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This paper presents some of the unique verification, validation, and certification 
challenges that must be addressed during the development of adaptive system software for 
use in safety-critical aerospace applications.  The paper first discusses the challenges 
imposed by the current regulatory guidelines for aviation software.  Next, a number of 
individual technologies being researched by NASA and others are discussed that focus on 
various aspects of the software challenges. These technologies include the formal methods of 
model checking, compositional verification, static analysis, program synthesis, and runtime 
analysis.  Then the paper presents some validation challenges for adaptive control, including 
proving convergence over long durations, guaranteeing controller stability, using new tools 
to compute statistical error bounds, identifying problems in fault-tolerant software, and 
testing in the presence of adaptation. These specific challenges are presented in the context 
of a software validation effort in testing the Integrated Flight Control System (IFCS) neural 
control software at the Dryden Flight Research Center.  Lastly, the challenges to develop 
technologies to help prevent aircraft system failures, detect and identify failures that do 
occur, and provide enhanced guidance and control capability to prevent and recover from 
vehicle loss of control are briefly cited in connection with ongoing work at the NASA 
Langley Research Center. 

I. Introduction 
ince the inception of the Wright flyer 100 years ago, aircraft (and spacecraft) have required feedback control to 
be flown in a stable manner.  Whereas the controller in the Wright flyer was a human being who physically 

sensed vehicle motion and moved mechanical control rods, present day aircraft are controlled by complex, 
computer-based control systems.  These control systems allow even inherently unstable (yet highly maneuverable) 
aircraft to be flown by human pilots.  In the future, advanced controllers will likely fly aircraft autonomously, 
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without human intervention.  Adaptation to unforeseen events, such as aircraft damage or failed control surfaces, is 
presently beyond the scope of certified flight systems, yet may soon become a reality. 
 

The advent of autonomous aircraft and the proposed expansion of adaptive control capability have increased the 
desire to develop safe, reliable control systems for next generation aircraft and spacecraft.  Adaptive controllers have 
been proposed to identify aircraft stability and control derivatives in-flight and also to recover aircraft control in the 
event of sudden control surface failure.1,2,3   Advanced control algorithms to support fully autonomous aircraft and 
spacecraft operation have also been designed to allow vehicle self-health assessment, navigation, and mission 
planning to occur simultaneously and without human intervention.4,5   
 

A serious difficulty hindering the deployment of advanced, flight-critical software, however, is the requirement 
to show that it can operate as intended and with very high reliability.  Adaptive controllers that can make rapid and 
automatic adjustments to enable self-healing in the event of vehicle damage, might also act to make a healthy 
aircraft un-flyable or a safety hazard to other vehicles.  How can it be assured that safety-critical malfunctions can 
never occur?  The software implementation must be verified and validated to provide sufficient assurance of its 
intended functionality, safety, and the absence of unintended functionality. 

II. Verification and Validation Process of Adaptive System Software 
The process of checking the correctness of software is termed verification and validation.  According to Ref. 6, 

verification is the evaluation of the results of a process to ensure correctness and consistency with respect to the 
inputs and standards provided to that process.  Validation is the process of determining that the requirements are the 
correct requirements and that they are complete.  With regard to software development, verification is the process of 
testing the software at each stage of its development to make sure it has been programmed as specified in the 
software requirements document.  Validation comprises the testing effort to assure that the verified software is able 
to accomplish the purpose as stated in the software requirements document.  Validation failures are generally the 
result of the requirements being stated incorrectly or incompletely. 

 
Figure 1 shows a diagram of the software development life cycle, depicting all stages from requirements to 

deployment.  The software development process has been described as a spiral path, with four or more distinct 
phases for each turn of the spiral: requirements, design, coding, and testing.7  On the left side of this diagram, the 
requirements are gradually transformed into the actual software; the right hand side depicts efforts to validate the 
software.  If this spiral development path is followed, modified verification and validation plans are required for 
certification with each turn of the spiral.  Whenever the software does not pass a validation activity, it must be 
redesigned, re-coded, and then re-verified, before it can undergo further validation testing.  Scenario-based testing is 
often used to validate flight control software.  This approach relies heavily on testing and makes up a significant 
portion of the software development costs for modern aircraft.  The end point of the verification and validation cycle 
is intended to be a software product that meets regulatory requirements for safe use in safety-critical applications. 

