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Abstract. Formal behavioral speci�cations written early in the system-design
process and communicated across all design phases have beenshown to increase
the e� ciency, consistency, and quality of the system under development. To pre-
vent introducing design or veri�cation errors, it is crucial to test speci�cations
for satis�ability. Our focus here is on speci�cations expressed in linear temporal
logic (LTL).
We introduce a novel encoding of symbolic transition-basedBüchi automata and
a novel, “sloppy,” transition encoding, both of which result in improved scalabil-
ity. We also de�ne novel BDD variable orders based on tree decomposition of
formula parse trees. We describe and extensively test a new multi-encoding ap-
proach utilizing these novel encoding techniques to create30 encoding variations.
We show that our novel encodings translate to signi�cant, sometimes exponential,
improvement over the current standard encoding for symbolic LTL satis�ability
checking.

1 Introduction

In property-based designformal properties, written in temporal logics such as LTL [31],
are written early in the system-design process and communicated across all design
phases to increase the e� ciency, consistency, and quality of the system under develop-
ment [34, 36]. Property-based design and other design-for-veri�cation techniques cap-
ture design intent precisely, and use formal logic properties both to guide the design
process and to integrate veri�cation into the design process [24]. The shift to specifying
desired system behavior in terms of formal logic propertiesrisks introducing speci�-
cation errors in this very initial phase of system design, raising the need forproperty
assurance[30,34].

The need for checking for errors in formal LTL properties expressing desired sys-
tem behavior �rst arose in the context of model checking, wherevacuity checkingaims
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at reducing the likelihood that a property that is satis�ed by the model under veri�-
cation is an erroneous property [2, 27]. Property assuranceis more challenging at the
initial phases of property-based design, before a model of the implementation has been
speci�ed. Inherent vacuity checkingis a set of sanity checks that can be applied to a
set of temporal properties, even before a model of the systemhas been developed, but
many possible errors cannot be detected by inherent vacuitychecking [19].

A stronger sanity check for a set of temporal properties is LTL realizability check-
ing, in which we test whether there is an open system that satis�es all the properties
in the set [32], but such a test is very expensive computationally. In LTL satis�ability
checking, we test whether there is a closed system that satis�es all the properties in
the set. The satis�ability test is weaker than the realizability test, but its complexity is
lower; it has the same complexity as LTL model checking [39].In fact, LTL satis�ability
checking can be implemented via LTL model checking; see below.

Indeed, the need for LTL satis�ability checking is widely recognized [14, 23, 25,
28, 35]. Foremost, it serves to ensure that the behavioral description of a system is in-
ternally consistent and neither over- or under-constrained. If an LTL property is either
valid, or unsatis�ablethis must be due to an error. Consider, for example, the speci-
�cation always(b1 ! eventually b2), whereb1 andb2 are propositional formulas. If
b2 is a tautology, then this property is valid. Ifb2 is a contradiction, then this prop-
erty is unsatis�able. Furthermore, the collective set of properties describing a system
must be satis�able, to avoid contradictions between di� erent requirements. Satis�abil-
ity checking is particularly important when the set of properties describing the design
intent continues to evolve, as properties are added and re�ned, and have to be checked
repeatedly. Because of the need to consider large sets of properties, it is critical that the
satis�ability test bescalable, and able to handle complex temporal properties. This is
challenging, as LTL satis�ability is known to be PSPACE-complete [39].

As pointed out in [35], satis�ability checking can be performed via model check-
ing: auniversal model(that is, a model that allows all possible traces) does not satisfy
a linear temporal property: f precisely whenf is satis�able. In [35] we explored the
e� ectiveness of model checkers as LTL satis�ability checkers. We compared there the
performance of explicit-state and symbolic model checkers. Both use the automata-
theoretic approach [43] but in a di� erent way. Explicit-state model checkers translate
LTL formulas to Büchi automata explicitly and then use an explicit graph-search algo-
rithm [11]. For satis�ability checking, the construction of the automaton is the more
demanding task. Symbolic model checkers construct symbolic encodings of automata
and then use a symbolic nonemptiness test. The symbolic construction of the automaton
is easy, but the nonemptiness test is computationally demanding. The extensive set of
experiments described in [35] showed that the symbolic approach to LTL satis�ability
is signi�cantly superior to the explicit-state approach interms of scalability.

