state variables (e.g. position, velocity) such as satellites and planetary rovers. Kalman filters provide
from noisy measurements. a computationally efficient way to determine the values of

state variables (e.g. position, velocity) from noisy measure-
The Automated Software Engineering group at NASA Ames ments. In a Kalman filter, the relationship between the mea-
Research Center has previously developed a number of sys- surements and the state variables which are to be estimated
tems for generating program code in NASA-relevant do- is encoded by a set of measurement equations. The behavior
mains, including AMPHIoN/NAIF [12] for generating code of the system is encoded by a set ofprocess equations, which
for mission planning and AUToBAYES [6] for generating data express how the state variables are expected to evolve, typ-
analysis code. ically with time. The other main parts of the Kalman filter

model are matrices representing the covariance structure of
In this paper'2, we outline a program generation system, the measurement and state variables, and the initial values of
AUToFILTER [13], which has been developed at NASA these and the state variables.
Ames Research Center. AUToFiLTER synthesizes (i.e. gen-
erates) Kalman filter code. It takes as input a textual specifi- Implementing a Kalman filter involves a number of trade offs:
cation a description of the mathematical model underlying a simple model with a small number of state variables may
the Kalman filter and automatically generates code suit- not be able to accurately model the behavior of the system
able for compilation using MATLAB libraries (for prototyp- it may be necessary to increase the number of state variables
ing and testing the filter) or standalone C code (for deploying in order to achieve good estimates. Due to the heavy use of
the filter). matrix operations (including multiplication and inverse), in-

creasing the number of state variables in a Kalman filter very
We describe how AUTOFiLTER assists the iterative develop- significantly increases the computational complexity of the
ment of Kalman filters in various ways: permitting changes filter. Code deployed in radiation hard environments must
in the mathematical model underlying the filter to be rapidly satisfy tough timing constraints: compare Mars Pathfinder's
realized as code and tested, different Kalman filters to be 20 MHz RAD6000 processor running at 2 MIPS with a 1 GHz
synthesized from the same model, code automatically as- desktop Pentium III running at 3000 MIPS. In addition, prob-
sessed for computational performance, and approximating as- lems may arise in which some state variables become unob-
sumptions applied to the code in order to improve efficiency. servable and their values no longer adequately constrained by
AUToFILTER provides assistance for ensuring that the gen- the input measurements.
erated code is correct by generating program documentation
and correctness certificates in addition to the code itself. Implementation of Kalman filters for new aerospace applica-

tions is an iterative process. Typically, the filter is prototyped
in a simulation environment, such as MATLAB, until a sat-
isfactory mathematical model has been found. This is then

1 INTRODUCTION 1 recoded for deployment on a target platform in a low-level
language such as C. This code is tested and adjusted until its

2 OVERVIEW OF AUTOFILTER 2 computational characteristics (e.g. runtimes or numerical ac-

3 ITERATIVE DEVELOPMENT OF KFs 3 curacy) meet the requirements. This may lead to a redesign
4 AIDING DESIGN SPACE EXPLORATION 4 of the mathematical model. AUToFiLTER can simplify this

process in several ways: It can rapidly turn around model
5 FURTHER WORK 7 changes, which allows the exploration of the filter design

6 CONCLUSIONS 8 space, it can generate multiple alternative implementations
for the same specification, which allows the exploration of
the implementation design space, it can generate both MAT-
LAB code (for prototyping) and target platform code (for de-
ployment) from the same specification, it can apply simplify-

1IEEEAC Paper Number 1205 ing assumptions to the generated code in order to reduce its
20-7803-8870-41051$20.OO(C) 2005 IEEE

1

worst case execution time, it can generate documentation at system (middle large box) implements schema-guided syn-
the same time as code, and it can automatically demonstrate thesis [7]. A synthesis schema essentially consists of a code
that the code it generated is free from various classes of de- template, plus preconditions which restrict its applicability
fects. and logic which instantiates the code template to yield a well-

formed code fragment. Schema-guided synthesis is very nat-
In this paper we briefly describe our system, AUToFILTER, urally implemented in Prolog, a logic programming language
which automates the synthesis (i.e. generation) of Kalman fil- which searches for alternative solutions to a problem using a
ter code from succinct specifications. We outline the various process called backtracking.
ways in which AUTOFILTER aids the iterative development
of Kalman filters. Parse specification

