Online Bagging and Boosting

Nikunj C. Oza and Stuart Russell
Computer Science Division
University of California
Berkeley, CA 94720-1776
{0za,russell} @Qcs.berkeley.edu

Abstract

Bagging and boosting are well-known ensem-
ble learning methods. They combine multi-
ple learned base models with the aim of im-
proving generalization performance. To date,
they have been used primarily in batch mode,
and no effective online versions have been
proposed. We present simple online bagging
and boosting algorithms that we claim per-
form as well as their batch counterparts.

1 Introduction

Traditional supervised learning algorithms classify
examples' based on a single model such as a decision
tree or neural network. Ensemble learning algorithms,
of which there are many varieties, combine the predic-
tions of multiple base models, each of which is learned
using a traditional algorithm. Bagging [3] and Boost-
ing [8] are well-known ensemble learning algorithms
that have been shown to be very effective in improv-
ing generalization performance compared to individ-
ual base models [1]. Theoretical analysis of boosting’s
performance supports these results [9].

In this paper, we develop online versions of these algo-
rithms. Online learning algorithms process each train-
ing instance once “on arrival” without the need for
storage and reprocessing, and maintain a current hy-
pothesis that reflects all the training instances seen
so far. Such algorithms have advantages over typi-
cal batch algorithms in situations where data arrive
continuously. They are also useful with very large
data sets on secondary storage, for which the multi-
ple passes required by most batch algorithms are pro-
hibitively expensive.

In this paper, we only deal with the classification
problem.

Batch ensemble algorithms typically use a batch learn-
ing algorithm, which we shall call L, to generate each
base model. The first requirement of an online en-
semble algorithm is an online learning algorithm for
base models, which we shall call L,. Online variants
of many learning algorithms are available. A lossless
online algorithm is one whose output hypothesis for a
given training set is identical to that of the correspond-
ing batch algorithm. Lossless online algorithms are
available for decision trees [14], Naive Bayes models,
and nearest-neighbor classifiers, among others. We use
lossless online algorithms for decision trees and Naive
Bayes models in our experiments.

Producing online versions of bagging and boosting also
requires a way to mirror their specific techniques for
generating multiple distinct base models. The diffi-
culty is that both algorithms appear to require fore-
knowledge of the size of the training set, which is un-
available (or meaningless) in the online context. For
example, bagging works by resampling the original
training set of size N to produce M bootstrap train-
ing sets of size IV, each of which is used to train a base
model. Our online version trains M base models on-
line. It simulates the bootstrap process by sending K
copies of each new example to update each base model,
where K is a suitable Poisson random variable. This
simple trick yields learning behavior similar to that of
batch bagging. We describe the online bagging algo-
rithm and give theoretical results in Section 2; empir-
ical results are provided in Section 4.

Boosting is a somewhat more complex process that
generates a series of base models hiy,...,hy. Each
base model h,, is learned from a weighted training set
whose weights are determined by the classification er-
rors of the preceding model h,, 1. Specifically, the
examples misclassified by h,,, 1 are given more weight
in the training set for h,,, such that the weights of
all the misclassified examples constitute half the total
weight of the training set. As with bagging, this type
of “normalization” appears to require foreknowledge

of the complete training set. Again, we use a Poisson
sampling process to approximate the reweighting al-
gorithm. The online boosting algorithm is described
in detail in Section 3. Empirical results are given in
Section 4.

The topic of online bagging and boosting has received
very little attention in the literature. In [5], an ensem-
ble of three neural networks was trained using boost-
ing in an online fashion; the method proposed therein
often discards substantial amounts of data in the pro-
cess of drawing the desired distribution of data for its
base models. More recently, a “blocked” online boost-
ing algorithm has been proposed [4] that trains several
base models using consecutive subsets of training ex-
amples of some fixed size; this process also discards a
fraction of the data received. Neither of these algo-
rithms is directly comparable to our approach, which
focuses on reproducing the advantages of bagging and
boosting in an online setting. In [7], an online bag-
ging algorithm is proposed; it attempts to simulate
the bootstrap process by sending each new training
example to update each base model with some prob-
ability that the user fixes in advance. In experiments
with various such probabilities, their online bagging al-
gorithm never performed better than a single decision
tree. The same paper also proposes an online boosting
algorithm that is an online version of Arc-x4 [3], i.e.,
each example is given weight 1 + m* to update each
base model, where m is the number of previous base
models that currently misclassify that example. The
algorithm was applied to the branch prediction prob-
lem from computer architecture. The results suggest
that, given limited memory, a boosted ensemble with
a greater number of smaller decision trees is generally
superior to one with fewer large trees.