 

 
 

Figure 1: Software development life cycle showing verification and validation steps.8 
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III. Certification Challenges for Adaptive and Autonomous Control Software  
Currently, there is no established way to verify and validate adaptive and autonomous flight-critical control 

software leading to certification.  In order for any flight critical software to be certifiable by the Federal Aviation 
Authority (FAA), it must be developed according to a detailed and well-documented software development process, 
which is extremely time-consuming and costly.  The specific requirements for adaptive systems, however, are not 
easily discernable. 

 
Requirements for regulatory approval or certification of fully adaptive control systems for next generation 

aircraft or spacecraft will likely vary according to whether the application is civilian, military, or research, and 
according to the risk to mission success and public safety.  To get a broad idea of certification challenges, it is 
helpful to consider current regulatory requirements from the FAA for software in commercial transport aviation.  
Standards used for commercial transport aircraft are arguably the most conservative (compared with US military and 
NASA standards), yet help outline the ultimate challenge to certifying the routine operation of fully adaptive 
controllers in the National Airspace System (NAS). 

 
An intricate system of rules and regulations govern the use of software in the NAS.  The fundamental tenets, 

though, are that aircraft systems meet their intended function, do not negatively impact other systems or functions on 
the aircraft, and are safe for operation.  To meet these requirements with software, FAA Advisory Circular # 20-
115B specifies the use of RTCA/DO-178B (Software Considerations in Airborne System and Equipment 
Certification) as a means for obtaining certification approval.6,9  An adaptive control system would need to comply 
with the guidance in DO-178B, or provide an equivalent alternate means of compliance, to be used in commercial 
aircraft operating in the NAS today or in the foreseeable future.  This requires that all necessary, relevant 
requirements and descriptive material is to be provided along with a defined response for the range of valid input 
data.  All of this material must be verifiable, meaning that they can be checked for correctness by a person or a 
software tool.8  The goal is to have a complete requirements document by the end of the development process.  
Ensuring that the final software product meets its specification is fundamental to compliance with DO-178B.  The 
ability to completely specify requirements and expected behavior is essential under current regulations. 

 
A key problem for adaptive system software (and even conventional) is that few software designs, if any, start 

with a complete and verifiable software requirements specification.  For conventional aircraft systems, the software 
developed and tested in the lab is intended to be the same software that is fielded.  The current approval process 
outlined in DO-178B is based on this premise.  Any changes to a deployed system are handled through a carefully 
controlled change management process.  With a fully adaptive system, the fielded system is expected to learn and 
change over time.  Hence, the behavior of the system during field usage might not duplicate its behavior under test.10  
There is no guidance in DO-178B, or other similar standards, that addresses the evolutionary nature of adaptive 
systems. 

 
In addition to challenges related to traditional development activities for software, there are certification 

challenges related to the training of adaptive systems.  Standards, such as DO-178B, do not provide guidance for the 
unique training and learning aspects of neural networks.  New review, analysis, and testing methods may be needed 
to address the following aspects relevant to the training:11-13 

• Quality and completeness of network training data 
• Recognition of convergence to local minima versus global minimum 
• Network behavior for data outside of the training set 
• Network memory and data retention 
• Complexity of interaction with other components 
• Assessment of performance due to time-variant characteristics 
 
There are ongoing efforts by NASA and others to develop effective criteria, methods, and frameworks that may 

allow for the certification and safe use of adaptive neural networks in future systems. 8,11,13,14  Part of the solution 
may reside in formal verification methods. 
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IV. Challenges to Extend Formal Verification Methods to Adaptive Systems 
The time and cost for certifying new safety-critical systems could potentially be radically reduced through the 

application of new software technologies.  Formal verification methods have been proposed to be used as tools to 
analyze complex system analysis problems. These methods, however, tend to be costly, time-consuming, and not 
user-friendly.  To be useful, formal verification methods need to be made cost-effective and highly automated.  
These methods also need to span and link the full lifecycle of software engineering – so verification is a continuous 
activity.     

 
NASA and other researchers have developed a number of technologies for different aspects of software 

verification that could meet these criteria.  These technologies range from tools that find errors early in the design 
cycle through tools that find programming language errors and facilitate testing. These tools include the formal 
methods of model checking, compositional verification, static analysis, program synthesis, and runtime analysis. 