Schema-guided synthesis

The paper is structured as follows: in §2, we give a high SToplevelsschema: ti

level overview of AUToFiLTER. We then (§3) describe how Kalman Filter
Kalman filters are developed iteratively, and summarize the I
capabilities provided by AUToFILTER to assist steps in the Preprocess model
iterative process. We provide more detail on some of these

CChoose and combine implementations
capabilities, including the benefits of code derivation from a of filter blocks
high level specification, generation of multiple implementa-
tions from the same specification, estimation of worst case

mit EstimateUpdate | GainUpdate ..execution time, application of approximations, use of differ-
ent back ends to generate both prototype and deployed code,
and automatic certification and documentation of the gener-
ated code in order to ensure correctness. In §5 we discuss Approximate
directions for further work, and conclude the paper in §6. Too slow?

Check runtime performance

2.OVERVIEW OF AUTOFILTER IGenerate final (e.g. C) code

In this section we outline how AUToFILTER implements pro- Figure 1. Structure of AUToFILTER. The main part of the
gram synthesis, and provide an example. synthesis takes place in the middle large box.

Anatomy ofAUTOFILTER A schema implementing a part of a Kalman filter effectively
encodes the knowledge which we would expect to find in a

AUTOFiLTER takes as input a textual specification of a text book description of that implementation technique: when
Kalman filter, and automatically outputs a program (by de- engineering a schema-guided synthesis system, a good book
fault in C using the OCTAVE matrix libraries-a different is extremely useful, e.g. [2], [8]. Each schema maps a pro-
target language or library can be requested using command gram synthesis task to a code fragment which performs that
line flags) implementing a Kalman filter meeting that speci- task. Each schema has preconditions, for example the schema
fication. Figure 3 (see the next subsection for details) shows outlined in Figure 2 applies only to discrete Kalman filters or
part of a specification describing the core of the Deep Space continuous Extended Kalman filters. If a schema's precondi-
1 attitude control system. tions hold, then it first generates names for program variables

it will use, then generates and returns a code fragment. If the
Figure 1 depicts the structure of the AUTOFwLTER system. preconditions do not hold, the schema fails and backtracking
Synthesis proceeds as follows: causes the system to try an alternative schema.

* The specification is parsed and stored internally. In AUToFiLTER, there is currently a single top level schema,
* Code is generated in a simplified imperative language which carries out some preprocessing of the model in par-
called the intermediate language. ticular linearization of the process equations when they are
* Approximations, if specified, are applied to simplify the non-linear, for example in the case of an extended Kalman
intermediate code. filter and determines how the synthesis of a filter should
* The intermediate code is checked to ensure it meets runtime be broken down into the synthesis of a number of simpler
requirements. components. Each of these simpler components, which in
* Code in the requested target language is generated by the our current implementation correspond closely to different
back end. functional blocks of a Kalman filter, may have a number of

schemas which can generate alternative implementations.
In more detail, first, the specification is read and stored in-
ternally in what we call the model. The core of the synthesis If code fragments for all the components can be synthesized,

2

schema propagate(state) model dsl.
preconditions: % Process model: x = Ftx+u

continuous extended KF or discrete KF % Process noise: u -(O,q I)q ui '-(O, qi)
program variables: const nat n := 6 as '# state variables'.

input: posterior state estimate, , data double f(1..3, time) as 'IMU readings'.
double x(l .n) as 'state variable vector'.

state transition matrix, @, double u(l ..n) as 'process noise vector'.
time between updates, 6, drivingfunction, u double q(l ..n) as 'variance of process noise'.

output: prior state estimate, 17 u(I) gauss(0, q(I)).
local: none equations process_eqs are

generation ofcode fragment... dot x(1) := (hat x(4) - x(4)) - u(1)
+ x(2) * (f(3,t) - hat x(6))

Figure 2. Outline of a schema for synthesizing code for - x (3) * (f(2,t) - hat x(5)()
state propagation. dot x(3) := (hat x(6) - x(6)) - u(3)