In the context of explicit-state model checking, there has been extensive research
on optimized construction of automata from LTL formulas [12, 13, 20–22, 38, 40, 41],
where a typical goal is to minimize the size of constructed automata [42]. Optimizing
the construction of symbolic automata is more di� cult, as the size of the symbolic rep-
resentation does not correspond directly to its optimality. An initial symbolic encoding
of automata was proposed in [6], but the optimized encoding we call CGH, proposed
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by Clarke, Grumberg, and Hamaguchi [10], has become the de facto standard encoding.
CGH encoding is used by model checkers such as CadenceSMV andNuSMV, and has
been extended to symbolic encodings of industrial speci�cation languages [9]. Surpris-
ingly, there has been little follow-up research on this topic.

In this paper, we propose novel symbolic LTL-to-automata translations and utilize
them in a new multi-encoding approach to achieve signi�cant, sometimes exponential,
improvement over the current standard encoding for LTL satis�ability checking. First
we introduce and prove the correctness of a novel encoding ofsymbolic automata in-
spired by optimized constructions of explicit automata [12,22]. While the CGH encod-
ing usesGeneralized Büchi Automata(GBA), our new encoding is based onTransition-
Based Büchi Automata(TGBA). Second, inspired by work on symbolic satis�ability
checking for modal logic [29], we introduce here a novelsloppyencoding of symbolic
automata, as opposed to thefussyencoding used in CGH. Sloppy encoding uses looser
constraints, which sometimes results in smaller BDDs. The sloppy approach can be ap-
plied both to GBA-based and TGBA-based encodings, providedthat one uses negation-
normal form (NNF), [40], rather than the Boolean normal form(BNF) used in CGH.
Finally, we introduce several new variable-ordering schemes, based on tree decompo-
sition of the LTL parse tree, inspired by observations that relate tree decompositions to
BDD variable ordering [17]. The combination of GBA/TGBA, fussy/sloppy, BNF/NNF,
and di� erent variable orders yields a space of 30 possible con�gurations of symbolic
automata encodings. (Not all combinations yield viable con�gurations.)

Since the value of novel encoding techniques lies in increasedscalability, we evalu-
ate our novel encodings in the context of LTL satis�ability checking, utilizing a compre-
hensive and challenging collection of widely-used benchmark formulas [7, 14, 23, 35].
For each formula, we perform satis�ability checking using all 30 encodings. (We use
CadenceSMV as our experimental platform.) Our results demonstrate conclusively that
no encoding performs best across our large benchmark suite.Furthermore, no single
approach–GBA vs. TGBA, fussy vs. sloppy, BNF vs. NNF, or any one variable order,
is dominant. This is consistent with the observation made byothers [1, 42], that in the
context of symbolic techniques one typically does not �nd a “winning” algorithmic con-
�guration. In response, we developed a multi-encoding tool, PANDA, which runs sev-
eral encodings in parallel, terminating when the �rst process returns. Our experiments
demonstrate conclusively that the multi-encoding approach using the novel encodings
invented in this paper achieves substantial improvement over CGH, the current standard
encoding; in fact PANDA signi�cantly bested the native LTL model checker built into
CadenceSMV.

The structure of this paper is as follows. We review the CGH encoding [10] in
Section 2. Next, in Section 3, we describe our novel symbolicTGBA encoding. We
introduce our novel sloppy encoding and our new methods for choosing BDD variable
orderings and discuss our space of symbolic encoding techniques in Section 4. After
setting up our scalability experiment in Section 5, we present our test results in Section
6, followed by a discussion in Section 7. Though our construction can be used with
di� erent symbolic model checking tools, in this paper, we follow the convention of [10]
and give examples of all constructions using the SMV syntax.
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2 Preliminaries

We assume familiarity with LTL [16]; For convenience, Appendix A de�nes LTL se-
mantics. We use two normal forms:

De�nition 1 Boolean Normal Form (BNF) rewrites the input formula to use only: ,
_, X, U , andF . In other words, we replacê, ! , R, andG with their equivalents:

g1 ^ g2 � : (: g1 _ : g2)

g1 ! g2 � : g1 _ g

g1 R g2 � : (: g1 U : g2)

Gg1 � :F : g1

De�nition 2 Negation Normal Form (NNF) pushes negation inwards until only atomic
propositions are negated, using the following rules:

:: g � g

: (g1 ^ g2) � (: g1) _ (: g2)

: (g1 _ g2) � (: g1) ^ (: g2)

(g1 ! g2) � (: g1) _ g2

: (Xg) � X (: g)

: (g1U g2) � (: g1R: g2)

: (g1Rg2) � (: g1U: g2)

: (Gg) � F (: g)

: (F g) � G (: g)

In automata-theoretic model checking, we represent LTL formulas with Büchi automata.

