Automated Synthesis of

Statistical Data Analysis Programs

Bernd Fischer and Johann Schumann
RIACS, NASA Ames Research Center

{fisch,schumann}@email.arc.nasa.gov

Abstract

Program synthesis is the systematic, usually auto-
matic construction of correct and efficient executable
code from declarative specifications. Its main ad-
vantage over other software development approach-
es is that it can make the overall process faster and
more reliable, since validation and maintenance can
be done on the specification level rather than the code
level. In this paper we present AUTOBAYES, a fully
automatic program synthesis system for the statisti-
cal data analysis domain. Its input is a concise de-
scription of a data analysis problem in the form of
a statistical model; its output is optimized and fully
documented C/C++ code which can be linked dy-
namically into the Matlab and Octave environments.
We have applied AUTOBAYES to a number of ad-
vanced textbook examples, machine learning bench-
marks, and NASA applications. These problems are
taken from a variety of classes including classification,
clustering and change-point detection.

1 Introduction

Statistical data analysis is a core activity in ex-
perimental sciences. It encompasses a wide va-
riety of tasks, ranging from, e.g., a simple linear
regression to fitting complex dynamical models.

Developing statistical data analysis programs,
however, is an arduous and error-prone process
which requires profound expertise in different ar-
eas: statistics, numerics, software engineering,
and of course the scientific application domain.

Automated program synthesis is a formal ap-
proach to software development. A synthesis
system takes a high-level specification as its in-
put and produces executeable code. On a very
high level, a synthesis system has many similar-
ities with a compiler. However, the conceptual
gap between its input (i.e., the specification) and
its output (i.e., the code) is substantially larger,
because the generation process involves instan-
tiation of algorithms, logic reasoning, and sym-
bolic calculation. A synthesis system must thus
encode considerable domain knowledge; during
the synthesis process, the specification guides the
application of this domain knowledge by the usu-
ally logic-based synthesis engine to construct the
program.

We believe that statistical data analysis is a
very promising domain for the application pro-
gram synthesis, despite—or even because—the
aforementioned difficulties. Statistics provides
a unifying and concise domain-specific notation.
Graphical models [3] provide a structuring mech-
anism which can be exploited during the syn-

thesis process, e.g., to decompose a problem in-
to independent subproblems. Statistical algo-
rithms like EM [4] are often applicable to a
wide range of problems; their generic formula-
tions allow a “plug'n’play”-style algorithm com-
bination. Recently developed sophisticated da-
ta structures as for example kd-trees [15] offer
orders-of-magnitude speed-up for certain prob-
lems but are rarely employed due to the in-
creased programming complexity they cause. Fi-
nally, data analysis is characterized by an iter-
ative development style: an initial model is hy-
pothesized, implemented, evaluated on real data,
and—if necessary—refined. However, each itera-
tion typically involves substantial programming
efforts as prototyping is often not sufficient to
work with real data sets and even small model
modifications may require radically dfferent al-
gorithms. Program synthesis encapsulates many
of the statistical, numerical, and software engi-
neering aspects of each iteration and thus allows
users to concentrate on their scientific applica-
tion. Its fast turn-around times make model re-
finement and design-space exploration feasible.
In this paper, we briefly describe AUTOBAYES,
an automatic program synthesis tool for data
analysis programs. In the following section we
will illustrate the specification language with
an example (random walk) and will describe
AUTOBAYES’s system architecture. Section 3
contains an overview of typical problems solved
by AUTOBAYES and Section 4 concludes. For
further details on AUTOBAYES we refer to [6, 7].

2 System Architecture

2.1 An Example Specification

As a running example we use the model for a
random walk (i.e., a simple noisy dynamical pro-

cess) with a step, i.e., at some unknown point in
time the rate changes quickly, e.g., after a failure
of the measurement equipment. Figure 1 shows
the specification in AUTOBAYES’s input nota-
tion. The last two statements are the core of

model walk as ’Random Walk w/ Step’.

const nat n_points.
where 3 < n_points.
const nat switch_point.
where switch_point in 2..n_points-2.

double rate as ’drift rate / unit’.
double fail_rate as ’-"- after step’.
double error as ’drift error / unit’.

where 0 < error.

data double x(0..n_points-1).

x(I) ~ gauss(cond(I < switch_point,
cond(I>0,x(I-1),0)+rate,
cond(I>0,x(I-1),0)+fail_rate),

error) .

max pr(x|{switch_point,rate,fail rate,error})
for {switch_point,rate,fail_rate,error}.