+ x(1) * (f(2,t) - hat x(5))
- x(2) * (f(1,t) - hat x(4)),

dot x(4) :u(4),
dot x(5) :u(5),
dot x(6) := u(6)

they are composed by the top level schema into code imple- % Measurement model: z = x + v

menting a Kalman filter. By default, the synthesized code is Measurement noise: v V r 1) 'vji A((,rj)
a function which loops over all measurements (provided as const nat m := 3 as '# measurement variables'.
amatrix input to the program), returing as output a matrix data double z(l ..m, time) as 'SRU readings'.double v(l ..m) as 'measurement noise vector'.

of all state estimates. The code is expressed in a simplified double r(l..m) as 'variance of measurement noise'.
imperative language called the intermediate language. The v (I) gauss(0, r(I)).
intermediate language contains constructs for loops, variable equations measurement_eqs are
and function declarations and calls etc, but avoids complex z (1 ,t) _ x(1) + v(1),

z(2,t) :~x(2) ± v(2),
features of real programming languages like tests with side z (3,t) : x(3) + v(3)
effects. The intermediate code is translated by the back end I]
into the desired target language, e.g. C. The economy of the % Filter architecture
intermediate language facilitates its analysis and manipula- const double delta := 1/400 as 'Interval'.
tion, and simplifies the back-end translation. units delta in seconds.

The modularity of schema-guided synthesis makes it rela- estimator dsl_filter.
dsl_filter: :process model ~process eqs.

tively easy to extend the system to generate alternative im- dsl_filter::measurement_model ::= measurement_eqs.
plementations of the basic Kalman filter blocks, for example dsl_filter::steps : 2:24000.
using a different equation for the Kalman gain. More pro- dsl_filter::time ::= t.

dsl_filter::update_interval :=delta.
found extensions may require new top level schemas. For dsl_filter::initials ::= xinit().
example, we plan to implement a new top level schema to output dsl_filter.
generate code for unscented Kalman filters [11].

Figure 3. Excerpt from a specification of the DS 1 attitude
control system.

An Example

The Deep Space I (DS 1) probe was deployed as a testbed for
a range of experimental NASA technologies. In the Summer An extended Kalman filter is automatically synthesized from
of 2002, we performed a case study to reverse engineer the the specification. The synthesized code was compared to the
DS 1 attitude estimation code. DS I's attitude was estimated original DS 1 attitude estimation code. Parts of the code from
by combining measurements from an IMU (Inertial Measure- the deployed DS 1 state estimator were manually replaced by
ment Unit) with those from and a stellar reference unit (SRU, code synthesized from the above specification, and both ver-
i.e. a star tracker). The Kalman filter is based on [9, Sec- sions run in the DS1 simulator. The estimates produced by
tion XI], and has three state variables representing change in both versions were found to be essentially identical.
spacecraft attitude since the last measurement, and three state
variables representing gyro drift. It is standard when essen-
tially the same quantities are read from different sensors to 3. ITERATIVE DEVELOPMENT OF KFS
incorporate some sensor readings into the process model as
driving functions, considering others as the measurements in Implementation of Kalman filters for new aerospace applica-
the measurement model. In this filter, readings from the IMU tions is an iterative process. Typically, the filter is prototyped
are modeled as a driving function in the process model, while in a simulation environment such as MATLAB until a satis-
readings from the SRU are the measurements. factory mathematical model has been found. At this stage,

3

decisions are made as to whether and how to simplify or oth- 3. Interface to target system:
erwise manipulate the process and measurement equations, (a) Use of appropriate data types.
what kind of Kalman filter to use (an extended Kalman fil- (b) Use of correct function/method prototypes.
ter, or a linearized one, continuous or discrete etc), what kind (c) Use of appropriate library functions.
of updates to use (simultaneous updates to cope with possi-
bly correlated measurement noise, Bierman, Carlson square Synthesis helps by: automatic derivation of code for various
root etc). Once the prototype filter has been tested, it is then implementation languages and target architectures from the
recoded for deployment on a target platform in a low-level same specification used for prototyping. High level 'speci-
language such as C. The code is tested and adjusted until its fication of how to divide Kalman filter implementation into
computational characteristics (e.g. runtimes or numerical ac- functional blocks.
curacy) meet the requirements. In the worst case, this can
lead to a redesign of the mathematical model. AUToFILTER 4. Refine data handling:
can simplify this process in several ways: It can rapidly turn (a) Buffering.
around model changes, which allows the exploration of the (b) Windowing.
filter design space, it can generate multiple alternative im- (c) Definition of what constitutes bad data, and what to do
plementations for the same specification, which allows the with it.
exploration of the implementation design space, it can gen- 5. Validate and ensure correctness of implementation.
erate both MATLAB code (for prototyping) and target plat- (a) Testing.
form code (for deployment) from the same specification, it (b) Code review.
can generate documentation at the same time as code, and (c) Use of verification tools, e.g. static analysis.
it can automatically demonstrate that the code it generates is
free from various classes of defects. In more detail, this pro- Synthesis helps by: certification automatically inserts anno-
cess may involve:3 tations into the synthesized code which are later used in static

