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Abstract. Formal behavioral speci cations written early in the systdesign
process and communicated across all design phases havehmemto increase
the e ciency, consistency, and quality of the system under deweémt. To pre-
vent introducing design or veri cation errors, it is cruti® test speci cations
for satis ability. Our focus here is on speci cations expressed in linear tenalp
logic (LTL).

We introduce a novel encoding of symbolic transition-baB&dhi automata and
a novel, “sloppy,” transition encoding, both of which rdsnlimproved scalabil-
ity. We also de ne novel BDD variable orders based on treeodgmosition of
formula parse trees. We describe and extensively test a ndtir@emcoding ap-
proach utilizing these novel encoding techniques to cr@@encoding variations.
We show that our novel encodings translate to signi cantfpstimes exponential,
improvement over the current standard encoding for syrolddiL satis ability
checking.

1 Introduction

In property-based desigiormal properties, written in temporal logics such as LTIL]3
are written early in the system-design process and comratedcacross all design
phases to increase the eiency, consistency, and quality of the system under develo
ment [34, 36]. Property-based design and other designddreation techniques cap-
ture design intent precisely, and use formal logic properboth to guide the design
process and to integrate veri cation into the design pre¢24]. The shift to specifying
desired system behavior in terms of formal logic propertisks introducing speci -
cation errors in this very initial phase of system desigising the need foproperty
assurancg30, 34].

The need for checking for errors in formal LTL properties eegsing desired sys-
tem behavior rst arose in the context of model checking, mehecuity checkingims

* A full version of this paper with appendices is availablehdtp/ti.arc.nasa.gdwm/pro le/
kyrozierpaperéRozierVardiFM2011.pdf.
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between Rice University, Sun Microsystems, and Sigma #wisit Inc.
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at reducing the likelihood that a property that is satis edthe model under veri -
cation is an erroneous property [2, 27]. Property assur@ogore challenging at the
initial phases of property-based design, before a moddieirhplementation has been
speci ed. Inherent vacuity checking a set of sanity checks that can be applied to a
set of temporal properties, even before a model of the syhesybeen developed, but
many possible errors cannot be detected by inherent vachi@gking [19].

A stronger sanity check for a set of temporal properties ik t&alizability check-
ing, in which we test whether there is an open system that eatall the properties
in the set [32], but such a test is very expensive computaliyprin LTL satis ability
checking, we test whether there is a closed system thatesatifl the properties in
the set. The satis ability test is weaker than the realiligbiest, but its complexity is
lower; it has the same complexity as LTL model checking [8®fact, LTL satis ability
checking can be implemented via LTL model checking; seevihelo

Indeed, the need for LTL satis ability checking is widelycegnized [14, 23, 25,
28, 35]. Foremost, it serves to ensure that the behaviosargion of a system is in-
ternally consistent and neither over- or under-constidiffean LTL property is either
valid, or unsatis ablethis must be due to an error. Consider, for example, the speci
cation alwaygb; ! eventually b), whereb; andb, are propositional formulas. If
b, is a tautology, then this property is valid. by is a contradiction, then this prop-
erty is unsatis able. Furthermore, the collective set oberties describing a system
must be satis able, to avoid contradictions betweenetéent requirements. Satis abil-
ity checking is particularly important when the set of prajes describing the design
intent continues to evolve, as properties are added ancets and have to be checked
repeatedly. Because of the need to consider large sets péiies, it is critical that the
satis ability test bescalable and able to handle complex temporal properties. This is
challenging, as LTL satis ability is known to be PSPACE-cplete [39].

As pointed out in [35], satis ability checking can be penfioed via model check-
ing: auniversal mode(that is, a model that allows all possible traces) does naifga
a linear temporal property f precisely whenf is satis able. In [35] we explored the
e ectiveness of model checkers as LTL satis ability check&e compared there the
performance of explicit-state and symbolic model checkBrth use the automata-
theoretic approach [43] but in a dérent way. Explicit-state model checkers translate
LTL formulas to Biichi automata explicitly and then use apl&it graph-search algo-
rithm [11]. For satis ability checking, the constructiorf the automaton is the more
demanding task. Symbolic model checkers construct symleoicodings of automata
and then use a symbolic nonemptiness test. The symbolitractien of the automaton
is easy, but the nonemptiness test is computationally ddingnThe extensive set of
experiments described in [35] showed that the symbolic@ggr to LTL satis ability
is signi cantly superior to the explicit-state approachi@mms of scalability.