De�nition 3 A Generalized B̈uchi Automaton (GBA) is a quintuple(Q; �; �; Q0; F),
where:

� Q is a �nite set of states.

� � is a �nite alphabet.

� � � Q � � � Q is a transition relation.

� Q0 � Q is a set of initial states.

� F � 2Q is a set of accepting state sets.

A run of a Büchi automaton A over an in�nite trace� = � 0; � 1; � 2; : : : 2 � is a sequence
q0; q1; q2; : : : of states such that q0 2 Q0, andhqi ; � i; qi+1i 2 � for all i � 0. A accepts
� if the run over� visits states in every set in F in�nitely often. We denote theset of
in�nite traces accepted by A byL ! (A).

A trace satisfying LTL formulaf is an in�nite run over the alphabet� = 2Prop, where
Prop is the underlying set of atomic propositions. We denote bymodels( f ) the set of
traces satisfyingf . The next theorem relates the expressive power of LTL to thatof
Büchi automata.

Theorem 1 [44] Given an LTL formula f , we can construct a generalized Büchiau-
tomaton Af =



Q; �; �; Q0; F

�
such thatjQj is in 2O(j f j), � = 2Prop, andL ! (Af ) is exactly

models( f ).

This theorem reduces LTL satis�ability checking to automata-theoretic nonemptiness
checking, asf is satis�able i� models( f ) , ; i� L ! (Af ) , ; .

LTL satis�ability checking relates to LTL model checking asfollows. We use a
universal model Mthat generates all traces overProp such thatL ! (M) = (2Prop)! .
The code for this model appears in [35] and Appendix B. We now have thatM doesnot
satisfy: f i� f is satis�able. We use a symbolic model checker to check the formula: f
againstM; f is satis�able precisely when the model checker �nds a counterexample.
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CGH encodingIn this paper we focus on LTL to symbolic Büchi automata compilation.
We recap the CGH encoding [10], which assumes that the formula f is in BNF, and then
forms a symbolic GBA. We �rst de�ne theCGH-closureof an LTL formula f as the set
of all subformulas off (including f itself), where we also add the formulaX(g U h)
for each subformula of the formg U h. TheX-formulas in the CGH-closure off are
calledelementaryformulas.

We declare a Boolean SMV variableELXg for each elementary formulaXg in the
CGH-closure off . Also, each atomic proposition inf is declared as a Boolean SMV
variable. We de�ne an auxiliary variableSh for every formulah in the CGH-closure
of f . (Auxiliary variables are substituted away by SMV and do notrequired allocated
BDD variables.) The characteristic function for an auxiliary variableSh is de�ned as
follows:
Sh = p if p 2 AP Sh =!Sg if h = : g
Sh = ELh if h is a formulaXg

Sh = Sg1jSg2 if h = g1 _ g2

Sh = Sg2j(Sg1&SX (g1 U g2)) if h = g1 U g2

We now generate the SMV modelM f :

MODULE main
VAR

a: boolean; /*declare a Boolean var for each atomic prop in f * /
EL_Xg: boolean; /*declare a Boolean var for every formula Xg in the CGH-closure*/

DEFINE /*auxiliary vars according to characteristic funct ion */
S_h := ...

TRANS /*for every formula Xg in the CGH-closure, add a transi tion constraint*/
(S_Xg = next(S_g))

FAIRNESS !S_gUh | S_h /*for each subformula gUh */
FAIRNESS TRUE /*or a generic fairness condition otherwise* /
SPEC !(S_f & EG true) /*end with a SPEC statement*/

The traces ofM f correspond to the accepting runs ofAf , starting from arbitrary states.
Thus, satis�ability of f corresponds to nonemptiness ofM f , starting from an initial
state. We can model check such nonemptiness withSPEC !(Sf & EG true) . A coun-
terexample is an in�nite trace starting at a state whereS f holds. Thus, the model checker
returns a counterexample that is a trace satisfyingf .