analysis to formally guarantee safety properties such as non-
1. Develop model: dynamics (process equations and state violation of array bounds, and initialization of variables be-
variables), relationship of sensor inputs to state (measurement fore use. Testing is assisted by automatic generation of test
equations), noise characteristics and filter initial conditions. data. The generated code is designed to be human-readable,
Development is iterative: and is commented. Design documents can be generated with
(a) Mathematical modeling. the code. These help code review and ascertainingfitness for
(b) Choice of implementation, e.g. square root filtering to purpose.

improve numerical stability.
(c) Prototype, e.g. implement filter as a MATLAB function.
(d) Simulate and test filter and assess performance. 4. AIDING DESIGN SPACE EXPLORATION

Synthesis helps by: Automatic derivation ofprototype code In this section, we present in more detail some of the ways
from model (specification) changes in model are quickly in which synthesis assists exploration of the implementation
reflected in changes in the prototype. Manually or automat- design space.
ically choosing implementation from a library of schemas
multiple implementations can be derivedfrom the same speci- High Level Specification
fication. The process and measurement models, together with
initial values of the state variables and declared noise vari- AUTOFILTER'S specification language is designed to allow
ables, can be used to derive simulated input data for testing the succinct expression of the governing equations for a
purposes. Kalman filter. Where possible, the specification is declara-

tive, i.e. it separates the filter's model from how it is im-
2. Improve computational performance of filter if necessary: plemented. Significant changes in the filter's implementation
(a) Code level optimizations. can be achieved with small changes in the specification.
(b) Use of approximations.
(c) Reduction in number of state variables. For example, the following specifies a process model in

which differential readings omega (0, t).. omega (2, t)
Synthesis helps by: automating optimizations, including com- from a gyroscope are integrated into three state variables
mon subexpression elimination, loop unfolding, and replace- x (0) x (2) , with process noise eta (0) eta (2).
ment of 1 x n and 1 x 1 matrices by vectors and scalars. Sim-
plification of code using approximations stated in the specifi-
cation, with statements optionally incorporated to check that equation_set process_model has
the approximation is within required error bounds.L

dot x(O) :=omega(O,tvar) + eta(O),
dot x(1) :=omega(l,tvar) + eta(1),
dot x(2) :=omega(2,tvar) + eta(2)

3this is not meant to be an exhaustive list]

4

The model above not take account of gyro drift, which is con- Different Kinds ofKF
ventionally modeled by the addition of variables representing
gyro offsets which vary along a random walk. This is easily Synthesis of Kalman filters in AUToFILTER is performed in
added to the AUToFILTER specification: a modular way: the top level Kalman filter schema performs

some preprocessing on the model (obtained from the input
equation-set process_model has specification), employs a number of subschemas to synthe-

I size code fragments for the different phases of the Kalman
dot x (0) x(3) + omega(O,tvar) + eta(O), filter processing, and knits these code fragments together to
dot x(1) x(4) + omega(1,tvar) + eta(1),

a c

dot x(2) x(5) + omega(2,tvar) + eta(2), obtanacompleteimplementatonoftheKalmanfilter. Fora
dot x(3) eta(3), discrete Kalman filter, these subschemas correspond roughly
dot x(4) eta(4), to the blocks of [2, Figure 5.8]: computing the Kalman gain,
dot x(5) eta(5) updating the state with the measurements, computing the er-

ror covariance for the updated estimate, and projecting the
state and error covariance ahead to the next time step.