In the context of explicit-state model checking, there hasrbextensive research
on optimized construction of automata from LTL formulas [13,20-22, 38, 40, 41],
where a typical goal is to minimize the size of constructetbanata [42]. Optimizing
the construction of symbolic automata is more dult, as the size of the symbolic rep-
resentation does not correspond directly to its optimadityinitial symbolic encoding
of automata was proposed in [6], but the optimized encodiagall CGH, proposed
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by Clarke, Grumberg, and Hamaguchi [10], has become theatie $¢andard encoding.
CGH encoding is used by model checkers such as CadenceSMNwBdV, and has
been extended to symbolic encodings of industrial spetiocelanguages [9]. Surpris-
ingly, there has been little follow-up research on this topi

In this paper, we propose novel symbolic LTL-to-automag@astations and utilize
them in a new multi-encoding approach to achieve signi cantetimes exponential,
improvement over the current standard encoding for LTLssalility checking. First
we introduce and prove the correctness of a novel encodisgrabolic automata in-
spired by optimized constructions of explicit automata, 2. While the CGH encod-
ing usesGeneralized Biichi Automa{&BA), our new encoding is based dransition-
Based Bichi Automat@l GBA). Second, inspired by work on symbolic satis ability
checking for modal logic [29], we introduce here a nosteppyencoding of symbolic
automata, as opposed to thissyencoding used in CGH. Sloppy encoding uses looser
constraints, which sometimes results in smaller BDDs. Toyy approach can be ap-
plied both to GBA-based and TGBA-based encodings, prouidaione uses negation-
normal form (NNF), [40], rather than the Boolean normal fof@NF) used in CGH.
Finally, we introduce several new variable-ordering schsnbased on tree decompo-
sition of the LTL parse tree, inspired by observations tletdte tree decompositions to
BDD variable ordering [17]. The combination of GBRGBA, fussysloppy, BNFNNF,
and di erent variable orders yields a space of 30 possible contima of symbolic
automata encodings. (Not all combinations yield viable gorations.)

Since the value of novel encoding techniques lies in ine@ssalability, we evalu-
ate our novel encodings in the context of LTL satis abilityerking, utilizing a compre-
hensive and challenging collection of widely-used benatkrifarmulas [7, 14, 23, 35].
For each formula, we perform satis ability checking using30 encodings. (We use
CadenceSMV as our experimental platform.) Our results destmate conclusively that
no encoding performs best across our large benchmark suitthermore, no single
approach—GBA vs. TGBA, fussy vs. sloppy, BNF vs. NNF, or ang wariable order,
is dominant. This is consistent with the observation madethgrs [1, 42], that in the
context of symbolic techniques one typically does not ndharfhing” algorithmic con-
guration. In response, we developed a multi-encoding t®#NDA, which runs sev-
eral encodings in parallel, terminating when the rst pregeeturns. Our experiments
demonstrate conclusively that the multi-encoding apgnasging the novel encodings
invented in this paper achieves substantial improvemest©GH, the current standard
encoding; in fact PANDA signi cantly bested the native LTLoahel checker built into
CadenceSMV.

The structure of this paper is as follows. We review the CGldoeling [10] in
Section 2. Next, in Section 3, we describe our novel symbbEBA encoding. We
introduce our novel sloppy encoding and our new methodsHoosing BDD variable
orderings and discuss our space of symbolic encoding tquaksiin Section 4. After
setting up our scalability experiment in Section 5, we pn¢seir test results in Section
6, followed by a discussion in Section 7. Though our consimaccan be used with
di erent symbolic model checking tools, in this paper, we foltbe convention of [10]
and give examples of all constructions using the SMV syntax.
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2 Preliminaries

We assume familiarity with LTL [16]; For convenience, AppienA de nes LTL se-
mantics. We use two normal forms:

De nition 1 Boolean Normal Form (BNF) rewrites the input formula to use only,
_, X, U, andF . In other words, we replace, ! , R, andG with their equivalents:
0 (0_: ) uwRe : (U: &)
G! G P %_d Go: F: o

De nition 2 Negation Normal Form (NNF) pushes negation inwards until only atomic
propositions are negated, using the following rules: . (Xg) X ( g)

g 9 (U G) ( oR:g)
(01" ) (01)_ () D (@iRg2)  (giU: o)
$(@1_0) (9)" () :(Gg) F (9
(@! @) (9)_ :(Fg) G(9

In automata-theoretic model checking, we represent LTinfidas with Buichi automata.