 
Static analysis tools analyze every instruction in the source code to determine if the operations performed in that 

instruction can create a problem at runtime.15-17 These tools can efficiently detect a wide range of problems even 
before unit testing including: buffer overruns, un-initialized variables, arithmetic overflows and underflows, and 
unreachable code.  The advantage of static analysis methods is their ease of use.  Static analysis programs are used 
in much the same way an ordinary compiler is used to compile a program.  These methods can save many hours of 
human code review and can therefore provide substantial cost savings.  However, a continuing challenge is the 
development of static analysis methods that can detect more types of problems and that, more importantly, can avoid 
burying real errors in a large list of possible errors. 

 
The formal methods of model checking,18,19 runtime analysis,20,21 and program synthesis22 can be used to verify 

the conformance of adaptive controller code to the software design criteria.  Additionally, these tool can also be used 
to find errors that are almost impossible to find by human code review in autonomous systems for unmanned aircraft 
and spacecraft.  These programs employ multi-threaded programs whose threads execute in parallel and may 
sometimes interact in unexpected ways or conflict with each other in the use of shared resources.  Traditional, 
scenario-based testing may never discover some bad thread interaction sequences if they occur infrequently or only 
under circumstances not envisioned by the test team.  The use of these formal methods allow complete verification 
of every possible program execution path and can verify the programs are free of the most severe problems in multi-
threaded programs, including thread deadlocks and data races. 

 
A continuing challenge, however, is that the application of formal methods typically cannot be done by general 

computer programmers or control system engineers.  Model checking, for example, requires temporal logic 
constraints and a model of the control system software to be written in a formal (artificial intelligence-like) 
language. This step is usually too difficult for control system engineers who program using more standard languages 
such as C, C++, or Java.  Nevertheless, progress in this regard is being made.  In one of the largest empirical studies 
ever undertaken to benchmark the effectiveness of advanced V&V technologies (static analysis, runtime analysis, 
model checking),23 it was found that these advanced V&V tools were sufficiently mature to be effectively used by 
people who are not themselves the tool developers, yet were still computer science professionals.  The study showed 
that different V&V technologies were appropriate for finding different classes of errors, and that all were superior to 
manual testing.  In addition, the study results showed significant potential for synergy among the advanced V&V 
technologies and with testing.  To be effective over the software lifecycle and to reduce certification costs, the 
formal tools need to be integrated into one program that can be used by engineering professionals in general.  This 
tool would ideally accept control system software code as input directly and produce a list of program errors as 
output. 

V. Challenges for Validation of Safety-Critical Aircraft Technologies 
Compliance with DO-178B is non-trivial for both adaptive and non-adaptive systems alike.  As mentioned 

above, the software validation effort must demonstrate that the software meets the design requirements and produces 
the expected outputs and control actions under all known test conditions.  For adaptive and autonomous systems, the 
proof of this compliance is very difficult due to the non-deterministic nature of the software.  Adaptive systems may 
incorporate advanced system identification techniques (e.g., neural networks) and use state estimation methods (e.g., 
Kalman filters), thereby making the task of predicting the system output prior to testing a very difficult task.  
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Moreover, adaptive systems can mask the detection of component failures and can display a host of stability and 
convergence problems.  Several specific validation challenges in this regard are discussed below. 

A. Neural Network System Identification Validation Challenges 
The validation of neural networks or nonlinear system identification approaches using scenario-based testing 

methods is difficult because these networks comprise over-parameterized models that typically do not have a unique 
specification of network connection weights.  According to Zakrzewski,24 the on-line adaptation of network 
connection weights makes it “impossible to predict, in a deterministic sense, the future form of the neural network 
mapping.” Nevertheless, neural networks are being proposed with increasing frequency as a means of solving 
adaptive flight control problems.1,25 

 
As a case in point, the Integrated Flight Control System (IFCS) project is being conducted by NASA at the 

Dryden Flight Research Center in an effort to explore practical adaptive flight control and to develop software tools 
and techniques for the verification and validation of neural network controlled aircraft.  In this research program, a 
controller with adaptive neural networks is used to compensate for control errors in aircraft dynamics caused by 
damaged or failed aircraft control surfaces.1,2  This research program has demonstrated the need to develop 
validation methods that can accommodate adaptive control systems whose structure may change in-flight. 