Without carrying out large-scale user studies, it is difficult Different implementations of a Kalman filter specification
to provide an accurate measure of the savings obtained by are obtained by varying the schemas used to implement its
using synthesis from a high-level specification, compared to
manual coding.4 One measure which we expect to be corre- componet blocks. Threxarescermas forsuever n ofsquare root update, for example Bierman measurement up-lated with effort saving is provided by comparing the effort date. There are also schemas for propagating estimates and
necessary to alter a filter following changes in the underly- covariances by integration to allow for degenerate Kalman
ing mathematical model, using synthesis compared to man- filters in which there are no measurements, as for example
ual coding. For this, we can count the number of changes used in [1].
made in the specification to the number of changes in the in-
duced program. Not counting changes in temporary variable Given a number of alternative schemas implementing a given
names or formatting, adding gyro drift to the model as de-
scribed above requires changing 9 lines in the specification patoafierAUOLTRcnihrbelowdotyscried bov reuirs cangng lies n te seciicaion them all, possibly returning alternate synthesized programs(addition of the new process equations, change to the number te all, possibly rtrnin aledrnted ytheszedpacroga... . . ' . . ~~~~~onbacktracking, or can be directed to use a particular oneof state variables, initialization for the new covariance matrix
entries). The corresponding synthesized programs have 135
differing lines (change in the number of state variables ap-
pears in several places, new initialization statements for most Estimation of Worst Case Execution Time
internal matrices, some loops are unfolded which were previ-
ously not unfolded). Thus, for even this fairly simple change, Calculating the complexity of a program is a well-established
significant leverage is obtained by updating the specification technique for obtaining estimates (usually, upper bounds) on
rather than a program which implements the specification. the amount of time (alternatively, space) which will be nec-

essary for a program to execute. The complexity is usually
A more complex change is to use a Bierman measurement presented as a function of the sizes of the input arguments
update rather than a standard measurement update. This is of the program. For example, the complexity of Quicksort
achieved without changing the specification (rather, a com- is 0(n log(n)). The "big 0" form of complexity analy-
mand line flag instructs the synthesis system to use the Bier- sis is not very appropriate for judging the real-time perfor-
man update), and results in a synthesized program with 170 mance of programs depending on the constants involved,
changed lines compared to the standard update. an 0(n3) algorithm may be much better in practice than an

It seems reasonable to conclude, therefore, that modifications O(n2log(n)) algorithm.
to the Kalman filter's model which fit well with the speci- Accurate analysis of worst case execution time is in general
fication language can be much more economically made at complex, since it must take into account processor architec-
the specification level than at the code level. This raises the tures including the use of processor and memory cache [5].
question of the adequacy of the specification language: can In AUToFILTER, we simplify the analysis by calculating the
it express succinctly the kinds of Kalman filters which are worst case execution time for intermediate code (i.e. irrespec-
usually required in aerospace applications? We have some tive of implementation language or platform). This analysis
evidence in favor of its adequacy: we have successfully ap- serves to provide a basis for guiding synthesis towards the
plied AUTOFILTER to a number of case studies and text book generation of efficient code. Worst case execution time is
examples. calculated by abstract interpretation of the synthesized inter-

mediate code. Each program construct has an associated rule
expressing an upper bound on its worst case execution time

4Note that we should assess cost savings achieved across the entire soft- a ucino h os aeeeuintmfiscmo
ware lifecycle, including code debugging, maintenance, review etc. nent parts. For example, if F denotes an upper bound on

5

the execution time of a statement or expression E, equations % 1OHz state update, lMHz processor @ 10% load.
(1,2) express upper bounds on the execution time of an if % Run 589 iters must take < 589*0.1 seconds

statement and.aforoopitersofhei t % 589*0.1*1000000*10% cycles:statement and a for loop in terms of their parts: thruster_filter complexityof time
withbound 589/10*1000000/10.

if (testexpr) then stmtl; else stmt2; < (1)
1 + Itestexprl + max(Istmtll, Istmt2l) This mechanism combines well with the approximation ca-JforI=Lo toHi{stmt}J < (Hi-Lo+1). stntJ (2) pability. The next section describes how approximation can