De nition 3 A Generalized Bichi Automaton (GBA) is a quintupl€Q; ; ; Qo; F),

where: Q Q is a transition relation.
Q is a nite set of states. Qo Qs aset of initial states.
is a nite alphabet. F 2%is a set of accepting state sets.

A run of a Buchi automaton A over an in nite trace= o; 1; 2;:::2 isasequence
Jo; O1; O2; : : : of states such thatoQ2 Qo, andhy;; i;qi+1i 2 foralli 0. A accepts

if the run over visits states in every set in F in nitely often. We denote sbeof
in nite traces accepted by A hy, (A).

A trace satisfying LTL formulaf is an in nite run over the alphabet = 2P"°P where
Propis the underlying set of atomic propositions. We denotertndel$f) the set of
traces satisfying. The next theorem relates the expressive power of LTL to dfiat
Buichi automata.

Theorem 1 [44] Given an LTL formula f, we can construct a generalized Bachi
tomaton A = Q; ;; Qo F suchthajQjisin2°0f) = 2P andL, (Af) is exactly
model$f).

This theorem reduces LTL satis ability checking to autom#tteoretic nonemptiness
checking, ad is satis able i model¢f), ;i L (A7), ;.

LTL satis ability checking relates to LTL model checking &sllows. We use a
universal model Mhat generates all traces overop such thatl, (M) = (2°7P)" .
The code for this model appears in [35] and Appendix B. We navwehthatM doesnot
satisfy: fi fissatis able. We use a symbolic model checker to check thmfta: f
againstM; f is satis able precisely when the model checker nds a cowmtample.
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CGH encodingln this paper we focus on LTL to symbolic Biichi automata cdation.
We recap the CGH encoding [10], which assumes that the farifniglin BNF, and then
forms a symbolic GBA. We rst de ne th&€GH-closureof an LTL formulaf as the set
of all subformulas off (including f itself), where we also add the formu¥(g U h)
for each subformula of the formp U h. The X-formulas in the CGH-closure dof are
calledelementaryformulas.

We declare a Boolean SMV variabfl x4 for each elementary formuldg in the
CGH-closure off. Also, each atomic proposition ifiis declared as a Boolean SMV
variable. We de ne an auxiliary variablgy, for every formulah in the CGH-closure
of f. (Auxiliary variables are substituted away by SMV and do regjuired allocated
BDD variables.) The characteristic function for an auxiliariableSy, is de ned as
follows:

Sh:pipr_AF_’ S$h=!Sgifh=:9  Sh=SqiSe ifh=g1_g
Sh= ELy, if hisaformulaXg Sh = Sg2j(Sq1&Sxy y ) Fh=01 U 02
We now generate the SMV modil;:
MODULE main
VAR
a: boolean; /*declare a Boolean var for each atomic prop in f * /
EL_Xg: boolean; /*declare a Boolean var for every formula Xg in the CGH-closure*/
DEFINE /*auxiliary vars according to characteristic funct ion */
S_h:= ..

TRANS /*for every formula Xg in the CGH-closure, add a transi  tion constraint*/
(S_Xg = next(S_g))

FAIRNESS !S_gUh | S_h /*for each subformula gUh */

FAIRNESS TRUE /*or a generic fairness condition otherwise* /

SPEC I(S_f & EG true) /*end with a SPEC statement*/

The traces oM; correspond to the accepting runsf, starting from arbitrary states.
Thus, satis ability of f corresponds to nonemptiness ldf;, starting from an initial
state. We can model check such nonemptinessSRBC !(Sf & EG true) . A coun-
terexample is an in nite trace starting at a state wtgrdolds. Thus, the model checker
returns a counterexample that is a trace satisfyfing

Remark 1 While the syntax we use is shared by CadenceSMV and NuSMve thee
semantics of CTL model checking in these model checkers fallyodocumented and
there are some subtle but signi cant dirences between the two tools. Therefore, we
use CadenceSMV semantics here and describe these sshitieippendix C.