 
The first generation F-15 IFCS used a dynamic cell structure neural network in which both the number of nodes 

and network connection architecture changed as the system encountered different input data.25  This system was 
tested using “conventional” tools and methodologies and was deemed acceptable for experimental flight testing at 
the Dryden Flight Research Center.  It was not realized until flight test, however, that the computation time was 
affected by the number of connections between the nodes.  As the number of connections was not predictable prior 
to flight, an upper bound on computation time could not be established.  In addition, it was found that computation 
time increased as the system was “learning” and actually decreased after the new nodes were added.  With all this 
variability, it proved difficult challenge to validate the worst-case computation time required for this type of neural 
network. 

 
In an effort to develop a validation tool to handle this type of adaptive system, researchers at the NASA Ames 

Research Center have created a software tool, called the Confidence Tool, that uses a Bayesian approach to analyze 
the probability distribution of the neural network output.26 This approach combines mathematical analysis with 
dynamic monitoring to ensure robust convergence and stability. The Confidence Tool computes the probability 
density function of the neural network outputs, online, to produce a real-time network variance estimate (Fig. 2).  A 
small variance indicates the network is likely producing a good, reliable estimate, and therefore, good performance 
of the neural network software can be expected.  The confidence tool can be used for pre-deployment verification 
and as a software harness to monitor quality of the neural network during test flight.  Further flight testing may show 
that the Confidence Tool can be used as a signal to stop and start neural network adaptation and also be used (with 
modification) to provide a guarantee of the maximum network error for certification purposes. 

 
Figure 2. Variance of neural network output as computed by the Confidence Tool. 
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Narrow Variance 
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It should be noted that the validation and certification challenges for off-lined trained, static neural networks are 
less formidable than for on-line neural networks designed to track changes in aircraft operation during flight.  In 
static or pre-trained neural networks, only the fixed weight values are used in on-line computation of the controls.  
Zakrzewski and others27 have proposed approaches for assuring static neural networks in compliance with DO-
178B.  These methods, however, will not serve to address the certification problems of adaptive neural networks. 

B. Validation of Adaptive Control System Performance and Stability 
Validation of system performance and stability is challenging for adaptive and long-duration autonomous control 

systems because it is in general not known how the system will adapt over long periods of time.  A key problem is 
ensuring the validation testing has adequate test coverage.  Given the wide range of possible test conditions 
(disturbances, damage), it is difficult to prove complete validation coverage using a test plan that has a finite number 
of test conditions and network permutations.  If there are multiple steady-state conditions, it is desirable to 
repeatedly test those states for stability in simulation.  Unfortunately, some states may take a long time to reach or 
require a special set of inputs to be realized.  A few seconds of time history data to assess frequency and damping of 
the vehicle response may not provide enough data to prove network convergence over a long period of time.  The 
validation of controller stability and performance is more difficult than conventional, non-adaptive controller 
software because the design guidelines are not defined nor well understood for adaptive controllers.  This obviously 
makes verification to a pre-defined standard a difficult challenge. 

 
An important challenge, then, is to develop better tools to analyze and guarantee the performance of adaptive 

control systems over periods of sustained operation.  Frequency sweeps or sums of sine waves used to determine 
stability margins of conventional systems cannot be easily employed on adaptive systems.  A verification and 
validation program for an adaptive control system is needed which can assign quantitative bounds to the control 
system output errors under all operating conditions, and guarantee that no combination of inputs will result in an 
undesirable output which may lead to some catastrophic situation.  For this reason, it is critically important that the 
controller's model of the aircraft reflects the actual system with sufficient accuracy. This means that it needs to be 
shown that for the entire operational envelope, that the modeling error does not exceed a given threshold.  This 
envelope includes not only expected variations in the physical operating conditions, but also situations involving 
external disturbances and component failure conditions.  As mentioned above, advanced tools like the Confidence 
Tool may be developed to address this need. 

 
In theory, the stability of any adaptive system can be assured using the Liapunov stability method.28  To employ 

this methodology to an adaptive neural network controller, a Liapunov function must be found to determine how fast 
the network weights may be updated or changed.  It was initially thought that the Liapunov method would yield a 
suitable criteria for the F-15 IFCS testing that would be analogous to the stability margin criteria of non-adaptive 
control systems.  Unfortunately, the Liapunov method proved to be of little practical use because it was difficult to 
find an appropriate Liapunov function.  In simulation testing, several cases were encountered that apparently met the 
Liapunov stability criteria, yet resulted in unstable systems.  Therefore, the challenge to develop better methods for 
validating adaptive systems stability remains to be solved for the general case. 