This analysis is much simpler than for arbitrary code written be used in conjunction with analysis of worst case execution

in C or any comparable imperative language, since the inter- time in order to synthesize (sufficiently) efficient programs.
mediate language avoids difficult language features for ex-
ample, the intermediate language does not allow side effects Approximations
in loop tests (enabling analysis of the if statement to be de-
composed into independent analyses of the loop test, then and Approximations can be used to simplify code and reduce its
else parts) and we can generally ensure that the schemas do worst case execution time. For example, a common approx-
not synthesize code which is hard to analyze. The second rule imation is to assume that an angle remains close to a given
(2) assumes that the loop bounds are known at analysis time. constant angle. When applied manually, however, approxi-
For general programs, this assumption is easily violated, but mations complicate code and introduce assumptions about the
for the intermediate code we analyze, quantities such as array circumstances in which it will run which may not be properly
sizes, which would often be parameters of a hand-coded pro- documented.
gram can be numeric constants in the specification and the
analyzed program these quantities can be changed when AUToFILTER's specification language permits approxima-
necessary by changing the specification and resynthesizing. tions to be stated in the specification, allowing efficient code
Rule (2) also assumes that an upper bound on the execution to be derived while making assumptions explicit and keeping
time of the loop body can be computed which is independent the simplicity of the original specification. For example, the
of the value of the loop index I. Again, for general programs small angle approximation was added to the specification of
this will often not be possible, but for our synthesized code it a Kalman filter used in the docking simulation example (i.e.
often is, since we can ensure that the schemas avoid synthe- the assumption was added that docking keeps the spacecraft
sizing problematic constructs such as nested loops. at a nearly constant attitude):

Using such rules, an upper bound on the execution time of const double q as 'Attitude [radians] '.
' ~~~~~~~~~constdouble sth:= sin (q).

a program is computed as a function of the execution time const double cth:= cos (q).
of basic arithmetic expressions sin, cos, +, exp etc. A per- sin (j) sth + cth* (j - q) witherror 0 . 05.
formance model gives the execution time (in cycles) of these cos(j) cth + sth*(j - q) witherror 0.05.
basic expressions. The upper bound expression can therefore
be evaluated to an integer, permitting synthesized programs Synthesis produces program variants, both using the approx-
to be assessed for worst case execution time in a meaningful imation and not using the approximation. When the approx-
way. The performance model used in testing5 specifies that imation is applied, statements can be inserted automatically
basic arithmetic operations, for example +, *, complete in a into the synthesized code to verify that the approximation re-
single cycle, whereas complex floating operations, for exam- mains valid within the specified error bounds, e.g. that when-
ple sin, cos, exp, require 200 cycles. ever the angle j above changes, the absolute value of the dif-

ference between the approximated (LHS of) and approxi-
AUToFILTER's specification language has been extended mating (RHS of -) expressions is less than the error bound
with a construct for specifying the maximum permissible ex- (which follows the witherror keyword).
ecution time. If analysis of the synthesized program gives
a worst case execution time greater than this maximum, the In the docking example, the approximation was combined
synthesized program is rejected, and AUTOFILTER automati- with analysis of the worst case execution time of the synthe-
cally tries to synthesize an alternative program which may be sized program. In the synthesized code, the approximation
able to meet this requirement. is applied to eliminate calculation of sines and cosines in the

Kalman filter loop. Equations (3,4) show the complexity cal-
The upper bound on execution time is expressed as the max- culations for a statement from the synthesized code before (3)
imum number of cycles allowed for a single complete run of and after (4) the approximation has been applied.
the synthesized program. For example, the following is from
a specification which tested estimation of worst case execu- 1z (0, 0) =ixSA * cos(QcY (0, 0)) + IyA *k sim(dY- (0, 0)) (3)
tion time on the specification of a Kalman filter for a docking ±z- (1,0o); 1.=I.cos1 + 1..sin1 + 2. * + 2.1 + 1=404
simulation example: 1z-(0, 0) =lxA*8(cth-sth*QiY(0(,0O)-q))+ (4)

5The figures used are for testing only and not intended to reflect any real IyA * (sth + cth * (ic- (0, 0) -q)) + ac (1, 0);
processor/runtime system. = 4.1 * +3.1 + 1+3.1-1=l