3 A Symbolic Transition-Based Generalized Bchi Automata
(TGBA) Encoding

We now introduce a novel symbolic encoding, referred to aBAGnspired by the
explicit-state transition-based Generalized Bichi eatta of [22]. Such automata are
used by SPOT [15], which was shown experimentally [35] toHmekest explicit LTL
translator for satis ability checking.

De nition 4 A Transition-Based Generalized Bichi Automaton (TGBA) is a quin-
tuple(Q; ; ; Qo;F), where:
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Q Q is a transition relation.
Q is a nite set of states. Qo Qs aset of initial states.
is a nite alphabet. F 2 isasetof accepting transitions.

A run of a TGBA over anin nite trace = o; 1; 2;:::2 is asequencH; o; i,
hgp; 15000, ho; 2; Qs ;2 of transitions in such that g 2 Qp. The automaton accepts
if it has a run over that traverses some transition from each set in F in nitefiiea.

The next theorem relates the expressive power of LTL to th@GBAs.

Theorem 2 [12,22]Given an LTL formula f, we can constructa TGBAA Q; ; ;
Qo; F such thajQjis in 2901, = 2ProP andL, (Ay) is exactly modeld).

Expressing acceptance conditions in terms of transitiatiser than states enables a
signi cant reduction in the size of the automata correspogtb LTL formulas [12,22].

Our new encoding of symbolic automata, based on TGBAS, asstinat the input
formula f is in NNF. (This is due to the way that the satisfactionW{formulas is
handled by means of promise variables; see below.) As in OH rst de ne the
closureof an LTL formula f. In the case of TGBAs, however, we simply de ne the
closure to be the set of all subformulasfofincluding f itself). Note that, unlike in the
CGH encodingy - andF - formulas do not require the introduction of néaformulas.

The set of elementary formulas now contairis:all U -, R-, F -, G-, and GF -
subformulas in the closure df as well as all subformulagwhereXgis in the closure
of f. Note that we treat the comm@¥F combination as a single operator.

Again, we declare a Boolean SMV varialiid 4 for every elementary formulg
as well as Boolean variables for each atomic propositiofi im addition, we declare
a Boolean SMVpromise variable g for everyU -, F -, and GF -subformula in the
closure. These formulas are used to de ne fairness comdititntuitively, Py holds
wheng is a promise for the future that is not yet ful lled. By does not hold, then the
promise must be ful lled immediately. To ensure satisfantof eventualities we require
that each promise variabl is false in nitely often. The TGBA encoding creates fewer
EL variables than the CGH encoding, but it does add promisalvizs.

Again, we de ne an auxiliary variabl8y, for every formulahin the closure off . The
characteristic function fo8y, is de ned as in the CGH encoding, with the following

changes: Sh = Squ&Sgifh=0g1" g
Sh = nex(ELy) if h= Xg
Sh = Sg2j(Sq1& Pg1u g2&(Nex(Elqiu 2))) if h=01 U g
Sh = Se&(Sgj(nex(Elgr ) if h=01 R g,
Sh = Sg&(nex(Elg)) if h=Gg
Sh = Sgi(Pr g&nex(ELg g))if h=F g
Sh = (nex(ELcr ¢))&(SgiPcr ¢) if h=GF ¢
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Since we reason directly over the temporal subformulat ¢fnd not oveiXg for
temporal subformulg as in CGH), the transition relation associates elementary f
mulas with matching elements of our characteristic functiginally, we generate our
symbolic TGBA, here is our SMV modé:

MODULE main
VAR /*declare a boolean variable for each atomic propositio nin f/
a : boolean;

VAR /*declare a new variable for each elementary formula*/
EL_f : boolean; /*f is the input LTL formula*/
EL_g1 : boolean; /*g is an X-, F-, U-, or GF-formula*/

DEFINE /*characteristic function definition*/
Sg=..