Remark 1 While the syntax we use is shared by CadenceSMV and NuSMV, theprecise
semantics of CTL model checking in these model checkers is not fully documented and
there are some subtle but signi�cant di� erences between the two tools. Therefore, we
use CadenceSMV semantics here and describe these subtleties in Appendix C.

3 A Symbolic Transition-Based Generalized B̈uchi Automata
(TGBA) Encoding

We now introduce a novel symbolic encoding, referred to as TGBA, inspired by the
explicit-state transition-based Generalized Büchi automata of [22]. Such automata are
used by SPOT [15], which was shown experimentally [35] to be the best explicit LTL
translator for satis�ability checking.

De�nition 4 A Transition-Based Generalized B̈uchi Automaton (TGBA) is a quin-
tuple(Q; �; �; Q0; F), where:
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� Q is a �nite set of states.

� � is a �nite alphabet.

� � � Q � � � Q is a transition relation.

� Q0 � Q is a set of initial states.

� F � 2� is a set of accepting transitions.

A run of a TGBA over an in�nite trace� = � 0; � 1; � 2; : : : 2 � is a sequencehq0; � 0; q1i ,
hq1; � 1; q2i , hq2; � 2; q3i , : : : of transitions in� such that q0 2 Q0. The automaton accepts
� if it has a run over� that traverses some transition from each set in F in�nitely often.

The next theorem relates the expressive power of LTL to that of TGBAs.

Theorem 2 [12,22]Given an LTL formula f , we can construct a TGBA Af =


Q; �; �;

Q0; F
�

such thatjQj is in 2O(j f j), � = 2Prop, andL ! (Af ) is exactly models( f ).

Expressing acceptance conditions in terms of transitions rather than states enables a
signi�cant reduction in the size of the automata corresponding to LTL formulas [12,22].

Our new encoding of symbolic automata, based on TGBAs, assumes that the input
formula f is in NNF. (This is due to the way that the satisfaction ofU -formulas is
handled by means of promise variables; see below.) As in CGH,we �rst de�ne the
closureof an LTL formula f . In the case of TGBAs, however, we simply de�ne the
closure to be the set of all subformulas off (including f itself). Note that, unlike in the
CGH encoding,U - andF - formulas do not require the introduction of newX-formulas.

The set of elementary formulas now contains:f ; all U -, R-, F -, G-, and GF -
subformulas in the closure off , as well as all subformulasg whereXg is in the closure
of f . Note that we treat the commonGF combination as a single operator.

Again, we declare a Boolean SMV variableELg for every elementary formulag
as well as Boolean variables for each atomic proposition inf . In addition, we declare
a Boolean SMVpromise variable Pg for every U -, F -, andGF -subformula in the
closure. These formulas are used to de�ne fairness conditions. Intuitively, Pg holds
wheng is a promise for the future that is not yet ful�lled. IfPg does not hold, then the
promise must be ful�lled immediately. To ensure satisfaction of eventualities we require
that each promise variablePg is false in�nitely often. The TGBA encoding creates fewer
EL variables than the CGH encoding, but it does add promise variables.

Again, we de�ne an auxiliary variableSh for every formulah in the closure off .The
characteristic function forSh is de�ned as in the CGH encoding, with the following
changes: Sh = Sg1&Sg2 if h = g1 ^ g2

Sh = next(ELg) if h = Xg

Sh = Sg2j(Sg1& Pg1 U g2&(next(ELg1 U g2))) if h = g1 U g2

Sh = Sg2&(Sg1j(next(ELg1 R g2))) if h = g1 R g2

Sh = Sg&(next(ELG g)) if h = G g

Sh = Sgj(PF g&next(ELF g)) if h = F g

Sh = (next(ELGF g))&(SgjPGF g) if h = GF g
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Since we reason directly over the temporal subformulas off (and not overXg for
temporal subformulag as in CGH), the transition relation associates elementary for-
mulas with matching elements of our characteristic function. Finally, we generate our
symbolic TGBA; here is our SMV modelM f :

MODULE main
VAR /*declare a boolean variable for each atomic propositio n in f*/

a : boolean;
...