Potentially interesting parallels can be drawn between
our approach and the Winnow [11] and Weighted Ma-
jority [12] algorithms. These algorithms use a fixed
set of base models that are trained online and com-
bined using weights that depend on the training set
performance of each base model. Their performance
can be shown to be almost as good as that of the
best component model for any training sequence. On
the other hand, ensemble algorithms generally perform
better than all of their component models. Comparing
them to online bagging or boosting, we see that they
send identical training sequences to each base model;
hence, base model diversity, which is known to aid
ensemble performance [13], must be built in a priori
rather than emerging from the data itself. One can
imagine hybrid approaches; it may also be the case
that amortized analysis techniques can be applied to
our algorithms.

2 Online Bagging

Given a training dataset of size N, standard batch
bagging creates M base models,? each trained on a
bootstrap sample of size N created by drawing random
samples with replacement from the original training
set. In the following pseudocode, T' is the original
training set of N examples and M is the number of
base models to be learned.:

Bagging(T,M)
e For each m € {1,2,...,M},

— T, = Sample_ With_Replacement(T, N)
= hm = Ly(T)

e Return {hl,h2, .- 7hM}

Each base model’s training set contains each of the
original training examples K times where

o) (-4

which is the binomial distribution. As N — oo, the
distribution of K tends to a Poisson(1) distribution:
K~ ”p,g—fl). This suggests that we can perform bag-
ging online as follows: as each training example is pre-
sented to our algorithm, for each base model, choose
the example K ~ Poisson(1l) times and update the
base model accordingly. In the pseudocode below, h
is the set of M base models learned so far and d is the
latest training example to arrive.

OnlineBagging(h, d)

For each base model h,,, (m € {1,2,...,M}) in
the ensemble,

e Set k according to Poisson(1).
e Do k times
hm = Lo(hpm, d)

New instances are classified the same way in online
and batch bagging—by unweighted voting of the M
base models.

Online bagging is a good approximation to batch bag-
ging to the extent that their base model learning algo-
rithms produce similar hypotheses when trained with
similar distributions of training examples. We first
prove that if the same original training set is supplied
to the two bagging algorithms, then the distributions

2The number of base models is normally chosen by trial
and error but sometimes a validation set is used [6].

over the training sets supplied to the base models in
batch and online bagging converge as the size of that
original training set grows to infinity.

Define 87 to be a vector of length N where the ith
element represents the number of times that the ith
original training example is included in the bootstrap
training set of the mth base model under batch bag-
ging. Sampling with replacement in the batch bagging
algorithm is done by performing N trials where each
trial yields one of the N training examples, all of which
have equal probability % of being drawn. Therefore,
67" ~ Multinomial(N,+), where all the training ex-
amples have equal “success probability” % Define
07" to be the online bagging version of ;. We men-
tioned earlier that, under online bagging, each train-
ing example is chosen a number of times according to
a Poisson(1) distribution. Since there are N training
examples, there are N such trials; therefore, the total
number of examples drawn has a Poisson(N) distribu-
tion. Because each example has an equal probability
of being drawn, we can recast sampling in the online
bagging algorithm as performing N’ ~ Poisson(N)
trials where each trial yields one of the N training
examples, all of which have equal probability % of be-
ing drawn. Therefore, 6, ~ Z:Jsio P(Poisson(N) =
t)Multinomial(t,).

Theorem As N — oo, P(6;) converges in distribution
to P(6,).

Proof The probability generating function [10] for
the batch bagging algorithm’s sampling distribution,
Multinomial(N, &), is

1 N
GMuzt(N,%)(iUh---;iUN) = (ﬁ(m + ...+$N)) .

The generating function for a Multinomial(1, %) dis-
tribution is

1
GMult(l,%)(xly---;xN) = N(xl +...+2xN).

The generating function for a Poisson(N) distribu-
tion is Gpoiny(s) = exp(N(s — 1). Online bag-
ging’s sampling algorithm involves performing N’
Multinomial(1,) trials; therefore, the generating
function for online bagging’s sampling distribution is

Groi() (Grrueqr, 1y (1, - -, TN)) =

ea:p(N(%(a:l +...4+zxN) — 1))

Furthermore, it is a standard result [10] that

A}g{l)o GMult(N,%)(xla ey TN) =

dim (1 ()) =

exp(N(%(xl +...4+zN)— 1))