TRANS /*for each EL-var, generate a line here*/
(EL_gl1 = S_g1) & /*a line for every EL variable*/

FAIRNESS (!P_gl) /*fairness constraint for each promise va riable*/

FAIRNESS TRUE /[*only needed if there are no promise variable s*/
SPEC !(EL_f & EG TRUE)

Symbolic TGBAs can only be created for NNF formulas becabhseniodel checker
tries to guess a sequence of values for each of the promiisdies to satisfy the subfor-
mulas, which does not work for negatilde-formulas. (This is also the case for explicit
state model checking; SPOT also requires NNF for TGBA enupfli2].) Consider the
formulaf =: (aU b) and the traca=1,b=0, a=1,b=1, ... Clearly, @U b) holds
in the trace, sd fails in the trace. If, however, we chofeaUbto be false at time 0,
thenEL aUbis false at time 0, which means thiholds at time 0. The correctness of
our construction is summarized by the following theorem.

Theorem 3 Let M; be the SMV program made by the TGBA encoding for LTL formula
f. Then M does not satisfy the speci catiofEL _-f & EG true) i f is satis able.

The proof of this theorem appears in Appendix D.

4 A Set of 30 Symbolic Automata Encodings

Our novel encodings are combinations of four componenjdN@tmal Form: BNF or
NNF, described above, (2) Automaton Form: GBA or TGBA, dixst above, (3) Tran-
sition Form: fussy or sloppy, described below, and (4) ageOrder: default, na've,
LEXR LEXMMCS-MINMCS-MAX]escribed below. In total, we have 30 novel encodings,
since BNF can only be used with fussy-encoded GBAs, as exqudielow. CGH cor-
responds to BNFussyGBA; we encode this combination with all six variable orders

Automaton FormAs discussed earlier, CGH is based on GBA, in combinatioh wit
BNF. We can combine, however, GBA also with NNF. For this, wedto expand the
characteristic function for symbolic GBAs in order to forhetm from NNF formulas:
Sh = Sgl&ng if h= gl" 02 Sh= Sg&SX(Gg) if h= Gg
Sh= ng&(Sglij(gl R g2)) if h= g1 RO Sh= ngSx(Fg) ifh=F g
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Since our focus here is on symbolic encoding, PANDA, unlilkeléhceSMV, does
not apply formula rewriting and related optimizations;het, PANDAs symbolic au-
tomata are created directly from the given normal form offtivenula. Formula rewrit-
ing may lead to further improvement in PANDA's performance.

Sloppy Encoding: A Novel Transition For@GH employs i -transitions, of the form
TRANS (Elg=(S_g)) . We refer to this afussyencoding. For formulas in NNF, we can
use only-if transitions of the formMRANS (Elg->(S _g)) , which we refer to asloppy
encoding. A similar idea was shown to be useful in the coméxhodal satis ability
solving [29]. Sloppy encoding increases the level of notedwrinism, yielding a looser,
less constrained encoding of symbolic automata, which inyncases results in smaller
BDDs. A side-by-side example of the dirences between GBA and TGBA encodings
(demonstrating the sloppy transition form) for formdlas ((Xa)&(b U (!a))) is given

in Figures 1-2.

MODULE main MODULE main
[*formula: (X (& )) & ((b )U (I(a ))*/ [*formula: (X (a ))& ((b YU (I(a ))*/
VAR /*a Boolean var for each prop in f*/ VAR /*a Boolean var for each prop in f*/
a : boolean; a : boolean;
b : boolean; b : boolean;
VAR /*a var EL_X_g for each formula (X g) in VAR /*a var for each EL_var in el_list*/
el_list w/primary op X, U, R, G, or F* EL_ X_a_ AND__b U_NOT_a : boolean;
EL_X_a : boolean; P__b_U_NOT_a: boolean;
EL_X__b_U_NOT_a : boolean; EL__ b _U NOT_a : boolean;
DEFINE DEFINE
[*each S_h in the characteristic function*/ [*each S_h in the characteristic function*/
S_X_a AND__b_U_NOT_a := S_X_a AND__b_U_NOT_a :=
(EL_X_a) & (S__b_U_NOT_a); (S_X_a) & (EL__b_U_NOT_a);
S_b_U_NOT_a := X_a = (next(a));

s
(@)) | (b & EL_X__b_U_NOT a); S_b_U_NOT_a = ( (({(a)))
(b& P__b_U_NOT_a & (next(EL__b_U_NOT_a))));