6

The synthesis system generates two programs, the second Hoare-style logic and automated theorem provers to automat-
one using the approximation. The following diagnostic out- ically process the required proofs [4], [3]. The safety proper-
put (edited for brevity) from the system shows that automatic ties that are checked automatically include:
complexity analysis determines that the first program fails the
timing requirements declared in the specification, while the
second meets them: array bounds: All accesses to vectors and matrices are

checked for correct range of indices. Thus we are able to
[Schema selection:] guarantee the absence of buffer overflow errors.
discretization ... declarations... uninitialized variables: Variables which are not initially set
initialization... .update measurement ... to a specific value are a major source of severe errors. Al-update loop dependents...propagate estimates...
[Trying approximations: though simple cases can be detected by a modern compiler,

1 approximation can be applied.] our AUToFiLTER system is able to automatically cope with
Synthesizing pseudocode - 2 programs generated complicated cases (e.g., the check that all elements of a vector
Postprocessing intermediate code for thruster .

.Checking code meets timing requirements ... are initialized).
... code FAILS timing requirements of unused variables: Input/output variables which are not used

1.21e+07=<5890000. in the code usually indicate an error or a bad interface spec-
Generating/compiling code for thruster ification. This property can eliminate an important class of
Checking code meets timing requirements. errors.
... code meets timing requirements of matrix symmetry: Some of the matrices in the Kalman fil-

2.83e+06=<5890000. ter algorithm must be symmetric by construction. A detailed

check (not regarding round-off errors) provides additional as-

Back End surance on the correctness of the numerical algorithms.

The core of the synthesis system (which uses the synthe- The certification system can be customized to handle specific
sis schemas) generates code in a simplified intermediate lan- safety properties and is tied in closely with the document gen-
guage. This code is then translated by the back end into code eration, With a detailed link between the certificates and the
of the desired target language/software platform. Our aim is '
to be able to generate code which is easily tested, and code nrated 'coe,thsotwar ceatin pocess can bup' s~~~orted effectively, ultimately leading to a much cheaper, but
which can be deployed (unchanged) in a target software ar-

e
. ' .i .

chitecture, from the same specification. Currently, we have
implemented back ends targeting OCTAVE and MATLAB for
generating code which can be easily tested, and standalone C 5. FURTHER WORK
for efficient deployment. Prototype back end code generators
exist for Modula2 and C++ using the GREASE state estima- AUToFILTER can generate code implementing a range of
tion library. Kalman filter specifications using a variety of implementa-

tion techniques, and generate documentation and correctness
The back end also generates a software design document certificates for the generated code. There are several impor-
(SDD) for the synthesized code that adheres to NASA and tant directions for further work:
IEEE software standards. This SDD gives a detailed descrip-
tion of the synthesis process, defines the interface and calling
conventions, and provides a hyperlinked version of the spec- . Implementation of synthesis schemas for other kinds
ification and the generated code. Because the SDD is gener- of Kalman filters including information filters, unscented
ated automatically, the SDD, the code and the specification Kalman filters and particle filters.
are always consistent, eliminating a major source of errors. . Implementation of synthesis schemas to generate code to

handle bad or missing sensor inputs and windowing.
. Assembling a comprehensive library of Kalman filter spec-

Correctness ifications and synthesized code by systematic application to
text book examples. This endeavor will provide sample spec-

AUToFILTER is based upon formal methods and mathemati- ifications to guide users in applying the system to new prob-
cal logic, so correctness can be guaranteed in principle ("cor- lems, and help to further assess the adequacy of the specifica-
rect by construction"). However, AUToFILTER is a large and tion language.
complicated piece of software for which a formal verifica- . Generation of code for a new target software architecture
tion is not feasible. In order to guarantee a high quality of currently involves extending the back end synthesis. We plan
the code, we are therefore not certifying the tool, but rather to develop mechanisms for specifying the architecture of a
provide a mechanism for product-oriented certification. This target software platform, thereby making it easier to drop syn-
means that each piece of generated code comes with a certifi- thesized code directly into a flight system.
cate, an externally checkable document, that the code obeys
important safety properties. The AUTOFILTER system uses a

7

6. CONCLUSIONS [11] E. Wan and R. van der Merwe. The unscented kalman
filter for nonlinear estimation. In Proceedings ofSympo-