The convergence of the generating functions implies
the convergence of the probabilities for every possible 8
vector; therefore, the two sampling methods converge
in distribution.

|

Define Resample(6,T) to be a function that takes as
input the original training set 7" and a vector # which
has the same length as T and whose ith element is the
number of times that the ith training example from T’
is included in the bootstrap training set. This func-
tion returns the actual bootstrap training set induced
by § and T. We assume that the NV examples in T are
drawn randomly and independently from a fixed distri-
bution. The sampling distributions of batch and online
bagging induce distributions over the base hypotheses
Py, Ly(Resample(8y,T)) and Py, L,(Resample(6,,T)),
respectively. A batch-bagged ensemble consists of
M independent and identically distributed (i.i.d.)
draws from Py, Ly(Resample(0y,T)). An online-
bagged ensemble consists of M ii.d. draws from
Py, L,(Resample(6,,T)). We would like to show that
Py, L,(Resample(,,T)) — Py, Ly(Resample(6y,T)).
Clearly, this is not true for all learning algorithms L,
and L,. Suppose that L, and L return some null hy-
pothesis unless the training set has exactly N exam-
ples: Ly is always given N examples, but as N — oo,
the probability that L, receives N examples tends to
0. Intuitively, we need a learning algorithm that is
“well-behaved,” in the sense that, as N — oo, having
a few more or few less examples in the bootstrapped
training set should not make a significant difference in
the learning algorithm’s output.

Local learning algorithms such as K-Nearest-Neighbor
are clearly well-behaved in this sense. A K-Nearest
Neighbor base model returns a classification for a new
test example z based on the K nearest neighbors
within its bootstrap training set. It can be shown eas-
ily that the distribution over the K nearest neighbors
for batch bagging converges to that of online bagging
as N — oo.

Simple contingency-table learning is also well-behaved.
For every class ¢, we have P(C' = c|z) = P(z,c)/P(z),
Since the denominator is the same for all ¢, we can just
consider P(z,c) for the purpose of classification. De-
fine p, . to be the fraction of examples within 7" of the
form (z,c), i.e., having attribute values x and class c.
Batch bagging draws bootstrap training sets according
to 6y ~ Multinomial(N,), which means it performs
N i.i.d. trials in which the probability of choosing an
example (,¢) is pg,c; therefore, Py, (z,¢) = pge. On-
line bagginﬁ draws bootstrap training sets according
to 0 ~ Y-, P(Poisson(N) = t)Multinomial(t,),
which involves performing ¢ i.i.d. trials in which the
probability of choosing an example (z, ¢) is ps,.; there-

AdaBOOSt({(mla yl): LN (xNy yN)}a Ly, M)

o Initialize D1(n) = 1/N for all n € {1,2,...,N}.
e Doform=1,2,..., M:

— 1. Call L, with the distribution D,,.

— 2. Get back a hypothesis h,, : X = Y.

— 3. Calculate the error of h, : €n =
2o (o) yn Pm(n). If €m > 1/2 then set
M =m — 1 and abort this loop.

— 4. Set B = 2.

— 5. Update distribution D,,:

Dm+1(n) = Dg—rin)x{ /fm

if A (2n) = yn
otherwise

where Z,, is a normalization constant chosen
so that D,,y1 is a probability distribution.

e Output the final hypothesis: hfin(z) =

argmaryey 3 n. (s)—y logﬁ%m.

Figure 1: AdaBoost.M1 algorithm from [8]

fore,

PGO(IL',C) =
N

Z P(Poisson(N) = t)PaeMult(t,%)(m’ €) = Pue-
t=0

Since Py, (z,c) = Py, (z,c) for all examples (z,c), the
expected counts in each entry of the contingency tables
are the same under online and batch bagging; there-
fore, the classifications of new examples have the same
expectation under online and batch bagging.

We are working on describing a larger set of learning
algorithms that are well-behaved.

3 Online Boosting

Our online boosting algorithm is designed to cor-
respond to the batch boosting algorithm, Ad-
aBoost.M1 [8]. We give the pseudocode for AdaBoost
in Figure 1, where the inputs are a set of training
examples {(z1,¥1),-.-,(ZN,yn)}, base learning algo-
rithm Ly, and the number of base models M to be gen-
erated. As explained earlier, AdaBoost.M1 generates
a sequence of base models hq, ..., hy using weighted
training sets such that the training examples misclas-
sified by model h,,_; are given half the total weight
for model h,,, and the correctly classified examples are
given the remaining half of the weight.