VAR /*declare a new variable for each elementary formula*/
EL_f : boolean; /*f is the input LTL formula*/
EL_g1 : boolean; /*g is an X-, F-, U-, or GF-formula*/
...

DEFINE /*characteristic function definition*/
S_g = ...
...

TRANS /*for each EL-var, generate a line here*/
( EL_g1 = S_g1 ) & /*a line for every EL variable*/
...

FAIRNESS (!P_g1) /*fairness constraint for each promise va riable*/
...
FAIRNESS TRUE /*only needed if there are no promise variable s*/
SPEC !(EL_f & EG TRUE)

Symbolic TGBAs can only be created for NNF formulas because the model checker
tries to guess a sequence of values for each of the promise variables to satisfy the subfor-
mulas, which does not work for negativeU -formulas. (This is also the case for explicit
state model checking; SPOT also requires NNF for TGBA encoding [12].) Consider the
formula f = : (a U b) and the tracea=1,b=0, a=1,b=1, ... Clearly, (a U b) holds
in the trace, sof fails in the trace. If, however, we choseP aUbto be false at time 0,
thenEL aUbis false at time 0, which means thatf holds at time 0. The correctness of
our construction is summarized by the following theorem.

Theorem 3 Let Mf be the SMV program made by the TGBA encoding for LTL formula
f . Then Mf does not satisfy the speci�cation!(EL f & EG true) i� f is satis�able.

The proof of this theorem appears in Appendix D.

4 A Set of 30 Symbolic Automata Encodings

Our novel encodings are combinations of four components: (1) Normal Form: BNF or
NNF, described above, (2) Automaton Form: GBA or TGBA, described above, (3) Tran-
sition Form: fussy or sloppy, described below, and (4) Variable Order: default, na�̈ve,
LEXP, LEXM, MCS-MIN, MCS-MAX, described below. In total, we have 30 novel encodings,
since BNF can only be used with fussy-encoded GBAs, as explained below. CGH cor-
responds to BNF/fussy/GBA; we encode this combination with all six variable orders.

Automaton FormAs discussed earlier, CGH is based on GBA, in combination with
BNF. We can combine, however, GBA also with NNF. For this, we need to expand the
characteristic function for symbolic GBAs in order to form them from NNF formulas:

Sh = Sg1&Sg2 if h = g1 ^ g2

Sh = Sg2&(Sg1jSX (g1 R g2)) if h = g1 R g2

Sh = Sg&SX (Gg) if h = Gg

Sh = SgjSX (F g) if h = F g
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Since our focus here is on symbolic encoding, PANDA, unlike CadenceSMV, does
not apply formula rewriting and related optimizations; rather, PANDA's symbolic au-
tomata are created directly from the given normal form of theformula. Formula rewrit-
ing may lead to further improvement in PANDA's performance.

Sloppy Encoding: A Novel Transition FormCGH employs i� -transitions, of the form
TRANS (ELg=(S g)) . We refer to this asfussyencoding. For formulas in NNF, we can
use only-if transitions of the formTRANS (ELg->(S g)) , which we refer to assloppy
encoding. A similar idea was shown to be useful in the contextof modal satis�ability
solving [29]. Sloppy encoding increases the level of non-determinism, yielding a looser,
less constrained encoding of symbolic automata, which in many cases results in smaller
BDDs. A side-by-side example of the di� erences between GBA and TGBA encodings
(demonstrating the sloppy transition form) for formulaf = ((Xa)&(b U (!a))) is given
in Figures 1-2.

MODULE main
/*formula: ((X (a )) & ((b )U (!(a ))))*/
VAR /*a Boolean var for each prop in f*/

a : boolean;
b : boolean;

VAR /*a var EL_X_g for each formula (X g) in
el_list w/primary op X, U, R, G, or F*/

EL_X_a : boolean;
EL_X__b_U_NOT_a : boolean;

DEFINE
/*each S_h in the characteristic function*/

S__X_a__AND__b_U_NOT_a :=
(EL_X_a) & (S__b_U_NOT_a);

S__b_U_NOT_a :=
(!(a )) | (b & EL_X__b_U_NOT_a);

TRANS /*a line for each (X g) in el_list*/
( EL_X_a -> (next(a) ) ) &
( EL_X__b_U_NOT_a -> (next(S__b_U_NOT_a) ))