In this paper we have described the AUTOFILTER program sium 2000 on Adaptive Systems for Signal Processing,
synthesis system, which automatically generates Kalman fil- Communication and Control (AS-SPCC), 2000.
ter code from succinct specifications of their underlying [12] J. Whittle, J. V Baalen, J. Schumann, P. Robinson,
mathematical models. AUToFILTER has been applied suc- T. Pressburger, J. Penix, P. Oh, M. Lowry, and G. Brat.
cessfully to text book examples and a number of case studies. AmphionlNAV: Deductive synthesis of state estimation

We have outlined how AUToFILTER assists the iterative de- software. In Proc IEEE Conference on Automated Soft-
velopment of Kalman filters in various ways: permitting
changes in the mathematical model underlying the filter to [13] J. Whittle and J. Schumann. Automating the implemen-
be rapidly realized as code and tested, different Kalman fil- tation of Kalman filter algorithms. ACM Transactions
ters to be synthesized from the same model, code automati- on Mathematical Software, 2005. To appear.
cally assessed for runtime performance, and approximating
assumptions applied to the code in order to improve effi- Dr Julian Richardson (PhD University
ciency. AUToFILTER provides assistance for ensuring that of Edinburgh, 1995) is a Research Sci-
the generated code is correct by generating program docu- entist in the Automated Software Engi-
mentation and correctness certificates in addition to the code. neering Group, NASA Ames. He is en-

gaged in research on automatic program
REFERENCES generation, in particular of Kalman fil-

ters, and in research on the effectiveness
[1] E. Baumgartner, H. Aghazarian, and A. Trebi-Ollennu. of verification and validation techniques

Rover localization results for the FIDO rover. In Proc. for aerospace software. He has published more than 25 pa-
SPIE Conf Sensor Fusion and Decentralized Control in pers in areas including automated theorem proving, program
Autonomous Robotic Systems, 2001. synthesis and transformation.

[2] R. Brown and P. Hwang. Introduction to Random Sig-DrBndFshr(DUivstyo
nals and Applied Kalman Filtering. John Wiley & Sons, Ps 2001) is a Rsr Scinist

3rd edition, 1997. ~~~~~~~~~inthe Automated Software Engineering
[3] E. Denney, B. Fischer, and J. Schumann. Adding assur- Group, NASA Ames. He is engaged

ance to automatically generated code. In Ramamoorthy in research on automatic program gen-
[10], pages 297-299. eration and certification techniques for

[4] E. Denney, B. Fischer, and J. Schumann. Using aerospace software. He has published
automated theorem provers to certify auto-generated more than 40 papers in areas including

component retrieval program synthesis, and transformation.aerospace software. In Ramamoorthy [10] . p g y

[5] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, Dr Johann Schumann (PhD 1991, ha-
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. bilitation degree 2000) is a Senior Sci-
Reliable and Precise WCET Determination for a Real- entist in the Automated Software Engi-
Life Processor. In Embedded Software Workshop, Lake neering Group, NASA Ames. He is en-
Tahoe, USA, October 2001. Springer LNCS vol. 221 1. gaged in research on automatic program

[6] B. Fischer and J. Schumann. AutoBayes: A system for generation and on verification and vali-
generating data analysis programs from statistical mod- dation of adaptive controllers and learn-
els. J. Functional Programming, 13(3):483-508, 2003. ing software. Dr. Schumann is author

of a book on theorem proving in software engineering and
[7] P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. An has published more than 60 articles on automated deduction

abstract formalisation of correct schemas for program and its applications, automatic program generation, and neu-
synthesis. Journal of Symbolic Computation, 30(1):93- ral network oriented topics.
127, 2000.

[8] M. S. Grewal and A. P. Andrews. Kalman Filtering: Dr Ewen Denney (PhD University of
Theory and Practice Using MATLAB. Wiley Inter- Edinburgh, 1999) has published over 20
science, 2001. 2nd edition. papers in the areas of automated code

[9] E. Lefferts, F. Markley, and M. Shuster. Kalman filter- eertiiation, andfthae foudations, softwr
ing for spacecraft attitude estimation. Journal of Guid- computeor sci ene. where has beenatNS

[10] C. V. Ramamoorthy, editor. Tampa, FL, 2004. IEEE mainly involved in developing the certi-
Comp. Soc. Press. fication subsystem for AUTOFILTER.

8