Figure 1: AUTOBAYES specification of random
walk with abrupt change in rate.

the specification; the remaining statements just
declare the model variables and impose some
additional constraints on them. The distribu-
tion statement x(1) ~ ... characterizes the ob-
served data z: each observation z; is normal (or
Gaussian) distributed with a gradually chang-
ing mean and constant but unknown error. All
mean value are expected to depend on the pre-
vious observation z;_; and the unknown drift
rates. Over time, the data points thus drift away
from their origin, which is here modeled as ze-
ro. However, at some unknown index position
switch_point, the change in the mean suddenly
switches from rate to fail_rate. The last state-
ment of the specification characterizes the data
analysis task: find the values for the unknown
parameters switch_point, rate, fail_rate and er-
ror which explain best the known data z, i.e.,

maximize the data probability under the param-
eter values and model distributions.

2.2 Architecture Overview

AUTOBAYES’s overall system architecture is
shown in Figure 2. In a first processing step,
the given specification is parsed and converted
into internal form and a Bayesian network rep-
resenting the model is constructed. Then the
synthesis kernel analyzes the network, tries to
solve the given optimization task, and instan-
tiates appropriate algorithm schemas which are
given in a schema library. The schemas encode
the domain knowledge. They contain rules to
decompose the network into independent parts,
rules to search symbolically for closed-form so-
lutions, and algorithm skeletons which are in-
stantiated during the synthesis process. These
schemas are guarded by applicability conditions
and may be called recursively. Thus, the syn-
thesized program can be assembled from various
(and different) parts and algorithms. The out-
put of the synthesis kernel is a program in a pro-
cedural intermediate language. AUTOBAYES’s
backend takes this intermediate code, optimizes
it and generates code for the chosen target sys-
tem. Currently, we support Octave [13], Matlab,
and stand-alone C, but only small parts of the
code generator are system-specific; new target
systems can thus be added easily.

Certification procedures for high-quality data
analysis code often mandate manual code inspec-
tions. These require that the code is readable
and well documented. Human understandabil-
ity is a strong requirement, even for programs
not subject to these procedures, as manual code
modifications are often necessary, e.g., for per-
formance tuning or system integration. How-
ever, existing program generators often produce

X ~gauss(mu, ..

AutoBayes Specification

Visualization
@<
Input Parser =
P D
] internal repr. of spec
Test-data _ R T
Generator SynthesisKernel ['gohemd §
Library P__; =
\—‘/ intermediate code é t§ 8
simple proc. language 5 g E
Optimizer -7 >
¢ simple proc. language 2 ?}
= [}
Code Generator % =X @
I =
: : @ o

Figure 2: System architecture of AUTOBAYES.

code that is hard to read and understand. In
order to overcome this problem, AUTOBAYES
generates thoroughly documented code: approx-
imately one third of the output lines are au-
tomatically generated comments. These com-
ments contain explanations of the crucial “syn-
thesis decisions”, e.g., which algorithm schema
has been used. Also, model assumptions and
proof obligations that could not be discharged
during the synthesis are laid out clearly. In fu-
ture versions of AUTOBAYES we will extend this
to produce detailed, standardized design docu-
ments along with the generated code. Further-
more, AUTOBAYES can generate code which gen-
erates artificial data for the model, e.g., for visu-
alization, simulation, and testing purposes. The
entire AUTOBAYES system has been implement-
ed in SWI-Prolog and comprises about 31,000
lines of documented Prolog code.

3 Examples

We have applied the AUTOBAYES system to a
number of different textbook and benchmark ex-
amples. The results of these experiments are
shown in Table 1. For each problem, a short
description of the task or the used priors is giv-
en. The next two columns give the size of the
specification and the respective number of lines
of generated Octave/C++ code, including the
automatically generated comments and interface
code to Octave. Finally, the synthesis time Ty,
(i.e., AUTOBAYES’s runtime) as well as the com-
pilation time T¢p for the GNU g++ compiler
(optimization level -02) are given. All times are
in seconds and have been obtained on a Sun Ul-
tra 60 (400 Mhz) using the Unix time command.

The examples G; to G4 describe different
estimation problems for Gaussian distributions.
Given a sample of n data points and various
prior information (e.g., the variance of the
distribution and an estimate of the mean value),
the task is to estimate the remaining parameters
of the distribution. For several of these textbook
examples (G1,G2,G3) closed-form solutions ex-
ist [8] and are found by AUTOBAYES, which
demonstrates the capabilities of its symbolic sys-
tem. It is interesting to note that G4 produces
roughly four times as much code as G5 although
the specifications are very similar—only the
prior on o is generalized. This code blow-up is
caused by the fact that for G4 no closed-form
solution exists and thus an iterative numerical
algorithm has to be used. We have also been
able to synthesize code for a large number
of mixture problems. M; is the standard
Mixture of Gaussians problem with a known
number of classes. My is a variation of the
Mixture of Gaussians problem for uncorrelated
two-dimensional observations, and M3 one for

hidden variables composed from multiple inde-
pendent dimensions. M, is a one-dimensional
mixture problem on exponentially distributed
data which comprises a simple model useful for
failure analysis; M5 is a disjoint mixture model,
combining binomial and Poisson data.