FAIRNESS (!S__b_U_NOT_a | (!(a )))
SPEC !(S__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 1.NNF/sloppy/GBA encoding for CadenceSMV

MODULE main
/*formula: ((X (a ))& ((b )U (!(a ))))*/
VAR /*a Boolean var for each prop in f*/

a : boolean;
b : boolean;

VAR /*a var for each EL_var in el_list*/
EL__X_a__AND__b_U_NOT_a : boolean;
P__b_U_NOT_a: boolean;
EL__b_U_NOT_a : boolean;

DEFINE
/*each S_h in the characteristic function*/

S__X_a__AND__b_U_NOT_a :=
(S_X_a) & (EL__b_U_NOT_a);

S_X_a := (next(a));
S__b_U_NOT_a := ( ((!(a )))

| (b& P__b_U_NOT_a & (next(EL__b_U_NOT_a))));
TRANS /*a line for each EL_var in el_list*/

( EL__X_a__AND__b_U_NOT_a ->
(S__X_a__AND__b_U_NOT_a) ) &

( EL__b_U_NOT_a -> (S__b_U_NOT_a) )
FAIRNESS (!P__b_U_NOT_a)
SPEC !(EL__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 2.NNF/sloppy/TGBA encoding for CadenceSMV

A New Way of Choosing BDD Variable OrdersSymbolic model checkers search for
a fair trace in the model-automaton product using a BDD-based �xpoint algorithm, a
process whose e� cacy is highly sensitive to variable order [5]. Finding an optimal BDD
variable order is NP-hard, and good heuristics for variableordering are crucial.

Recall that we de�ne state variables in the symbolic model for only certain subfor-
mulas:p 2 AP, EL g, andP g for some subformulasg. We form the variable graph by
identifying nodes in the input-formula parse tree that correspond to the primary opera-
tors of those subformulas. Since we declare di� erent variables for the GBA and TGBA
encodings, the variable graph for a formulaf may vary depending on the automaton
form we choose. Figure 3 displays the GBA and TGBA variable graphs for an example
formula, overlaid on the parse tree for this formula. We connect each variable-labeled
vertex to its closest variable-labeled vertex descendant(s), skipping over vertices in the
parse tree that do not correspond to state variables in our automaton construction. We
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(a) GBA variable graph (b) TGBA variable graph

Fig. 3. Graphs in (a) and (b) were both formed from the parse tree forf = ((Xa) ^ (b U : a)).

create one node per subformula variable, irrespective of the number of occurrences of
the subformula; for example, we create only one node for the propositiona in Figure 3.

We implement �ve variable ordering schemes, all of which take the variable graph
as input. We compare these to thedefaultheuristic of CadenceSMV. Thena�̈vevariable
order is formed directly from a pre-order, depth-�rst traversal of the variable graph. We
derive four additional variable-ordering heuristics by repurposing node-ordering algo-
rithms designed for graph triangulation [26].3 We use two variants of a lexicographic
breadth-�rst search algorithm: variantsperfect(LEXP) andminimal (LEXM). LEXPlabels
each vertex in the variable graph with its already-ordered neighbors; the unordered
vertex with the lexicographic largest label is selected next in the variable order.LEXM
operates similarly, but labels unordered vertices with both their neighbors and also all
vertices that can be reached by a path of unordered vertices with smaller labels. The
maximum-cardinality search (MCS) variable ordering scheme di� ers in the vertex selec-
tion criterion, selecting the vertex in the variable graph adjacent to the highest number
of already ordered vertices next. We seed MCS with an initialvertex, chosen either to
have themaximum(MCS-MAX) or minimum(MCS-MIN) degree.

5 Experimental Methodology

Test MethodsEach test was performed in two steps. First, we applied our symbolic
encodings to the input formula. Second, each symbolic automaton and variable order
�le pair was checked by CadenceSMV. Since encoding time is minimal and heavily
dominated by model-analysis time (the time to check the model for nonemptiness to
determine LTL satis�ability) we focus exclusively on the latter here.

Platform We ran all tests on Shared University Grid at Rice (SUG@R), anIntel Xeon
compute cluster.4 SUG@R is comprised of 134 SunFire x4150 nodes, each with two
quad-core Intel Xeon processors running at 2.83GHz and 16GBof RAM per processor.
The OS is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Each testwas run with exclusive
access to one node. Times were measured using the Unixtime command.