TRANS /*a line for each (X g) in el_list*/ TRANS /*a line for each EL_var in el_list*/

( EL_X_a -> (next(a) ) ) & (EL_X_ a AND__b U NOT_a ->
( EL_X__b_U_NOT_a -> (next(S__b_U_NOT_a) )) (S_X_a__AND__b U NOT_a)) &
(EL_b_U NOT_a->(S_b U NOT_a))
FAIRNESS (IS_b_U_NOT_a | (!(a))) FAIRNESS ('P__b_U_NOT_a)
SPEC I(S_X a_AND_ b U NOT_a & EG TR&HHC I(EL__X_a__AND__b_U_NOT_a & EG TRUE)
Fig. 1. NNF/sloppyGBA encoding for CadenceSMV Fig. 2. NNF/sloppyTGBA encoding for CadenceSMV

A New Way of Choosing BDD Variable Orde&ymbolic model checkers search for
a fair trace in the model-automaton product using a BDD-thaggoint algorithm, a
process whose ecacy is highly sensitive to variable order [5]. Finding anioal BDD
variable order is NP-hard, and good heuristics for varialotiering are crucial.

Recall that we de ne state variables in the symbolic modebifay certain subfor-
mulas:p 2 AP, EL_g, andP_g for some subformulag. We form the variable graph by
identifying nodes in the input-formula parse tree that espond to the primary opera-
tors of those subformulas. Since we declaresglent variables for the GBA and TGBA
encodings, the variable graph for a formulanay vary depending on the automaton
form we choose. Figure 3 displays the GBA and TGBA variabbgpbs for an example
formula, overlaid on the parse tree for this formula. We cextreach variable-labeled
vertex to its closest variable-labeled vertex descendgrekipping over vertices in the
parse tree that do not correspond to state variables in dangion construction. We
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EL(xa)a® u -a))

(a) GBA variable graph (b) TGBA variable graph
Fig. 3. Graphs in (a) and (b) were both formed from the parse tred for((Xa)» (b U : a)).

create one node per subformula variable, irrespectiveehtimber of occurrences of
the subformula; for example, we create only one node for thpgsitiona in Figure 3.

We implement ve variable ordering schemes, all of whicheidke variable graph
as input. We compare these to thefaultheuristic of CadenceSMV. Thea vevariable
order is formed directly from a pre-order, depth- rst tragal of the variable graph. We
derive four additional variable-ordering heuristics bpueposing node-ordering algo-
rithms designed for graph triangulation [26JVe use two variants of a lexicographic
breadth- rst search algorithm: variangerfect(LEXP andminimal (LEXW LEXPlabels
each vertex in the variable graph with its already-orderewmbors; the unordered
vertex with the lexicographic largest label is selectedtmexhe variable orde.EXM
operates similarly, but labels unordered vertices withhlibeir neighbors and also all
vertices that can be reached by a path of unordered vertithssmaller labels. The
maximum-cardinality searctMCpvariable ordering scheme dérs in the vertex selec-
tion criterion, selecting the vertex in the variable graplpaent to the highest number
of already ordered vertices next. We seed MCS with an invéatex, chosen either to
have themaximumMCS-MAXr minimum(MCS-MINdegree.

5 Experimental Methodology

Test MethodsEach test was performed in two steps. First, we applied oonbsyic
encodings to the input formula. Second, each symbolic aatomand variable order
le pair was checked by CadenceSMV. Since encoding time isimmal and heavily
dominated by model-analysis time (the time to check the rhfimenonemptiness to
determine LTL satis ability) we focus exclusively on theter here.

Platform We ran all tests on Shared University Grid at Rice (SUG@R)néel Xeon
compute clustet. SUG@R is comprised of 134 SunFire x4150 nodes, each with two
quad-core Intel Xeon processors running at 2.83GHz and 1&&B\M per processor.
The OS is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Eachwastrun with exclusive
access to one node. Times were measured using thetidréxcommand.