C. Failure Detection Challenges in Fault Tolerant Systems 
Failure detection in fault-tolerant systems is another extremely difficult validation problem to uncover with 

robust, adaptive controllers. The main problem is that failure or the slow degradation of a component performance 
may be accommodated by control law adaptation. Whereas this may well be viewed as a strength for an unmanned 
vehicle in flight, this property also makes the detection of failures during validation testing much more difficult.  A 
challenge for adaptive systems is how to integrate the design of the controller with failure detection and 
accommodation systems from the ground up, rather than as separate systems, designed separately.  In order to do 
this, mathematical models need to be developed that consider analytic redundancy, control performance measures, 
and redundancy management.  Some theoretical developments to establish the relationship between reliability and 
fault tolerant control are provided in Refs. 29 and 30. 

D. Effect of Test Inputs on Validation Testing 
An interesting challenge for validation testing is that the inputs used for validation testing may cause the system 

to change in unknown ways.  In the validation of non-adaptive systems, it is generally true that the test input does 
not modify the behavior of the system.  With an adaptive system, the test inputs themselves may likely cause 
adaptation to occur.  In some cases, the test inputs might provide the excitation needed for better learning and 
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adaptation that might not be available to the fielded system.  The control system might therefore perform better in 
response to the test inputs than the real inputs found in the field.  In other cases, the test inputs might not provide 
enough variation to check the full range of possible test conditions.  A short period of external disturbance could 
change the identified system model and controller gains, so that, if followed by some extreme pilot command, 
catastrophic consequences could result before proper convergence to the correct control values could be 
reestablished.  A challenge, therefore, is how to test a system for this “diabolic” combination of external disturbance 
followed by pilot command that could break the system.  Methods to estimate the reasonable probability of this 
occurring must be developed and are currently being studied through several human-in-the-loop (HIL) simulation 
studies.  Some of these methods are highlighted in the next section. 

VI. Failure Identification and Recovery from Failure Challenges 
The purpose of verification and validation is to ensure the development of software and systems that have a very 

low probability of failure once successfully deployed.  Nevertheless, loss of control is among the highest accident 
categories across all vehicle classes for both the number of accidents and the number of fatalities.  For this reason, 
the FAA (in Federal Aviation Regulations (FAR’s), such as FAR 25.1309) requires that procedures for all possible 
modes of failure be considered as part of the requirements for certification.  These failures include damage from 
external sources, the probability of multiple and undetected failures, the effects and severity of failures, failure 
detection, and what corrective actions are needed for recovery.  NASA, the FAA, the aviation industry, and the 
Department of Defense are developing a number of technologies to help prevent aircraft system failures, detect and 
identify failures that do occur, and provide enhanced guidance and control capability to prevent and recover from 
vehicle loss of control.   

 
A validation process under development at the NASA Langley Research Center is an integrated approach 

involving analytical, simulation-based, and experimental methods.31,32  Figure 3 outlines the basic approach.  
Analytical methods include robustness and worst-case analysis, reliability analysis, and other verification 
techniques. The analysis results will be used in guided Monte Carlo simulation evaluations and in defining real-time 
piloted simulation studies.  The Systems and Airframe Failure Emulation, Testing, and Integration (SAFETI) 
Laboratory is being established at NASA Langley Research Center to conduct extensive hardware-in-the-loop 
testing under a variety of faults, failures, and adverse environmental conditions (including electromagnetic effects), 
while operating in closed-loop with a vehicle simulation.  The SAFETI Lab will also enable the validation of 
integrated Vehicle Health Management (VHM) and Crash Upset Prevention and Recovery (CUPR) technologies 
under combinations of adverse and upset conditions, including linked lab experiments.  A subscale aircraft flight test 
capability, the Airborne Subscale Transport Aircraft Research (AirSTAR) test bed, is also being developed at NASA 
Langley for conducting high-risk flight tests, such as those experienced in upset conditions.  The objective is to 
provide a comprehensive approach to validating and verifying the VHM and CUPR technologies themselves in 
order to ensure their safety and reliability for commercial application.  It is hoped that these methods and other tools 
can be used to assist in demonstrating compliance with the FAR’s.     