Input Formulas We employed a widely-used [7, 14, 23, 35] collection of benchmark
formulas, established by [35]. All encodings were tested using three types of scalable
formulas: random, counter, and pattern. De�nitions of these formulas are repeated for
convenience in Appendix B. Our test set includes 4 counter and 9 pattern formula varia-
tions, each of which scales to a large number of variables, and 60,000 random formulas.

3 Graph triangulation implementation coded by the Kavraki Lab at Rice University.
4 http://rcsg.rice.edu/sugar/
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CorrectnessIn addition to proving the correctness of our algorithm, thecorrectness
of our implementation was established by comparing for every formula in our large
benchmark suite, the results (either SAT or UNSAT) returnedby all encodings studied
here, as well as the results returned by CadenceSMV for checking the same formula as
an LTL speci�cation for the universal model. We never encountered an inconsistency.

6 Experimental Results

Our experiments demonstrate that the novel encoding methods we have introduced sig-
ni�cantly improve the translation of LTL formulas to symbolic automata, as measured
in time to check the resulting automata for nonemptiness andthe size of the state space
we can check. No single encoding, however, consistently dominates for all types of for-
mulas. Instead, we �nd that di� erent encodings are better suited to di� erent formulas.
Therefore, we recommend using a multi-encoding approach, avariant of the multi-
engine approach [33], of running all encodings in parallel and terminating when the
�rst job completes. We call our tool PANDA for “Portfolio Approach to Navigate the
Design of Automata.”

Seven con�gurations are not competitiveWhile we can not predict the best encodings,
we can reliably predict the worst. The following encodings were never optimal for any
formulas in our test set. Thus, out of our 30 possible encodings, we rule out these seven:

– BNF/fussy/GBA/LEXM(essentially CGH withLEXM)
– NNF/fussy/GBA/LEXM
– NNF/fussy/TGBA/LEXM
– NNF/sloppy/GBA/LEXM

– NNF/fussy/TGBA/MCS-MAX
– NNF/sloppy/TGBA/MCS-MAX
– NNF/sloppy/TGBA/MCS-MIN

NNF is the best normal form, most (but not all) of the time.NNF encodings were
always better for all counter and pattern formulas; see, forexample, Figure 4. Figure 5
demonstrates the use of both normal forms in the optimal encodings chosen by PANDA
for random formulas. BNF encodings were occasionally signi�cantly better than NNF;
the solid point in Figure 5 corresponds to a formula for whichthe best BNF encoding
was more than four times faster than the best NNF encoding. NNF was best much more
often than BNF, likely because using NNF has the added bene�tthat it allows us to
employ our sloppy encoding and TGBAs, which often carry their own performance
advantages.

No automaton form is best.Our TGBA encodings dominated forR2, S, andU pattern
formulas and both types of 3-variable counter formulas. Forinstance, the log-scale plot
in Figure 6 shows that PANDA's median model analysis time forR2 pattern formulas
grows subexponentially as a function of the number of variables, while CadenceSMV's
median model analysis time for the same formulas grows exponentially. (The best of
PANDA's GBA encodings is also graphed for comparison.) GBA encodings are better
for other pattern formulas, both types of 2-variable counter formulas, and the majority
of random formulas; Figure 7 demonstrates this trend for 180length random formulas.
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No transition form is bestSloppy is the best transition form for all pattern formulas.For
instance, the log-scale plot of Figure 8 illustrates that PANDA's median model analysis
time forU pattern formulas grows subexponentially as a function of the number of vari-
ables, while CadenceSMV's median model analysis time for the same formulas grows
exponentially. Fussy encoding is better for all counter formulas. The best encodings of
random formulas were split between fussy and sloppy. Figure9 demonstrates this trend
for 140 length random formulas.