Input Formulas We employed a widely-used [7, 14, 23, 35] collection of benalk
formulas, established by [35]. All encodings were testadgithree types of scalable
formulas: random, counter, and pattern. De nitions of taésrmulas are repeated for
convenience in Appendix B. Our test set includes 4 countgBgmattern formula varia-
tions, each of which scales to a large number of variables68r000 random formulas.
3 Graph triangulation implementation coded by the Kavraki baRice University.
4 http://rcsg.rice.edu/sugar/
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CorrectnessIn addition to proving the correctness of our algorithm, toerectness
of our implementation was established by comparing for y¥ermula in our large
benchmark suite, the results (either SAT or UNSAT) returbgall encodings studied
here, as well as the results returned by CadenceSMV for ahgtke same formula as
an LTL speci cation for the universal model. We never enctewad an inconsistency.

6 Experimental Results

Our experiments demonstrate that the novel encoding methvedave introduced sig-
ni cantly improve the translation of LTL formulas to symhbolautomata, as measured
in time to check the resulting automata for nonemptinesdlamdize of the state space
we can check. No single encoding, however, consistentlyiates for all types of for-
mulas. Instead, we nd that derent encodings are better suited toelient formulas.
Therefore, we recommend using a multi-encoding approactariant of the multi-
engine approach [33], of running all encodings in paralted &erminating when the
rst job completes. We call our tool PANDA for “Portfolio Appach to Navigate the
Design of Automata.”

Seven con gurations are not competitishile we can not predict the best encodings,
we can reliably predict the worst. The following encodingsrgynever optimal for any
formulas in our test set. Thus, out of our 30 possible enaxjiwe rule out these seven:

BNF/fussyGBA/LEXMessentially CGH with.EXI

— NNF/fussyGBA/LEXM — NNF/fussyTGBA/MCS-MAX
— NNF/fussyTGBA/LEXM — NNF/sloppy TGBA/MCS-MAX
— NNF/sloppyGBA/LEXM — NNF/sloppy TGBA/MCS-MIN

NNF is the best normal form, most (but not all) of the timdNF encodings were
always better for all counter and pattern formulas; seeefample, Figure 4. Figure 5
demonstrates the use of both normal forms in the optimal@dings chosen by PANDA
for random formulas. BNF encodings were occasionally sigmtly better than NNF;
the solid point in Figure 5 corresponds to a formula for whilch best BNF encoding
was more than four times faster than the best NNF encodingdr. Wak best much more
often than BNF, likely because using NNF has the added behatt it allows us to
employ our sloppy encoding and TGBAs, which often carry tlosvn performance
advantages.

No automaton form is besOur TGBA encodings dominated f&%, S, andU pattern
formulas and both types of 3-variable counter formulas.ifstance, the log-scale plot
in Figure 6 shows that PANDA's median model analysis timeRgpattern formulas
grows subexponentially as a function of the number of véemslwhile CadenceSMV's
median model analysis time for the same formulas grows expitelly. (The best of
PANDA's GBA encodings is also graphed for comparison.) GB&adings are better
for other pattern formulas, both types of 2-variable couftenulas, and the majority
of random formulas; Figure 7 demonstrates this trend forl&8@th random formulas.
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the best BNF encoding.
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Fig.6. Re(n) = (i(p1 R p2) R ::?) R pn. Fig.7. Best encodings of 500 3-variable, 180
PANDA's NNF/sloppyTGBA/LEXP encodingength random formulas.

scales better than the best GBA encod-

ing, NNHFHsloppyGBA/na've, and exponen-

tially better than CadenceSMV.

No transition form is besSloppy is the best transition form for all pattern formulasr
instance, the log-scale plot of Figure 8 illustrates thallPA's median model analysis
time forU pattern formulas grows subexponentially as a function efthmber of vari-
ables, while CadenceSMV's median model analysis time ferstime formulas grows
exponentially. Fussy encoding is better for all countenfolas. The best encodings of
random formulas were split between fussy and sloppy. Fi@ulemonstrates this trend
for 140 length random formulas.