A. Challenges for Vehicle Health Management 
Vehicle Health Management technologies include sensors and monitors, artificial intelligence and data fusion 

algorithms, and diagnostics and prognostics to detect and predict failures in the propulsion system, aircraft flight 
systems, and the airframe structure.  A continuing challenge is to develop better failure detection and identification 
(FDI) algorithms for critical control components, including control surface actuators and sensors.  These algorithms 
need to be implemented in real-time to detect and identify faults and failures during flight.  The primary function of 
the VHM technologies is to prevent system and component failures through condition-based maintenance, rather 
than the replacement of components at predetermined intervals.  In the case of exceptionally long component life, 
VHM allows components to be used for extended periods of time, thereby enabling a significant cost saving.  In 
higher than expected wear environments, VHM algorithms identify failure trends and call for component 
replacement or vehicle service before failures occur.   

 
Also challenging for VHM systems is the need to develop diagnostic and prognostic systems for onboard and 

ground-based use.  Onboard algorithms are needed to assess critical components during flight to then either alert the 
flight crew, or telemeter the diagnosis of any detected problems to ground maintenance facilities.  Algorithms for the 
maintenance crew need to be designed to provide repair guidance and/or maintenance scheduling.  It is critical that 
VHM crew notifications and warnings of failures (and other adverse conditions), be integrated with other existing 
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aircraft systems, as well as data links and interfaces for improved ground maintenance.  A key challenge of 
implementing these technologies into the aircraft fleet (both for retrofit and forward-fit) is the verification and 
validation of the VHM algorithms themselves. 

B. Challenges to Create Better Control Upset and Recovery Methods 
Control Upset Prevention and Recovery (CUPR) technologies provide control under adverse flight conditions in 

order to accommodate failures, prevent loss of control, and recovery control during loss-of-control events. The 
primary function of the CUPR technologies is to prevent or recover from vehicle loss of control both with and 
without the presence of failures.  Prevention algorithms need to be developed to accommodate failures and other 
adverse conditions while maintaining vehicle control, while upset recovery algorithms need to be developed to 
recover control in the event that control is lost.  These adaptive algorithms must be implemented with varying 
degrees of automation including cueing the crew about how to recover control, semi-automatic control, pilot-
engaged automatic control, and fully automatic control. 

 
A significant challenge is to develop enhanced models of vehicle dynamics under upset conditions and adaptive 

guidance and control laws to provide control accommodation.  In order to effectively develop and evaluate 
algorithms for control upset prevention and recovery, vehicle dynamics characteristics under loss of control (upset) 
conditions must be investigated through enhanced vehicle simulations.  Upset conditions need to include extreme 
flight conditions within the normal operating envelope of the aircraft, as well as flight conditions beyond normal 
operation. 
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VII. Conclusions 
 

In this paper, verification and validation challenges associated with the development of adaptive and autonomous 
control software were presented.  These challenges include: 

• The molding of formal verification methods into tools that accept control system software code (e.g. C, 
C++, Java) as input and produce a list of program errors as output, but do not bury those results in large list 
of possible errors 

Figure 3.  Integration of analytical and simulation methods for validating VHM and CUPR  technologies. 
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• Development of better tools to verify the performance and stability of adaptive control systems over 
periods of sustained operation 

• Development of software verification tools that can assign quantitative bounds to the control system output 
errors under all operating conditions 

• Design of verification (model-checking) methods to ensure total state coverage 

• Validation of worst case computation time required by adaptive (neural network) software 

• Integration of adaptive controller design with failure detection and accommodation systems from the 
ground up to allow failure detection in fault tolerant systems 

• Development of diagnostic and prognostic systems for onboard and ground-based vehicle health 
management and maintenance 

• Verification and validation of the VHM and CUPR algorithms themselves 

• Acquisition of more flight and wind tunnel data to enhance current simulation databases and models  
 

Equally challenging is the task of making verification and validation affordable in the market place.  A key 
aspect of this challenge is to define verification and validation methods that allow the efficient evaluation and 
confirmation of intended functionality and absence of unintended functionality, for both control algorithms and 
software implementations.  To that end, NASA has developed a number of tools, including the formal methods of 
model checking, compositional verification, static analysis, program synthesis, and runtime analysis, and also 
validation techniques that seek to combine analysis and experimental techniques for VHM and CUPR technologies.  
These tools promise to greatly reduce the time spent in formal code review and testing which comprises a significant 
part of the cost of software development. 
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