In our online boosting algorithm pseudocode (Fig-
ure 2), hy is the set of M base models learned so

OnlineBoosting(hm, Online Base, d)
e Set the example’s “weight” A\g = 1.

e For each base model hyn,, (m € {1,2,...,M}) in
the ensemble,
— 1. Set k according to Poisson(Aq).
— 2. Do k times
hm = OnlineBase(hm, d)
— 3. If hy(d) is the correct label,
* then
- A — A+ A
()
* else
A — A+ A\
e ()

To classify new examples:

e For each m € {1,2,..., M}

sw

A
Calculate € = we25% and B = =2

l—em

* Return h(x) = argmageec Y ., (2)—y logﬂim.

Figure 2: Online Boosting Algorithm

far, d is the latest training example to arrive, and
OnlineBase is the incremental learning algorithm that
takes a current hypothesis and training example as in-
put and returns an updated hypothesis. Our online
boosting algorithm is similar to our online bagging al-
gorithm except that when a base model misclassifies
a training example, the Poisson distribution parame-
ter (\) associated with that example is increased when
presented to the next base model; otherwise it is de-
creased. For example, in Figure 3, in the upper left
corner (point “a” in the diagram) is the first training
example. This example updates the first base model
but is still misclassified after training, so its weight
is increased (the rectangle “b” used to represent it is
taller). This example with its higher weight updates
the second base model and then correctly classifies it,
so its weight decreases (rectangle “c”). Just as in Ad-
aBoost, our algorithm gives the examples misclassified
by one stage half the total weight in the next stage;
the correctly classified examples are given the remain-
ing half of the weight.> We can see this by examining
the adjustments to Ay shown in Figure 2 item 3 as
follows. Suppose that A¢ is the sum of the A values
for the examples that were classified correctly by the
base model at stage m and AJ¥ is the same sum for

3We discuss a caveat to this point at the end of this
section.

Training

AR IR A
S B R - BT

Weighted
Combination

Figure 3: Tllustration of online boosting in progress. Each row represents one example being passed in sequence to
all the base models for updating; time runs down the diagram. Each base model (depicted as a tree) is generated
by updating the base model above it with the next weighted training example. Each rectangle represents a
training example—the height of the rectangle represents its weight.

incorrectly classified examples. For the next stage of
boosting, we want these two sums to be scaled to the
same value, just as in AdaBoost;* therefore, we want
to find the factors f5, and f; that scale A and AJY
to half the total weight, respectively. The sum of all
AdaBoost weights is one; therefore, the sum of all the
As for our online algorithm is N, which is the number
of examples seen so far. Therefore, we get:

N
ASCfe = = s 6 —
N N
AW Fw — 20 s fW —

Note that we expect that A3¢ > N/2 and AS¥ < N/2
and, therefore, that f5, <1 and f* > 1, which means
“In AdaBoost terminology, the examples’ weights would

actually be Ag/N, but since our algorithm works with the
A values, we treat them as weights.

that the weights of correctly classified examples will
decrease, and the weights of incorrectly classified ex-
amples will increase, as desired.

One area of concern is that, in AdaBoost, an exam-
ple’s weight is adjusted based on the performance of
a base model on the entire training set while in on-
line boosting, the weight adjustment is based on the
base model’s performance only on the examples seen
earlier. To see why this may be an issue, consider run-
ning AdaBoost and online boosting on a training set
of size 10000. In AdaBoost, the first base model h; is
generated from all 10000 examples before being tested
on, say, the tenth training example. In online boost-
ing, h; is generated from only the first ten examples
before being tested on the tenth example. Clearly, we
may expect the two hi’s to be very different; therefore,
ho in AdaBoost and hs in online boosting may be pre-
sented with different weights for the tenth example.
This may, in turn, lead to very different weights for

1
0.95 +
0.9
°
S os5f
o
s 087 Decision Tree ——— 1
= Bagging -
g 0751 Online Bagging —&— 4
i AdaBoost -~
0.7 r Online Boosting =~
0.65
0.6

0 200 400 600 800 1000 1200 1400
Number of Examples

Figure 4: Learning curves for Car-Evaluation dataset

the tenth example when presented to hs in each algo-
rithm, and so on. Intuitively, we want online boosting
to get a good mix of training examples so that the
normalized error of each base model in online boost-
ing quickly converges to what it is in AdaBoost. The
more rapidly this convergence occurs, the more similar
the weight adjustments will be and the more similar
their performances will be.