No variable order is best, butLEXMis worst. The best encodings for our benchmark
formula set were split between �ve variable orders. The na�̈ve and default orders proved
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optimal for more random formulas than the other orders. Figure 10 demonstrates that
neither the na�̈ve order nor the default order is better thanthe other for random formulas.
The na�̈ve order was optimal forE, Q, R, U2, andS patterns.MCS-MAXis optimal for 2-
and 3-variable linear counters. TheLEXPvariable order dominated forC1, C2, U, and
R2 pattern formulas, as well as for 2- and 3-variable counter formulas, yet it was rarely
best for random formulas. Figure 11 demonstrates the markeddi� erence in scalability
provided by using theLEXPorder over running CadenceSMV on 3-variable counter
formulas. We can analyze much larger models with PANDA usingLEXPthan with the
native CadenceSMV encoding before memory-out. We never found theLEXMorder to
be the single best encoding for any formula.
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A formula class typically has a best encoding, but predictions are di� cult While each
of our pattern and counter formulas had a best (or a pair of best) encodings, which
remained consistent as we scaled the formulas, we found thatwe could not reliably
predict the best encoding using any statistics gathered from parsing, such as operator
counts or ratios. For example, we found that the best encoding for a pattern formula
was not necessarily the best for a randomly-generated formula comprised of the same
temporal operators. We surmise that the best encoding is tied to the structure of the
formula on a deeper level; developing an accurate heuristicis left to future work.

There is no single best encoding; a multi-encoding approachis clearly superior We
implement a novel multi-encoding approach: our new PANDA tool creates several en-
codings of a formula and uses a symbolic model checker to check them for satis�ability
in parallel, terminating when the �rst check completes. Ourexperimental data supports
this multi-encoding approach. Figures 4, 6, and 8 highlightthe signi�cant decrease in
CadenceSMV model analysis time forR, R2, andU pattern formulas, while Figure 11
demonstrates increased scalability in terms of state spaceusing counter formulas. Al-
together, we demonstrate that a multi-encoding approach isdramatically more scalable
than the current state-of-the-art. The increase in scalability is dependant on the spe-
ci�c formula, though for some formulas PANDA's model analysis time is exponentially
better than CadenceSMV's model analysis time for the same class of formulas.

7 Discussion

This paper brought attention to the issue of scalable construction of symbolic automata
for LTL formulas in the context of LTL satis�ability checking. We de�ned novel en-
codings and novel BDD variable orders for accomplishing this task. We explored the
impact of these encodings, comprised of combinations of normal forms, automaton
forms, transition forms, and combined with variable orders. We showed that each can
have a signi�cant impact on performance. At the same time, weshowed that no single
encoding outperforms all others and showed that a multi-encoding approach yields the
best result, consistently outperforming the native translation of CadenceSMV.

We do not claim to have exhaustively covered the space of possible encodings
of symbolic automata. Several papers on the automata-theoretic approach to LTL de-
scribe approaches that could be turned into alternative encodings of symbolic automata,
cf. [4,18,20,37]. The advantage of the multi-encoding approach we introduced here is
its extensibility; adding additional encodings is straightforward. The multi-encoding
approach can also be combined with di� erent back ends. In this paper we used Ca-
denceSMV as a BDD-based back end; using another symbolic back end (cf. [14]) or
a SAT-based back end (cf. [3]) would be an alternative approach, as both BDD-based
and SAT-based back ends require symbolic automata. Since LTL serves as the basis for
industrial languages such as PSL and SVA, the encoding techniques studied here may
also serve as the basis for novel encodings of such languages, cf. [8,9].

In this paper we examined our novel symbolic encodings of LTLin the context
of satis�ability checking. An important di� erence between satis�ability checking and
model checking is that in the former we expect to have to handle much larger formulas,
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since we need to consider the conjunction of properties. Also, in model checking the
size of the symbolic automata can be dwarfed by the size of themodel under veri�ca-
tion. Thus, the issue of symbolic encoding of automata in thecontext of model checking
deserves a separate investigation.
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40. F. Somenzi and R. Bloem. E� cient Büchi automata from LTL formulae. InCAV, LNCS

1855, pages 248–263. Springer, 2000.
41. X. Thirioux. Simple and e� cient translation from LTL formulas to Büchi automata.ENTCS

66, (2):145–159, 2002.
42. M.Y. Vardi. Automata-theoretic model checking revisited. InVMCAI, LNCS 4349, pages

137–150. Springer, 2007.
43. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri�ca-

tion. In LICS, pages 332–344, Cambridge, Jun 1986.
44. M.Y. Vardi and P. Wolper. Reasoning about in�nite computations.Information and Compu-

tation 115, (1):1–37, Nov 1994.