Description lines of Tsynls]+
(priors) spec/c++ Teoml[s]
G1 p~ N(uo, 7'(()]'5),0'2 12 99 15471
Gy p,02~T71(§/2 13 99 2.0+ 8.8
+]., 0'8'5(50/2)
Gs p~N(po,\/02?/k0) 17 126 8.9+ 7.7
o? ~ (see Gs)
Gy p~ N(uo,70), 17 478 14.6 + 20.0
o2 ~ (see Gs)
M; 1D Gaussian mix 16 389 11.7+ 124
My 2D Gaussian mix 22 536 19.6 + 19.7
M3z 1D Gaussian mix 24 519 18.1 +16.7
M, exponential mix 15 321 6.4+ 10.0
M; disjoint mixture 21 425 19.5+11.9
Mg 1D mix, ¢ prior 20 401 15.4 +15.0
M~ 1D mix, p prior 24 424 18.2416.5
A Abalone 58 1310 63.5 + 139.1
W Wines 91 2045 86.0 + 124.0
I Tris 41 827 14.0 + 349
D Digits 36 674 10.1 + 23.8
R Rocks 83 1987 64.2 4+ 132.5
S1 step detection 14 473 9.8 + 10.5
S2 step detection o 22 453 13.7 + 21.0
C Coal Mining 12 445 5.5 + 8.8
Wi random walk 11 122 1.8 +5.6
Wy -7- w/rate-step 21 1103 23.4 + 824
W3 -7- w/error-step 21 517 18.7 + 34.0
JM Jelinski/Moranda 15 557 3.6 +6.9
SW Schick/Wolverton 14 560 3.8 + 8.0

Table 1: List of examples

Both Mg and M7 are similar to M;, but here
the conjugate priors for u, and o, respective-
ly, are assumed in addition. These examples

demonstrate AUTOBAYES’s capability to synthe-
size code for classical maximum-likelihood prob-
lems (i.e., without priors) as well as for maxi-
mum aposteriori (i.e., Bayesian inference) prob-
lems.

The examples A,W,I, R are applications of
mixture models to well-known benchmark exam-
ples mostly taken from UCI Machine Learning
Repository [2]. A is the Abalone mussel classifi-
er, W a classification of Italian wines, I the clas-
sical Iris-flower example, and D classification of
handwritten digits using morphological features
[11]. Finally, R is a classification of rocks accord-
ing to spectral data [14].

All mixture problems are solved by differ-
ent instantiations of the EM-schema; however,
the different distributions give rise to different
maximization problems in the M-step. An effi-
cient implementation requires the symbolic so-
lution of the emerging maximization problem.
AUTOBAYES’ symbolic system is already power-
ful enough to provide such solutions for the dis-
tributions from the exponential family, including
the binomial, exponential (M4), Gaussian, and
Poisson distributions.

Step detection problems are concerned with
estimation of the point in time at which pa-
rameters of a Gaussian (or exponential) pro-
cess changes. Such a change can indicate a fail-
ure in the underlying physical process. S; and
S detect changes in the mean value and stan-
dard deviation of a Gaussian process, respective-
ly. Step detection in exponential processes have
been used for finding bursts in Gamma-ray data
from the BATSE experiment [1] (S3), or classical
examples like coal-mining disasters or treatment
of the haemolytic-uraemic syndrome [16] (S4).

The ability to model (and analyze) random
walks is important for many process- and time-
series-oriented applications. W7 is a simpler

random-walk example where the rate and error
are unknown. The model W3 is similar to the
running example Wy. However, in this model,
there is an abrupt change in the error rather
than in the rate. Statistical reliability mod-
els for software [5] try to estimate the reliabil-
ity of code (e.g., number of still existing errors)
based on observations (e.g., interfailure times).
We applied AUTOBAYES to the well-known (ba-
sic) Jelinski-Moranda model [9] JW and to the
Schick-Wolverton hazard rate model SW.