4 Experimental Results

In this section, we discuss some experiments that
demonstrate that our online algorithms perform more
like their batch counterparts as the number of train-
ing examples increases. We have implemented online
bagging and online boosting with decision trees and
Naive Bayes classifiers as the base models. For de-
cision trees, we have reimplemented the lossless ITI
online algorithm [14]; batch and online Naive Bayes
algorithms are essentially identical.

To illustrate the convergence of batch and online learn-
ing, we experimented with the Car Evaluation dataset
from the UCI Machine Learning Repository [2]. The
dataset has 1728 examples, of which we retained 346
(20%) as a test set and used 200, 400, 600, 800, 1000,
1200, and all the remaining 1382 examples as training
sets. We ran each algorithm (except decision trees) ten
times with each number of training examples to ac-
count for the randomness in the ensemble algorithms.
The results are shown in Figure 4.

The figure shows batch and online bagging with de-
cision trees performing identically (and always signif-
icantly better than a single decision tree). AdaBoost
also performs significantly better than a single deci-
sion tree for all numbers of examples. Online boost-
ing struggles at first but performs comparably to Ad-
aBoost and significantly better than single decision

trees for the maximum number of examples. Note
that online boosting’s performance steadily becomes
closer to that of AdaBoost as the number of examples
grows, as one expects from an online algorithm when
compared to its batch version.

We tested our algorithms on several UCI datasets [2]
with varying sizes and numbers of attributes (see Ta-
ble 1). The accuracies of our algorithms are given in
Table 2 and Table 3 in increasing order of dataset size.
Boldface entries represent cases when the ensemble al-
gorithm significantly (t-test, & = 0.05) outperformed
a single model while italicized entries represent cases
when the ensemble algorithm significantly underper-
formed relative to a single model. The batch algo-
rithm accuracies are averages over ten runs of five-
fold cross-validation. We tested our online algorithms
with five random orders of each training set generated
for the batch algorithms. (Order matters for online
boosting, even with a lossless learning algorithm.) We
tested bagging and boosting with decision trees only
on some of the smaller datasets because the ITT algo-
rithm proved too expensive with larger ones. Even for
the very small Promoters dataset, the AdaBoost algo-
rithm ran in around 30 seconds while online boosting
needed about 15 hours. This compares to around 1
second for online boosting with Naive Bayes.

With decision trees, online boosting performed signifi-
cantly worse than AdaBoost on the Promoters dataset,
significantly better on Balance, and comparably on
the remaining datasets. Bagging and online bagging
performed noticeably better than single decision trees
on all except the Breast Cancer dataset. With Naive
Bayes, bagging and online bagging never performed
noticeably better than Naive Bayes, which we ex-
pected because of the stability of Naive Bayes [3].
Boosting and online boosting performed comparably
to each other on all but the relatively small Promot-
ers dataset and their performances relative to a sin-
gle Naive Bayes classifier consistently improved as the
sizes of the datasets grew. On the Balance and Soy-
bean datasets, the boosting algorithms performed sig-
nificantly worse than Naive Bayes. On the Breast Can-
cer dataset, AdaBoost performed significantly worse
and online boosting performed marginally worse. On
the Car Evaluation and Chess datasets, AdaBoost and
online boosting performed significantly better than
Naive Bayes. On the Nursery dataset, AdaBoost per-
formed significantly better and online boosting per-
formed marginally better.

5 Conclusions

The paper has described online versions of the popu-
lar bagging and boosting algorithms and has shown,

Table 1: Sizes of the UCI datasets used in our experiments.

Data Set Training | Test | Inputs | Classes
Set Set

Promoters 86 20 57 2
Balance 500 125 4 3
Soybean-Large 307 376 35 19
WI. Breast Cancer 559 140 9 2
German Credit 800 200 20 2
Car Evaluation 1382 346 6 4
Chess 2556 640 36 2
Mushroom 6499 1625 22 2
Nursery 10368 2592 8 5

Table 2: Results (fraction correct): batch and online algorithms (with Decision Trees) on UCI Datasets

| Dataset | Decision Tree | Bagging | Online Bagging | AdaBoost | Online Boosting |
Promoters 0.75 0.82 0.845 0.935 0.77
Balance 0.792 0.8128 0.8032 0.7408 0.7664
WI Breast Cancer 0.9786 0.9714 0.9714 0.9729 0.9679
Car Evaluation 0.9537 0.9673 0.9679 0.9664 0.9639

through experiment, that these online versions typi-
cally perform comparably to their batch counterparts.
The algorithms have low overhead and are quite suit-
able for practical applications. Our current empirical
work focuses on testing with large, continuously arriv-
ing data streams. We have also shown that batch and
online bagging are identical for large datasets provided
that the base learning algorithm is well-behaved in a
certain sense. Theoretical tasks include characteriz-
ing more tightly the class of learning algorithms for
which convergence between online and offline bagging
can be proved and developing an analytical framework
for online boosting. We are also investigating the case
of lossy online learning and its effect on ensemble per-
formance.