No variable order is best, butExms worst. The best encodings for our benchmark
formula set were split between ve variable orders. Theveaind default orders proved
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Best fussy encoding vs best sloppy encoding:
U Pattern Formulas 3-variable, 140 length random formulas
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exponentially better than CadenceSMV. diagonal when sloppy encoding is best.

optimal for more random formulas than the other orders. gD demonstrates that
neither the na've order nor the default order is better tharother for random formulas.
The na've order was optimal f&, Q, R, U,, andS patternsMCS-MAs optimal for 2-
and 3-variable linear counters. TheXPvariable order dominated fag,, C,, U, and

R, pattern formulas, as well as for 2- and 3-variable countenfdas, yet it was rarely
best for random formulas. Figure 11 demonstrates the matkeztence in scalability
provided by using the.EXPorder over running CadenceSMV on 3-variable counter
formulas. We can analyze much larger models with PANDA usiBgPthan with the
native CadenceSMV encoding before memory-out. We neverddhel EXMorder to

be the single best encoding for any formula.

Best encodings with naive vs default variable orders .
3-variable, 195 length random formulas 3-variable Counter Formulas
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Fig. 10. Best encodings of 500 3-variable, 18ky.11. Maximum states analyzed before

length random formulas. Points fall above 8pace-out. CadenceSMV quits at 10240 states.

diagonal when na’ve variable order is best. PANDAs NNF/fussyTGBA/LEXP scales to
491520 states.
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A formula class typically has a best encoding, but predicgtiare di cult While each
of our pattern and counter formulas had a best (or a pair of) Esodings, which
remained consistent as we scaled the formulas, we foundataatould not reliably
predict the best encoding using any statistics gathered frarsing, such as operator
counts or ratios. For example, we found that the best engddina pattern formula
was not necessarily the best for a randomly-generated flaroamprised of the same
temporal operators. We surmise that the best encodingdstdiehe structure of the
formula on a deeper level; developing an accurate heursstéft to future work.

There is no single best encoding; a multi-encoding apprdadearly superior We
implement a novel multi-encoding approach: our new PAND@! reates several en-
codings of a formula and uses a symbolic model checker tokdheen for satis ability
in parallel, terminating when the rst check completes. @uperimental data supports
this multi-encoding approach. Figures 4, 6, and 8 highligbtsigni cant decrease in
CadenceSMV model analysis time fler R, andU pattern formulas, while Figure 11
demonstrates increased scalability in terms of state spsiog counter formulas. Al-
together, we demonstrate that a multi-encoding approadfaisatically more scalable
than the current state-of-the-art. The increase in sdélais dependant on the spe-
ci ¢ formula, though for some formulas PANDA's model anailyéme is exponentially
better than CadenceSMV's model analysis time for the saamsaf formulas.

7 Discussion

This paper brought attention to the issue of scalable coctétn of symbolic automata
for LTL formulas in the context of LTL satis ability checkop We de ned novel en-
codings and novel BDD variable orders for accomplishing task. We explored the
impact of these encodings, comprised of combinations ofmabforms, automaton
forms, transition forms, and combined with variable ord&¥e showed that each can
have a signi cant impact on performance. At the same timesh@&wved that no single
encoding outperforms all others and showed that a multbeimg approach yields the
best result, consistently outperforming the native tratish of CadenceSMV.

We do not claim to have exhaustively covered the space ofildesencodings
of symbolic automata. Several papers on the automatasdtieapproach to LTL de-
scribe approaches that could be turned into alternativeaings of symbolic automata,
cf. [4,18, 20, 37]. The advantage of the multi-encoding apph we introduced here is
its extensibility adding additional encodings is straightforward. The ireticoding
approach can also be combined with eient back ends. In this paper we used Ca-
denceSMV as a BDD-based back end; using another symbolicéyat (cf. [14]) or
a SAT-based back end (cf. [3]) would be an alternative apgrpas both BDD-based
and SAT-based back ends require symbolic automata. Sinceséives as the basis for
industrial languages such as PSL and SVA, the encoding itpobs studied here may
also serve as the basis for novel encodings of such languefgés 9].

In this paper we examined our novel symbolic encodings of iflthe context
of satis ability checking. An important dierence between satis ability checking and
model checking is that in the former we expect to have to feamlich larger formulas,



14 Kristin Y. Rozier and Moshe Y. Vardi

since we need to consider the conjunction of propertieso Ats model checking the
size of the symbolic automata can be dwarfed by the size afibdel under veri ca-
tion. Thus, the issue of symbolic encoding of automata irctivgext of model checking
deserves a separate investigation.
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