In general, these results are very encouraging
as they indicate that AUTOBAYES can already
be applied to realistic examples. Synthesis times
are generally shorter than one or two minutes;
they also compare well with the compile times
for the synthesized code. In the cases where
no closed-form solution exists, the scale-up fac-
tor (i.e., the ratio between specification size and
code size) is generally around 1:20 which sup-
ports our claim that models are much more com-
pact (and thus faster to develop) than programs.

We are currently testing AUTOBAYES in two
larger case studies concerning data analysis tasks
for finding extra-solar planets, either by measur-
ing dips in the luminosity of stars [10], or by mea-
suring Doppler effects [12], respectively. Both
projects required substantial effort to manual-
ly set up data analysis programs. Our goal for
the near future is to demonstrate AUTOBAYES’s
capability to handle major subproblems (e.g.,
the CCD-sensor registration problem) arising in
these projects.

4 Conclusions
The ultimate goal of this project is to change

the way programs for science data processing
are developed at NASA: we want to allow the

end users (i.e., scientists and modelers) to pro-
gram in abstract models without having to wor-
ry about efficiency, portability, and correctness
of the ultimately running code. To this end,
we are developing AUTOBAYES which takes a
compact description of a statistical model and
automatically produces high-quality code. This
model compilation capability allows the fast ex-
ploration of different modeling assumptions and
thus increases productivity of the data analysis
and confidence in its validity. We are currently
incorporating state-of-the-art data analysis algo-
rithms (e.g., kd-trees) into AUTOBAYES and ex-
tending its built-in domain knowledge for time
series, filtering, and image processing problems.

References

[1] http://www.batse.msfc.nasa.gov

[2] C.L. Blake and C.J. Merz. UCI Repository of
Machine Learning Databases, 1998.

[3] W. Buntine. Operations for Learning with
Graphical Models. J. AI Research, 2:159-225,
1994.

[4] A.P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum Likelihood from Incomplete Data via
the EM Algorithm (with discussion). J. of the
Royal Statistical Society series B, 39:1-38, 1977.

[5] W. Farr. Software Reliability Modeling Survey.
In M. R. Lyu (ed.), Handbook of Software Re-
liability Engineering, pp. 71-117. McGraw-Hill,
1995.

[6] B. Fischer and J. Schumann. AutoBayes:
A System for Generating Data Analy-
sis Programs from Statistical Models,

2001. Submitted. Preprint available at
http://ase.arc.nasa.gov/people/fischer/.

[7] B. Fischer, J. Schumann, and T. Pressburger.
Generating Data Analysis Programs from Sta-
tistical Models (position paper). In W. Taha
(ed.), Proc. Intl. Workshop Semantics Applica-
tions, and Implementation of Program Genera-
tion, LNCS 1924, pp. 212229, Springer, 2000.

[8] A. Gelman, J. B. Carlin, H. S. Stern, and D. B.
Rubin. Bayesian Data Analysis. Texts in Sta-
tistical Science. Chapman & Hall, 1995.

[9] Z. Jelinski and P. B. Moranda. Software Reli-
ability Research. In W. Freiberger (ed.), Sta-
tistical Computer Performance Evaluation, pp.
465-484. Academic Press, 1972.

D. G. Koch, W. Borucki, E. Dunham, J. Jenk-
ins, L. Webster, and F. Witteborn. CCD Pho-
tometry Tests for a Mission to Detect Earth-size
Planets in the Extended Solar Neighborhood. In
Proceedings SPIE Conference on UV, Optical,
and IR Space Telescopes and Instruments, 2000.

[10]

[11]
[12]

http://www.ulb.ac.be/polytech/march/dm.html

G. W. Marcy and R. P. Butler. Extrasolar Plan-
ets Detected by the Doppler Technique. In Pro-
ceedings of Workshop on Brown Dwarfs and Ezx-
trasolar Planets, 1997.

[13] M. Murphy. Octave: A free, high-level Language

for Mathematics. Linuz Journal, 39, July 1997.

[14] L. Pedersen, M.D. Wagner, D. Apostolopoulos,
and W.L. Whittaker. Autonomous Robotic Me-
teorite Identification in Antarctica. 2001 IEEE
Int. Conf. on Robotics and Automation, pp.

4158-4165, IEEE, 2001.

[15] D. Pelleg and A. Moore. Accelerating exact k-
Means Algorithms with Geometric Reasoning.
In Proc. 5th Intl. Conf. Knowledge Discovery
and Data Mining, pp. 277-281, ACM Press,

1999.

R. W. West and R. T. Ogden. Continuous-time
Estimation of a Change-point in a Poisson Pro-
cess. Journal of Statistical Computation and
Simulation, 56:293-302, 1997.

[16]