Acknowledgements We would like to thank Leo
Breiman, Bin Yu, Michael Jordan, Joe Hellerstein, and
Kagan Tumer for useful discussions on this work. Part
of this work was done while the first author was at
NASA Ames Research Center.

References

[1] Eric Bauer and Ron Kohavi. An empirical comparison
of voting classification algorithms: Bagging, boost-
ing, and variants. Machine Learning, 36:105-139, Sep.
1999.

C. Blake, E. Keogh, and C.J. Merz. UCI repos-
itory of machine learning databases, 1999. (URL:
http://www.ics.uci.edu/~mlearn/MLRepository.html).

[3] L. Breiman. Bias, variance and arcing classifiers.
Technical Report 460, Department of Statistics, Uni-
versity of California, Berkeley, 1996.

[4] L. Breiman. Pasting small votes for classification in

large databases and on-line. Machine Learning, 36:85—

103, 1999.

H. Drucker, R. Schapire, and P. Simard. Improving
performance in neural networks using a boosting algo-
rithm. In S.J. Hanson, J. D. Cowan, and C. L. Giles,
editors, Advances in Neural Information Processing
Systems-5, pages 42-49. Morgan Kaufmann, 1993.

Harris Drucker. Boosting using neural networks. In
A. J. C. Sharkey, editor, Combining Artificial Neu-
ral Nets: Ensemble and Modular Multi-Net Systems,
pages 51-77. Springer-Verlag, London, 1999.

Alan Fern and Robert Givan. Online ensemble learn-
ing: An empirical study. In Proceedings of the Seven-
teenth International Conference on Machine Learning,
pages 279-286. Morgan Kaufmann, 2000.

[8] Y. Freund and R. Schapire. Experiments with a new
boosting algorithm. In Proceedings of the Thirteenth
International Conference on Machine Learning, pages
148-156, Bari, Italy, 1996. Morgan Kaufmann.

Yoav Freund and Robert E. Schapire. A decision-
theoretic generalization of on-line learning and an ap-
plication to boosting. Journal of Computer and Sys-
tem Sciences, 55(1):119-139, 1997.

[10] G. R. Grimmett and D. R. Stirzaker. Probability and
Random Processes. Oxford Science Publications, New
York, 1992.

Table 3: Results (fraction correct): batch and online algorithms (with Naive Bayes) on UCI Datasets

| Dataset | Naive Bayes | Bagging | Online Bagging | AdaBoost | Online Boosting |
Promoters 0.8774 0.8354 0.8401 0.8455 0.7483
Balance 0.9072 0.9062 0.9067 0.8686 0.8747
Soybean-Large 0.7497 0.7487 0.7471 0.7184 0.7315
WI Breast Cancer 0.9679 0.9698 0.9692 0.9501 0.9533
German Credit 0.7410 0.7437 0.7437 0.7318 0.7110
Car Evaluation 0.8569 0.8532 0.8547 0.9017 0.8967
Chess 0.8757 0.8759 0.8749 0.9517 0.9476
Mushroom 0.9966 0.9966 0.9966 0.9999 0.9987
Nursery 0.9061 0.9029 0.9027 0.9163 0.9118

[11] N. Littlestone. Learning quickly when irrelevant at-
tributes abound: A new linear-threshold algorithm.
Machine Learning, 2:285-318, 1988.

[12] N. Littlestone and M. Warmuth. The weighted
majority algorithm. Information and Computation,
108:212-261, 1994.

[13] Kagan Tumer. Linear and Order Statistics Combiners
for Reliable Pattern Classification. PhD thesis, The
University of Texas, Austin, TX, May 1996.

[14] P.E. Utgoff, N.C. Berkman, and J.A. Clouse. Deci-
sion tree induction based on efficient tree restructur-
ing. Machine Learning, 29(1):5-44, 1997.

